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Abstract— The General Game Playing Competition [1] poses
a unique challenge for Artificial Intelligence. To be successful, a
player must learn to play well in a limited number of example
games encoded in first-order logic and then generalize its game
play to previously unseen games with entirely different rules.
Because good opponents are usually not available, learning algo-
rithms must come up with plausible opponent strategies in order
to benchmark performance. One approach to simultaneously
learning all player strategies is coevolution. This paper presents
a coevolutionary approach using NeuroEvolution of Augmenting
Topologies to evolve populations of game state evaluators. This
approach is tested on a sample of games from the General Game
Playing Competition and shown to be effective: It allows the
algorithm designer to minimize the amount of domain knowledge
built into the system, which leads to more general game play and
allows modeling opponent strategies efficiently. Furthermore, the
General Game Playing domain proves to be a powerful tool for
developing and testing coevolutionary methods.

Keywords: Coevolution, General Game Playing, Artificial

Neural Networks

I. INTRODUCTION

The General Game Playing (GGP) Competition has been

held since 2005 at the National Conference for Artificial

Intelligence [1], [2]. It is a multi-round competition employing

dozens of games, both familiar and new, and poses a unique

challenge for Artificial Intelligence (AI) methods by requiring

a successful player to perform approximate heuristic search

and generalize from a limited number of example games to a

large class of previously unseen games. GGP is an interesting

problem because it requires the algorithm designer to take into

account the kinds of structures and commonalities that may

exist across games. This emphasis in turn advances the cause

of general AI.

The most successful machine game players, such as Deep

Blue and Chinook, use game tree evaluation techniques sup-

plemented by carefully crafted and game-specific databases

of human knowledge [3], [4]. While very successful, meth-

ods that rely on a custom board evaluation function do not

work in GGP because the expert domain knowledge is not

available for previously unseen games. Other game players

employ a more learning-oriented approach to game playing.

For example, TD-gammon learned backgammon by playing

games against a handicapped copy of itself [5]. Although much

of the gameplay is learned, such implementations still require

internal game representations to be hand-coded by the designer

and thus do no apply to GGP.

In contrast, coevolution is potentially a highly effective

approach to general game playing. In coevolution, the space

of possible policies and multiple opponent strategies are ex-

plored with little a priori knowledge. This paper introduces

nnrg.hazel, a first implementation of the coevolutionary

approach to GGP. There are four main benefits of such an

approach: 1) it minimizes the amount of domain knowledge

required, 2) it is applicable to a broad range of games, 3) it

generates competent solutions and 4) it uses fewer evaluations

than standard evolutionary approaches. The nnrg.hazel
agent uses NeuroEvolution of Augmenting Topologies (NEAT)

[6] to evolve a population of complexifying artificial neural

networks to serve as heuristic state evaluators in minimax par-

tial game tree search. Each evolved neural network represents a

policy for playing as a particular player in a particular game.

The fitness of each policy is determined by playing against

opponent strategies that are evolved as well.

The nnrg.hazel agent competed in the AAAI 2006

General Game Playing Competition [1] It came in 5th place in

the preliminary rounds and 6th place out of 12 overall, which

is significant considering that the competition was targeted

towards symbolic approaches and did not allow much time

for learning. This paper evaluates nnrg.hazel’s ability to

learn general behavior on a sample of games from the GGP

corpus; in the long-term this work serves as a first step towards

establishing GGP as a tool for testing coevolutionary methods

and in general establishing coevolution as a robust method for

learning general strategies in multiplayer games.

This paper is divided into seven sections: Section 2 gives

an overview of the GGP domain, section 3 discusses the

coevolutionary approach for evolving neural network heuristic

evaluators and section 4 gives the results on six different

games. Finally, sections 5–7 evaluate the contributions and

discuss future work opportunities of this study.

II. GENERAL GAME PLAYING

The General Game Playing Competition consists of perfect-

information, deterministic games with any number of co-

operating and competing players. The games can involve

simultaneous moves or can be turn based. Game rules in GGP

are specified in a Game Description Language (GDL), which

originates from KIF, a language to describe knowledge in first-

order logic [7], [1]. The GDL specification for a game contains

the initial state, legal move rules, state transition rules, goal

score rules, and terminal state rules. Each game state consists

of some number of clauses which are updated in response to

player moves according to a set of state transition rules.
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1. (role xplayer)
2. (role oplayer)
3. (init (cell 1 1 b))
4. (init (cell 1 2 b))
...
5. (init (cell 3 3 b))
6. (init (control xplayer))
7. (<= (next (cell ?m ?n x))
8. (does xplayer (mark ?m ?n))
9. (true (cell ?m ?n b)))

10. (<= (next (control xplayer))
11. (true (control oplayer)))
...

13. (<= (row ?m ?x)
14. (true (cell ?m 1 ?x))
15. (true (cell ?m 2 ?x))
16. (true (cell ?m 3 ?x)))
17. (<= (line ?x)
18. (row ?m ?x))
...

19. (<= (legal ?w (mark ?x ?y))
20. (true (cell ?x ?y b))
21. (true (control ?w)))
22. (<= (legal xplayer noop)
23. (true (control oplayer)))
...

24. (<= (goal xplayer 0) (line o))
25. (<= (goal oplayer 100) (line o))
...

26. (<= terminal (line x))

Fig. 1. Condensed description of Tic Tac Toe in the GDL.

A digest of the GDL representation for Tic Tac Toe is given

in figure 1. Lines 1 and 2 specify the player roles, xplayer
and oplayer. Lines 3–6 define which clauses are true in

the initial state of the game (init clauses); in this case

the initial state consists of a blank board with control given

to xplayer). The next rules specify which clauses will

become true in the next state given the current state and the

moves chosen by each player. For example, line 7 specifies

that a blank board cell will become marked as x if xplayer
marks that cell, and line 10 states that after xplayer makes a

move, control will pass to oplayer (simulating turn-taking).

Rules at lines 19 and 22 give examples of moves that are legal

for each player. In Tic Tac Toe, the player who does not have

control has only a single move choice: noop. Lines 24–25

specify some of the goal conditions, which are rules describing

how many points each player receives at the end of the game.

Note that the line relation is a function defined specifically

for Tic Tac Toe (line 13). Finally, terminal rules (e.g. line

26) determine when a game will end.

During the GGP competition, game playing agents are

connected to a game server that conducts the matches. At

the beginning of each game, the game server sends players

the rules. The players then have a fixed amount of time to

process the game rules before play begins. During gameplay,

each player has a limited amount of time (play clock) to make

its move. If a player does not send its move within the required

time or if it attempts an illegal move, the game server picks

a random move for that player. A game ends when a terminal

state is reached. Since the competition is designed mainly for

symbolic relational approaches, the time constraints proved to

be restrictive for approaches relying on game simulation rather

than rule-knowledge. However the domain itself is interesting

as an incubator for learning general behavior and for analyzing

coevolutionary learning approaches.
Since general game playing is a relatively young research

area, relatively few studies have been conducted. Pell em-

ployed a logic-programming approach to generalize play to

the category of chess-like games [2]. Games were encoded in

a logical game description language and the rules of a specific

game were processed using logic-programming methods, such

as partial evaluation and abstract interpretation. The goal was

to automatically convert an inefficient general player into a

more efficient specialized player for that particular game. The

GGP Competition can be viewed as an extension of Pell’s

work to a much larger class of games.
Expanding on Pell’s work, Epstein et al. considered two-

person, perfect information board games more generally [8].

Their player, Hoyle, used a multi-tiered architecture. It first

tries to decide on a move using a few basic heuristics to

avoid obvious mistakes; if a decision cannot be made by the

first tier, the second tier is consulted. The second tier consists

of advisors (domain-specific heuristics) that comment on the

current state and a decision is made based on these comments.

Hoyle learns to use these advisors for the particular game by

playing against an external expert model. Inspired by human

players’ use of spatial pattern recognition abilities, Epstein et

al. later applied their architecture to spatial heuristic learning

as well [9]. Although generally applicable, Hoyle relies on

preexisting expert players; in GGP, such experts do not exist

in general. Players must learn competitive strategies on their

own, given only the game rules.
Kuhlmann et al. extend the concept of general heuristic

learning to the GGP competition [10]. Through internal game

simulations their agent automatically discovered features such

as piece count and distances between piece pairs from the

game rules. These features were then used to derive heuris-

tics, which in turn were ranked based on their applicability

to the current game. Although this approach makes several

assumptions about the kinds of heuristics that are likely to

work well across a broad spectrum of games it performs very

well in practice: The agent based on Kuhlmann’s work placed

3rd in the 2006 GGP Competition.
In contrast, the basic nnrg.hazel agent framework,

strives to be truly general. It avoids using domain knowledge

and instead relies solely on internal simulation of game

dynamics to refine its gameplay, and will be described next.

III. MONOTONIC COEVOLUTION WITH NEAT

Using a neuroevolution (NE) method called NEAT, heuristic

game state evaluators for states without explicit goal condi-

tions are generated; opponent strategies are coevolved in order

to focus search in promising areas of strategy space. Section

III-A describes the NEAT algorithm, III-B, its application to

minimax search and III-C, the general coevolutionary frame-

work.

A. The NEAT Method
NeuroEvolution of Augmenting Topologies (NEAT) [6] is

a policy-search reinforcement learning method that uses a
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Fig. 2. The two types of structural mutation in NEAT. The genetic
encoding of each network is shown as a series of genes. In each gene,
the innovation number is shown on top, the two nodes connected
by the gene in the middle, and a possible “disabled” symbol at the
bottom; the weight value is not shown. A new connection or node
is added to the network by adding connection genes to the genome.
Assuming the connection (left) is added before the node, the genes
would be assigned innovation numbers 7, 8, and 9, as the figure
illustrates. In this manner, the origin of every gene in the population is
known, allowing matching genes to be identified in different genome
structures.

genetic algorithm to find optimal neural network policies.

NEAT automatically evolves network topology to fit the

complexity of the problem while simultaneously optimizing

network weights. NEAT employs three key ideas: 1) in-

cremental complexification using a variable-length genome,

2) protecting innovation through speciation, and 3) keeping

dimensionality small by starting with minimally connected

networks. By starting with simple networks and expanding the

search space only when beneficial, NEAT is able to find sig-

nificantly more complex controllers than other fixed-topology

learning algorithms. This approach is highly effective: NEAT

outperforms other NE methods on complex control tasks like

double pole balancing [6] and robotic strategy-learning [11].

These properties make NEAT an attractive method for evolving

neural networks in complex tasks.

Each genome in NEAT includes a list of connection genes,

each of which refers to two node genes being connected.

Each connection gene specifies the in-node, the out-node, the

weight of the connection, whether or not the connection gene

is expressed (an enable bit), and an innovation number, which

allows finding corresponding genes during crossover (figure 2).

Innovation numbers are inherited and allow NEAT to perform

crossover without the need for expensive topological analysis.

Genomes of different organizations and sizes stay compatible

throughout evolution, and the problem of matching different

topologies [12] is essentially avoided. NEAT speciates the

population so that individuals compete primarily within their

own niches instead of with the population at large. This

way, topological innovations are protected and have time to

optimize their structure before they have to compete with other

niches in the population. The reproduction mechanism for

NEAT is explicit fitness sharing [13], where organisms in the

same species must share the fitness of their niche, preventing

any one species from taking over the population.

The principled complexification exhibited by NEAT is a

desirable property in competitive coevolution: As the antago-

nistic populations refine their strategies and counter-strategies,

complexification becomes necessary in order to generate novel

strategies without “forgetting” past strategies [14]. The next

section describes how NEAT is applied in the context of GGP.

B. Heuristic Game State Evaluators

The neural networks generated by NEAT are evaluated as

heuristic functions estimating the value of game states when

explicit goal information is not available. These heuristic

functions are combined with standard lookahead using α-

β-pruned minimax [15]. During the competition as well as

the experiments presented in this paper, lookahead search is

restricted to a single ply in order to reduce evaluation time,

allowing longer evolutionary runs.

Initially, the neural networks start out as a fully connected

mapping of 40 input neurons to a single output neuron. The

inputs represent the current state and the output specifies the

heuristic value of the state. How to represent the game state

effectively is a central challenge for coevolving general game-

players. The first order logic of the GDL is fundamentally

more expressive than the finite set of propositional features

that can be encoded in the input layer of an artificial neural

network. While it is possible to determine the input layer

structure for each game a priori, such an approach would make

generalization difficult. Therefore, nnrg.hazel utilizes a

random projection of input features onto the 40 input neurons,

which requires only knowledge of possible state clauses. An

input layer size of 40 was chosen to reduce the overall number

of parameters while avoiding state aliasing. It may be possible

to do mapping more intelligently, for instance using game

feature detectors [10]; such methods are an important future

research direction.

In games with simultaneous moves or more than two

players, minimax search is inefficient because each player

move must be evaluated against all possible combinations of

opponent moves. With more than two players such combina-

torial evaluation is necessary when it is necessary to be robust

against coalitions; if moves are made simultaneously it ensures

robust play given any contingency. In order to make fitness

evaluation efficient, heuristic move values in simultaneous

games are computed against a random sampling of opponent

moves. Such an optimization ensures that the move ultimately

selected is a good response to some subset of opponent

moves without having to evaluate all possible simultaneous

moves. Furthermore, the risk of coalition-formation during

the competition is negligible as player identities are not made

available.

C. Coevolutionary Setup

To ensure that the evolved heuristic evaluators work well

against a range of opponents, the opponent strategies them-

322

Proceedings of the 2007 IEEE Symposium on 
Computational Intelligence and Games (CIG 2007)



selves are evolved simultaneously through coevolution. In

coevolution, an individual’s fitness is evaluated against some

combination of opponents drawn from the evolving popula-

tions, rather than against a fixed fitness metric. This approach

yields several major benefits over traditional evolution: 1)

Coevolution allows the opponent strategies to be learned by the

algorithm, reducing the amount of information the algorithm

designer must provide a priori, 2) Under certain conditions,

coevolution may facilitate arms races, where individuals in

both populations strategically complexify in order to learn

more robust behaviors [16], 3) Coevolution may reduce the

total number of evaluations necessary to learn such robust

strategies, leading to more efficient search [17].
In order to facilitate arms races and make coevolution

efficient, the algorithm needs to ensure monotonic progress.

Without such a guarantee, as evolution progresses populations

can “forget” past strategies, resulting in cycling behavior [17],

[18]. Several methods have been proposed to ensure mono-

tonic progress, implementing several game-theoretic solution

concepts: The Pareto-Optimal Equivalence Set (IPCA) [19],

Nash Equilibria [20], and Maximization of Expected Utility

(MaxSolve) [17].
The nnrg.hazel agent employs Rosin’s covering com-

petitive algorithm (CCA), which ensures monotonic progress

towards some Pareto optimal solution [21]. Unlike more

complex algorithms which generate the entire Pareto-Optimal

equivalence set (e.g. IPCA [19]), the CCA focuses on finding

a single Pareto optimal solution, making it ideal for use during

competitions. CCA is similar to the Dominance Tournament

algorithm described in previous NE literature (e.g. [11]).
The basic CCA algorithm for the two-population case is as

follows. Each population maintains a ranked set of teachers T
that are the previous dominating strategies for that player (in

the order which they were developed). A population is said to

be currently dominated if it has not yet developed a solution

that can beat all teachers in the opponent population. At each

generation, each individual a from the currently dominated

population A plays each teacher tB from the ordered set of

opponent teachers TB in rank order. If a loses a game against

some tB , no further games are performed. If a is capable of

beating all tB ∈ TB , then a is inducted into TA and B is set

to be the currently dominated population. At the end of the

evolutionary run, the highest ranking member in T for each

population is taken to be the final solution.
In addition to CCA, each member of both populations also

plays a number of bouts against random combinations of

opponents from the currently evolving populations. Fitness is

calculated as the weighted sum of the scores obtained during

the CCA evaluations and during N normal evaluations,

F (o) = α
∑

d∈Do

fd(o) + (1 − α)
N∑

i=0

fXi
(o),

where o is the organism being evaluated, Do is all combi-

nations of opponent strategies in the dominance ranking that

o was able to beat, and Xi is a random variable mapping

i to some combination of opponent strategies in the current

population. In all reported experiments α = 10
11 and N =

50. This evaluation strategy focuses coevolutionary search on

individuals capable of achieving high CCA rankings (i.e. indi-

viduals capable of outperforming many opponent strategies).

Although other parameter variants are not considered in this

paper, previous experiments with NEAT have shown these

settings to be robust. CCA was chosen based on its previous

empirical successes: It has been applied successfully to several

complex domains including 9×9 Go. In the next section CCA

is evaluated on a five game sample from the GGP corpus,

elucidating several of its strengths and weaknesses.

IV. RESULTS

This section presents learning curve, scalability and disen-

gagement results obtained in applying coevolutionary NEAT to

GGP. The nnrg.hazel agent was evaluated on the following

sample of two-player games from the GGP corpus:

1) Connect Four - The standard Connect Four rules; players

score 100 points for a win, zero points for a loss, and

50 for games with no winner.

2) Chinese Checkers - A small two-player variant of Chi-

nese Checkers using standard rules. Three pegs in the

goal yields 100 points, two yields 50, one yields 25 and

zero yields 0.

3) Criss Cross - Same rules as Chinese Checkers but with

a smaller board.

4) Blocker - Two players on a 4 × 4 board. The crosser

tries to build a bridge to the other side of the board one

square at a time. The blocker impedes the progress of

the crosser by placing walls. Play ends when the board is

full or the crosser has made it across. Crosser wins 100

points for making a bridge (blocker wins 0), and the

blocker wins 100 points for keeping the crosser from

making it across.

5) Two-Board Tic-Tac-Toe - Tic-tac-toe on two boards at

once. Players alternate turns playing on each board. The

first player to get three in a row wins 100 points. Tie

games yield 50 points apiece.

For each game, evolution was run for 300 generations

(longer than the constraints of the competition) and the learn-

ing curves, average teacher set size, scalability and disen-

gagement results are presented here. Confidence scores are

calculated using Student’s t-test with α = 0.05 and all error

bars depict the 95% confidence interval.

A. Learning Curves

Standard evolutionary plots of fitness are not meaningful

in coevolution because fitness scores are inherently relative.

However, since CCA guarantees monotonic progress, the

teacher set size for each role can be taken as a rough measure

of the best fitness over time. A plot of the average number

of teachers in each role per generation is given in figure 3.

Blocker is omitted as the crosser role never exceeds a

teacher set size of one. Based on these plots, the six games can

be divided roughly into three groups: Chinese Checkers and

Melee Chess both reach approximately 30 teachers, Connect
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Four and Criss Cross both approximately 10, and Blocker

and Double Tic Tac Toe have fewer than 5 teachers. Blocker

in particular shows strong evidence of disengagement: the

crosser role is not able to beat the blocker teachers.

Learning curves are calculated by playing each teacher as

a 1-ply heuristic against a random heuristic searching to the

same depth. Results are plotted as the teacher’s rank vs. the

average match score (averaged over 100 trials; figure 4). In

Connect Four and Criss Cross, the evolved solutions perform

significantly better than random 1-ply players for both roles.

In Connect Four, both roles outperform random (white: p <
0.02, black: p < 0.03); in Criss Cross, both roles outperform

random (red: p < 10−3, teal p < 10−4). In Blocker,

blocker outperforms random (p = 0.1) but crosser does

not. In Double Tic Tac Toe, xplayer outperforms random

(p < 0.03) but the oplayer is not significantly better than

random. Finally, in Chinese Checkers, the evolved strategies

significantly underperformed against the random player; this

result is analyzed in more detail in the discussion section.

Overall the evolved players perform significantly better than

the random ones, indicating that coevolution is generating

robust strategies rather than strategies targeted to beat only

the other population’s teachers.

B. Scalability

Heuristic evaluators in nnrg.hazel are evolved using

only 1-ply search in order to minimize the amount of time

required for each evaluation. This approach leads to a possible

problem: The evolved heuristic evaluators might be tuned to

the structure of the 1-ply problem and not scale well when

used as n-ply evaluators. Scalability can be tested simply by

using the evolved 1-ply heuristics to perform deeper search.

However this approach does not control for the performance

benefit of simply looking ahead farther into the game tree. In

order to control for this benefit, the random player is given

knowledge of the goal states and the same lookahead depth as

the evolved player. Thus the benefit from deeper lookahead is

equal for both players and any performance difference must

be due to the better heuristic.

A summary of the scalability results is given in figure

5. Except in the case of Chinese Checkers, performance

decreases slightly as the search depth is increased. The red
player in Chinese Checkers plays significantly better with

2-ply search than with 1-ply search (4135 to 4656 points;

p < 10−8) though there is no significant difference between

2-ply and 3-ply search (p > 0.1). The teal role, on the

other hand, plays slightly worse with 1-ply search than with

3-ply search (5382 to 5126 points; p = 0.03). All other games

exhibit statistically significant decreases in performance for

both roles: Criss Cross teal decreases from 7799 points to

7493 points, red decreases from 8360 points to 7224 points,

Connect Four white decreases from 7586 points to 6746

points, black decreases from 6729 points to 5690 points,

Double Tic Tac Toe xplayer decreases from 4798 points

to 4336 points and oplayer decreases from 6420 points to

5836 points. Taken together, these results indicate that there is
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Fig. 3. Average teacher set size achieved at each generation.
The number of teachers indicates how disengaged the coevolutionary
system is. Games that achieve large teacher sets are more likely
to exhibit arms-race dynamics. Except for in Blocker (omitted),
nnrg.hazel found coevolutionary gradients as evinced by the
increase in teacher set size.
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cating that most of evolutionary progress is concerned with refining
strategies that comparison to random cannot elucidate. Although it is
outperformed by random, Chinese Checkers exhibits strong evidence
of learning.
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on 1-ply search does not necessarily scale to deeper search.
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Tied Role 0 Role 1 p
blocker 0.0 19.0 281.0 < 10−32

chinese checkers 0.86 189.86 109.29 > 0.15
criss cross 4.56 188.13 107.31 < 0.05
connect 4 4.1 288.0 7.9 < 10−42

tictactoe 0.7 152.0 147.29 > 0.9

Fig. 6. Average number of generations each player is undom-
inated. The higher the disparity between the two means, the more
significant the disengagement.

a trade-off during learning: Evaluations should be performed

using deeper search in order to ensure better scalability, but

doing so would reduce the total number of generations that

would fit in the allotted time during the competition.

C. Disengagement

Even with monotonic progress guarantees, coevolution can

stall due to disengagement, i.e. when one population outper-

forms the other to the point that there is no longer a clear

gradient that selection can follow. Although disengagement

did not impact nnrg.hazel’s performance during the com-

petition, in the extended evolutionary runs presented here, it

turns out to be an issue. In two of the games, the coevolving

populations became significantly disengaged (figure 6). In or-

der to measure disengagement quantitatively, first the number

of generations where each teacher set was not dominated

by the other is computed. This value is averaged per role,

yielding the average amount of time that each role dominates

the other. Disengagement is exhibited when these means differ

significantly, according to a Student’s t-test, and the degree of

disengagement is reflected by the confidence score.

In Blocker, the crosser role dominates on average 19

out of 300 generations, while blocker dominates 281 out of

300 generations. In Connect Four, white dominates 288 out

300 generations while black dominates 7.9 out of 300. Criss

Cross exhibits significant disengagement: The red role dom-

inates 188.13 out of 300 generations while teal dominates

109.29 out of 300. However, the disengagement in Criss Cross

is not as severe as in the other two games. In all other games,

the two means do not differ significantly, indicating that

disengagement is less common. However, since disengagement

impacts the performance of a non-trivial proportion of games

sampled, it should be addressed in future work.

V. DISCUSSION

The nnrg.hazel agent performs well against the random

player in most cases suggesting that coevolution is able to

extract useful game playing behavior in general. This is a

positive result, especially given a simple random projection is

used to map he state space to input layer, rendering it difficult

to detect structure in the domain. Also, the coevolutionary

fitness function actually results in few games against truly

random players. If beating the random player were the true

evolutionary goal, then a better approach would be to perform

hundreds of evaluations against such a player until a statisti-

cally significant average score is produced. Since the coevo-

lutionary teacher set size rarely exceeds 30, such an approach

would require an order of magnitude more evaluations.

Since coevolution allows learning all players’ strategies

simultaneously, it is difficult to measure absolute progress

without having another game player to benchmark against.

In the GGP competition, competitors are expected to play

as optimally as possible given the time constraints. Thus

performance against a random opponent may not be the

best benchmark for predicting a player’s actual performance

during the competition. One interesting application of the

GGP competition is to form a relative performance metric for

completely new games.

Similarly, the suboptimal performance in the Blocker, Dou-

ble Tic Tac Toe and Chinese Checkers domains leads to

interesting insights about the pitfalls and limitations of this

approach. First, the Blocker domain presents a unique chal-

lenge to learning as the random play dynamics with opponent

move sampling favor the blocker role to win approximately

95% of the time. Since the game is inherently symmetric and

simultaneous, this phenomenon is due to a single rule in the

game: If both players play on the same location, blocker’s

play takes precedence. This advantage turns out to be so strong

that in the one-ply case, evolution cannot find more effective

crosser strategies. Second, the performance in Double Tic

Tac Toe can also be traced to the opponent move sampling

heuristic, which causes gameplay to become stochastic, yield-

ing less effective solutions. Third, the performance of Chinese

Checkers is due to backtracking: The player is able to return to

previous states by simply doing the reverse of the last move.

Coupled with heuristic evaluation, this ability causes states

with a particularly high score to act as basins of attraction,

forcing the play into a cyclic behavior. This limitation can only

be addressed by adding domain knowledge from the rules.

In general there is no state aliasing in GGP: most games

keep a move counter which is part of the state. Thus some

kind of analysis would have to be performed to remove such

state counters and identify states which are the same. This is

precisely the approach taken by Kuhlmann et al. [10].

In light of these results, several areas of future work become

readily apparent; the next section is devoted to their discussion.

VI. FUTURE WORK

The results elucidate several areas for future work that can

largely be divided into 1) improvements addressing weak-

nesses in the coevolutionary approach, 2) improvements that

can be achieved by including domain knowledge and 3) gen-

eral improvements to make nnrg.hazel more competitive.

Based on the result in section IV-C it is clear that coevo-

lutionary disengagement is a problem in several of the games

tested, most likely due to inherent imbalances under random

play. Disengagement can be mitigated by providing evolution

with a smooth gradient; in CCA for example a managed
challenge can be used where solutions that are difficult to

beat are stored in a test bank for future comparisons [22].

Since CCA was developed, a number of coevolutionary

algorithms have been proposed implementing various other
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solution concepts, such as Nash equilibrium [20], the Pareto-

Optimal Equivalence Set [19], and Maximization of Expected

Utility [17]. An interesting direction for future work is deter-

mining what solution concept (or mixture of concepts) is best

for the most general class of games. In cooperative games, for

example, the desired solution concept is to maximize social

welfare. Whereas in antagonistic games, Pareto optimality may

be a more useful goal.

Mapping the state space to the neural network input layer

randomly is a source of inefficiency. Even in simple games

states are likely to be aliased thus the neural network has no

way of distinguishing the fine details of the game. However,

one reason the random project was chosen over other, more

intelligent, methods is that it makes minimal assumptions

about the game. Generalized heuristics do exist for identifying

optimal input mapping structures (e.g. RAAM [23]) and

should be evaluated in this domain.

Currently, heuristics are only evaluated in a one-ply search

scenario but later used to control iterative deepened search

during the actual competition. From the results in section IV-B

it is clear that this approach does not necessarily scale, at least

against random opponents. Better results could be achieved

by performing deeper search during evolution itself; however,

before doing so it is imperative to study the inherent trade-off

due to longer learning times.

Finally, an interesting direction for research in GGP is

evolving a general basis population for seeding evolutionary

search. A basis population capable of outperforming random

initialization in finding good solutions early during evolution

would be particularly beneficial during the competition. Such

a population must, by nature, capture some essence of game

playing that is common across most games. Such work would

be closely related to the field of transfer learning.

VII. CONCLUSION

This study introduced a coevolutionary system,

nnrg.hazel, for learning effective strategies in the

General Game Playing domain. In doing so, this work

represents (to our knowledge) the first comparison of generic

coevolutionary performance across several games. The

nnrg.hazel agent was designed from the beginning to

require as little domain knowledge as possible from the

game implementation, allowing it to be truly general. In

experiments testing learning and search scalability it was

found that in general the coevolved heuristics outperformed

random, but the learned heuristics did not necessarily scale

well to arbitrary search depths. Some domains also exhibited

evidence of coevolutionary disengagement, indicating that

more efficient search may be possible. Overall General Game

Playing is an important tool for improving coevolutionary

algorithms as well as for further exploration in AI focusing

on broadly applicable problem solving strategies.
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