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Abstract — This paper describes the EvoTanks research
project, a continuing attempt to develop strong AI players for a 
primitive ‘Combat’ style video game using evolutionary
computational methods with artificial neural networks.  A 
small but challenging feat due to the necessity for agent’s
actions to rely heavily on opponent behaviour. Previous
investigation has shown the agents are capable of developing
high performance behaviours by evolving against scripted 
opponents; however these are local to the trained opponent.
The focus of this paper shows results from the use of co-
evolution on the same population.  Results show agents no 
longer succumb to trappings of local maxima within the search 
space and are capable of converging on high fitness behaviours
local to their population without the use of scripted opponents.

Keywords: Genetic Algorithm, Games, Co-evolution, Neural 
Networks

I. INTRODUCTION

Despite the continuing advances in the development of
intelligent agents across numerous applications, the field of
video games is often considered unworthy for such methods.
This notion is worth challenging, given that video games in
general provide one of the best means to test and develop
technologies in environments that are difficult and expensive
to locate and generate.  Video games provide researchers a 
means to create and control artificial environments of 
varying complexity; effectively an economic means to
generate low risk testing scenarios. Applications such as
autopilot systems for aircraft or ground vehicles can benefit
from this, or the testing of robot controllers without the
necessity to build the physical robot, a feat which could
either have a significant price tag or not be possible given
the current technology [1].

Such research has a hidden benefit; given that video
games are a multi billion-dollar industry with millions of 

players playing a variety of games across the world, research
can aid the development (and cost) of video games as well
as enhance the playability of a particular game.  The former
provides a reason for game developers to show interest,
while the latter is where such research is given consumer
focus.  For example F.E.A.R. (First Encounter Assault
Recon) developed by Monolith Productions in 2005 was
hailed by critics and gamers alike for the realistic
environments and gameplay.  One of the heavily
contributing factors to F.E.A.R was the intuitive AI players
that provided realism to the game that players craved.  This 
acclaim aids in boosting the appeal of AI research for video
games, highlighting the possibilities of intelligent agent
research in powerful, realistic yet controllable environments.
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At present however, there is still a large area for
improvement, the majority of computer controlled agents in
video games (referred to as non-player-characters or NPCs)
are scripted i.e. their behaviour is controlled by a series of 
sequential actions which are typically performed in an
infinite loop, thus ensuring that the agents are permanently
active.  Ultimately given sufficient time and effort made by
the human player, any opponent can be defeated once the
player has gained an understanding of how the NPC
behaves.  A video games’ appeal will gradually wane due to
the inability of an NPC to learn or adapt from previous
games. This has been a drawback of video games for many
years, if one were to take the likes of Super Mario Bros. 
released in 1985 and Metal Gear Solid in 1998, despite a 
difference of almost 15 years and an increase in the
complexity of the enemy behaviour we still deal with
predictable opponents [2].

Since computer games have now been a prominent
entertainment medium for approximately 20 years, gamers
in general are now more mature; either in age or their ability
to deal with more complex problems in games.  As a result it 
is required that games become more complex and engaging
to maintain their ability to entertain.  Intelligent NPC’s can
provide the means to keep games engaging.

We feel that the development of truly intelligent NPC
agents requires 3 decision layers; a high-level goal directed
layer that oversees the process of actions required to achieve
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goal conditions, a middle layer that deals with local goals
and the breakdown of tasks into smaller actions and finally a
low level component that deals with primitive and basic 
actions.  Machine learning is one possible method for
generating such low-level reactive mechanisms.  A by-
product of this is that we can generate successful yet 
unpredictable players.

Machine learning is often used to assist in training agents
prior to the game being played [3], with applications of 
different methods available across a host of games such as 
the use of evolution in Pac-man [4], co-evolution in Texas 
Hold’em Poker [5], Backgammon [6] and 
Checkers/Draughts [7], the application of reinforcement
learning to Backgammon [8] and real-time evolution in the
NERO video game project [9].   The EvoTanks project
follows in a similar vain to some of the research mentioned
above, focussing on the application of evolutionary methods
to generate interesting and unique low-level reactive agents
for a small combat based environment.  EvoTanks provides
a game where we are dealing with making primitive actions
to solve a local goal.  However the actions an agent makes
relies heavily on the opponent’s behaviour to generate its
own actions.    As a result, finding high performance
behaviours is an interesting challenge.

Previous research using the EvoTanks game investigated
the possibilities of agents learning behaviours based on
focussed trials against one particular opponent using an
evolutionary algorithm. The results generated from these
experiments were positive, with agents learning competent,
interesting (and occasionally unconventional) behaviours to 
defeat the chosen opponent [10].  However their competence
ended at said opponent, as the majority of agents were 
unable to perform as effectively against different opponents.
This was due to the evolutionary process and fitness
function moving the majority of agents towards local
maxima within the fitness space; as a result these agents 
were capable of competing against only one opponent. The
purpose of the research expressed in this paper, was to
investigate the application of co-evolution methods to move
the agents away from these local maxima, with the intent of
developing strong generic players, capable of playing
against a variety of different agents competently.

This research is appropriate given the nature of the game
and the environment that this game is used. Sub optimal
global strategies are common in video games, where we
have the most difficult opponents in a particular game
designed to compete against even the more advanced human
players regardless of their particular strategy.  Not only do 
NPC’s develop such behaviours, but also human players
tend to move towards such behaviour, playing games using
particular tactics to evaluate and react to any situation 
regardless of how difficult the opponent becomes.

This paper first describes the EvoTanks game, followed
by a description of the implementation made and an analysis
of the results generated.

I. THE EVOTANKS GAME

EvoTanks is based loosely on the game of ‘Combat’
released on the Atari 2600 in 1978, composed of two tank
agents viewed in a top-down fashion within a 600 x 600 
arena encompassed by boundaries.  Only two agents exist
within the arena at any given time and are privy to a 
selection of actions; forward/backward movement, left/right
rotation and to fire a shell from the cannon.  The cannon is
dependant on the direction in which the tank is facing.

Fig. 1. The EvoTanks game with 2 agents competing with one another in the 
arena.

Each match between two tanks is given a time limit in
which one tank must destroy the opponents 4 armour points
with an unlimited amount of shells.  A health point is
deducted for every direct hit made by an enemy shell.  Shells 
themselves will be destroyed if they come into contact with
the boundaries of the arena.  When a tank makes a move,
each move results in a tank being moved a fixed distance 
across the arena, neither their own momentum nor the
momentum of other tanks or shells have any effect on the
tanks movement.  Ultimately a game is complete once one
tank has depleted all of the four hit points, at which point it
explodes with the win given to the surviving tank.  Should
the timer reach zero and both tanks are still on the field, a 
draw is given regardless of the amount of health remaining
on each tank. 

The agents used in the learning process of the EvoTanks 
simulator use an unsupervised feed-forward artificial neural
network (ANN) to control their autonomous reasoning.
Each network is composed of 3 layers of neurons using a 
tanH transfer function.  3 normalised inputs from the domain
inform the agent the difference in angle relative to the agent
cannon from the enemy opponent and vice versa (hence 2 
separate inputs) and finally the distance between the agent
and the enemy.  These 3 inputs help the agent to select one 
of 3 possible outputs, controlling movement, rotation and 
firing of the cannon.  These agents were trained through the
manipulation of the 27 connection weights contained within
the neural network, with a genetic algorithm used to store
the connection weight and evolving them using the
EvoTanks simulator using an evolutionary algorithm.
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To assist in the training and assessment of the agent tanks, 
we also have a collection of NPC’s designed to provide
means to build learning behaviours as well as evaluate how 
effective a particular agent is using a variety of strategies
both defensive and offensive:

Sitting Duck: A stationary agent designed to bring
about basic homing and attack behaviours.

Lazy Tank: Similar to the previous NPC with the
exception of the cannon constantly firing.

Random Tank: A tank that carries out movement,
rotation or fire commands with equal probability.

Hunter: An aggressive player that hunts its
opponent down by constantly moving towards the
opponent while firing continuously.

Turret: A stationary player that can rotate the
cannon and fire, providing a distant, strong
offensive opponent that can be difficult to attack.

Sniper: An evasive player that seeks to avoid its 
opponent by continuing to reverse away from the
player whilst taking shots from a distance.

II. IMPLEMENTATION

A. Agent Representation 

The agents are written in an object-oriented fashion in
java, with each tank stored within an instance of a 
chromosome class, this data type contains the collection of 
network connection weights for the solutions controller.
At the beginning of an evolutionary experiment, a 
population of chromosomes (and their genetic values) is
generated randomly within a generational population
model.

B. Fitness Assessment 

Fitness evaluations are carried out in tournaments; a 
tournament consists of two teams of agents, each of whom
must play all agents in the opposing team for a specified
number of games.  Each match is initialised with both
agents in random positions facing random directions.
Once each match is completed, the fitness of each agent in 
that match is calculated, with an average for their 
performance against a particular opponent made once the
correct number of games is completed.  An agent’s overall
performance is assessed by taking the average scores from
competing against each player, generating what was 
considered to be a reasonable measure of the fitness.  In 
testing, the number of tanks in the tournaments was
modified to assess the performance of different sampling
rates, i.e., the number of opponents an agent must face in
order to be assessed for fitness.

The methods stated above assist in the evaluation of 
local fitness, i.e. the fitness a given chromosome has 
relative to the local population.  However this value does 
not always reflect the agent’s capabilities against scripted
or human opponents.  As a result, a supplementary
evaluation was provided periodically throughout the
evolution that selected each agent from the parent set of 
that generation to be evaluated against all NPC’s equally.
Thus allowing us to gain an understanding of how
effective these agents were in the real game.

C. Fitness Function

Assessing the performance of a given agent was separated
into two distinct areas, how efficiently an agent defeats an 
opponent and the amount of health remaining at the end of 
the battle:

2.08.0 healthPefficiencywin a
FWinF

2.08.0 healthPefficiencylose a
FLoseF

1) Efficiency Component 
Should an agent win a match against its opponent, the

fitness is calculated by deducting a penalty for the number
of time points taken (Tgame) to complete the kill:

gameefficiency T
T

Win
max

5.0
1

In a win scenario, an agent will always accrue a minimum
0.5 fitness for the efficiency component.  This is only
possible when the opponent takes the complete amount of 
time allocated to a match (Tmax) to defeat the opponent.
Consequently it is impossible for an agent to achieve an
efficiency fitness of 1.0, ensuring that the agents are 
incapable of reaching the maximum fitness and cease 
exploring for better behaviours.

On the other hand, should the agent lose the match, a 
fitness value is measured as a bonus for each time point 
the agent managed to stay on the field: 

gameefficiency T
T

Lose
max

5.0

Hence the maximum fitness that could be attributed is 0.5 
in the (unlikely) event the agent is killed at the very last 
time point.

In the event of a draw, the agent immediately receives a 
score of 0.5. 

2) Health Component
The fitness component provides a 0.125 bonus for each 
of the agents 4 health points intact after a given match,
plus a bonus for each of the 4 points deducted from
successful shots on the enemy tank:
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125.0

125.0

max HealthPH

HealthP

F

b

a

HealthPa

This function allows for agents to gain strong scores for 
flawless victories against their opponents and also for 
agents who lose matches to gain some fitness if they
were capable of damaging their opponent.

D. Evolutionary Structure

The evolution follows the canonical structure, however 2 
veins of experimentation were conducted, one in which the
selection of agents into the parent subset was dictated by a 
selection algorithm (tournament, roulette wheel and rank-
based methods) or an alternative was a ‘selection by
evaluation’ method.  The latter filled the parent set by 
placing the agent with highest fitness from each 
tournament into the set until the parent quota has been 
filled.

1) Crossover
Results from previous EvoTanks research had shown 

that one-point crossover that blindly swapped subsets of 
weights was too disruptive to the neural networks to
provide incremental improvement.  An optional feature
provided a new crossover method based on the
implementation by Montana and Davis [11] that swapped 
the weights attributed to particular neurons provided they
shared the same structure (i.e. same number of 
connections).

2) Mutation
Mutation was a mandatory component of the evolution

process, using a random mutation algorithm that mutates
the value of a particular gene within a ±1 range given a 
probability.  A range of ±5 binds each weight and should 
the mutations result in weights exceeding these values 
they are immediately corrected to the closest value 
within bounds. 

E. Neural Network Structure

Each agent uses a 12 neuron-network, with 3 neurons in
both input and output layers followed by 2 hidden layers
each containing 3 neurons, resulting in 27 connections 
across the entire network.  This provides a small,
manageable set of weights to evolve, with each weight 
bound within a ± 5 range.

Previous EvoTanks research opted for the use of a 
hyperbolic tangent (tanH) neuron transfer function due to
the lack of bias nodes within the network, this function
remained due to the successful results generated in
previous experiments.

III. RESULTS & DISCUSSION

Two particular strains of research were investigated to see 
which could perform best.  The first enforced the ‘selection
by evaluation’ method as previously discussed (experiment
A), whilst the latter used traditional selection methods to
generate the parent subset (experiment B).  Initial results
were disappointing, with a failure to generate a strong arms
race dynamic which could push the population towards high 
fitness [2].

Further experimentation increased the sampling rate of the
population to a maximum of 20 tanks (hence 20 tanks per 
team in a tournament), with results in experiment A using
10-tank sampling providing the best results.  Showing a 
strong gradual increase in performance (showing in Fig. 2), 
whilst experiment B failed to reach the heights of its 
competitor with a much slower growth in fitness that failed
to reach the same high fitness results given the number of 
evaluations permitted.

Evaluations vs Fitness 10 Tanks
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Fig. 2. The trends in best and average local fitness for the 10 tank sampling
rates on experiment A. The agents initially continue to climb and then 
stabilize at a strong fitness on average greater than 0.75.

At this point further tests using experiment A were 
conducted, investigating the use of crossover, stable state
population models and the modification of the size of parent
set, population size and mutation probability.  These 
experiments generated little difference from the initial
results, with the exception of the steady state model that 
performed poorly in comparison due to the more gradual
increase in fitness. 

A final analysis compared the performance of the co-
evolution simulation to 2 alternative methods.  Firstly a 
‘ramped’ evolutionary model, where a population of agents
are evolved against all 6 NPC’s in sequence.  The first phase 
evolves against the sitting duck NPC, until 500,000 
individual evaluations (i.e. games) have been performed.
The evolution then switches in sequence to the lazy tank, the
random tank, the hunter, the turret and the sniper, with
500,000 evaluations being performed for each NPC.  Hence 
as evolution progresses we increase the difficulty of the 
competing NPC, with the intent of gradually evolving from
a basic turn-and-shoot behaviour into something more
aggressive.  The second comparison measure was a direct
hill climber using a 1 + 1 evolutionary strategy evaluating
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against all opponents simultaneously, i.e. the fitness of the
candidate is calculated by taking the average of the score 
gained against all 6 NPC's.  Each method was given 3 
million evaluations to generate their most effective agents.
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Fig. 3.  This graph shows the trends in average and best fitness against 
NPC’s throughout the final co-evolution run.  With both showing
reasonably strong values after 3 million games.
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Fig. 4. The fitness trend of the hill climber, which developed a high 
performance agent within less than 2 million evaluations.  These results 
scored even better than the co-evolution, resulting in a more efficient agent 
in less time.

As is shown in Table 1, the ramped evolution performed
incredibly poorly, whilst the co-evolution (fig. 3) generated
strong fitness values against the NPC’s.  Surprisingly the hill 
climber (fig. 4) was still capable of surpassing the
performance of the co-evolution run, generating a final
fitness that was almost 0.1 stronger than the co-evolution.

It was surprising to see the hill climber does so well in
these tests and at this point we paused to consider why the
hill climber performs so well for this domain.    It is 
important to consider that the hill climber is a more direct
method to assess an agent’s position within the search space 
of behaviours.  The search space presented may not be 
difficult to traverse but requires a lot of behavioural analysis
to assess where any given agent exists.  This analysis is 

provided by the performance against the NPC’s, allowing us 
to gain a very strong understanding of where the agent is in
the search space and how fit it is. 

One must then consider whether it is worth using the co-
evolution at all and continue onward using the hill climber?
Statistically the hill climber performs better, with higher
fitness results in a smaller period of time.  We feel that
relying solely on hill climbing would be ill advised for
numerous reasons, primarily since a hill climber has a strong 
dependence on NPC agents.  Hill climbers use the NPC’s to
evaluate the performance of the agent; as a result we are 
required to present a range of opponents that provide a 
strong coverage of that which the agent may face.  In this 
experiment we have been fortunate in providing NPC’s that
facilitate this particular problem.  Should the problem
change and require new coverage, we cannot guarantee the
appropriate behaviours to facilitate this.

The co-evolution can generate opponents of almost the
same quality without the necessity of NPC’s, allowing us to 
generate high quality opponents using only a randomly
instantiated population.  When one considers the impact the
co-evolved population made, the co-evolution performs
exceptionally well given that they have no mapping to the
actual fitness space.  Instead they continue to improve based 
upon a local fitness relative to the population.  The 
assessment against NPC’s provided a means to assess how 
well agents perform outside of the population.

We consider the final score of the hill climber to provide
an upper bound on the fitness that can be achieved in this
problem.  The results from the co-evolution are very positive
given their environment; since the ability to defeat NPC’s 
was neither the focus of the co-evolution nor the means of 
assessing agent fitness.  Despite this the best result from the
population was only 0.1 from the upper bound. 

Table 1. A table representing the best actual fitness values (assessed by
running agents against the NPC’s) after the final experiments.  It is clear
from this table that the evolution was incapable of generating any high 
fitness behaviours.  The co-evolution performs well, with actual fitness 
values reaching a maximum of greater than 0.7 and a strong performance
from the population altogether when compared against the hill climber, that 
provides a fitness upper bound slightly greater than 0.8.

Method Best Mean S.D. S.E.

Evolution 0.3153 0.3107 0.003228258 0.00072
Co-

Evolution 0.711 0.642 0.0217 0.0048

Hill Climber 0.8103 N/A N/A N/A

The majority of high performance agents evolved
competent behaviours ranging from highly aggressive
strategies to more defensive tactics.  One example of 
aggressive behaviour includes an agent that evolved the
exact same properties as Hunter NPCs, attacking the 
opponent outright with little chance to evade or counter.  A 
Hunter often wastes the first shot since they are still not
positioned correctly to challenge their opponent, however 
these agents’ behaviours are more tailored and as a result 
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carry out a much more efficient job than their NPC 
counterparts.  One interesting feature was a defensive 
capability that backed away should it come into contact 
against another aggressive player.  These tactics worked 
well against all opponents, especially the Hunters 
themselves, since the agents developed effectively a more 
efficient Hunter.

Another example is the more common behaviour of 
distant shooting.  Often agents will keep a distance from 
their opponent and take shots due to their more precise 
aiming abilities.  It also allows them to play a more 
evasive match, where the agent can maintain a distance 
even if the opponent does make a move.  There were 
many variations on this tactic, some which would 
eventually move towards their opponent should the 
opponent lose sight of the agent, or even back away 
further if the opponent locked onto the agent.  

One interesting point to note was that the hill climber 
agents tended to become the former, aggressive agents, 
whilst those using co-evolution developed the latter more 
distant approach.  At this point we must consider which is 
more favourable given the environment we wish to place 
these agents in.  Given a small amount of human testing 
against these behaviours, the aggressive opponents are 
extremely difficult to compete against due to the 
kamikaze nature of its behaviour; the user requires 
extensive practice at playing the EvoTanks game to be 
able to defeat the agent.  While the latter behaviours tend 
to have more variety while maintaining a high level of 
quality.  They provide a means for the player to move 
around and mount a defence against the agent.   

I. CONCLUSION

This paper has described one approach for a primitive 
tank game using neural network controllers and genetic 
algorithms through co-evolutionary simulation.  We now 
have results showing strong capable agents in what is at 
present a rather simple environment.  Evolved 
populations can competently react to varying strains of 
NPC behaviour and counteract them with a range of 
strategies.

There is more room for improvement, with numerous 
ways in which the EvoTanks game can be expanded.  One 
possibility is the introduction of obstacles within the 
environment, allowing for agents to be able to navigate 

more complex arenas and environments.   
Further research could also investigate team based play 

for multiple agents to fight co-operatively, the expansion 
of the agent’s sensors to respond to objects or power-ups
within the environment, as well as the natural evolution of 
the tank controller to allow for a separate turret control, or 
multiple objectives. 

Ultimately, the natural evolution of EvoTanks is to 
create the most complex and immersive environment that 
can lead to natural play, either for machines to play, or for 
humans to play for entertainment.  After all, it is a video 
game. 
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