
Fuzzy Prolog as Cognitive Layer in RoboCupSoccer

Susana Muñoz-Hernandez
Dept. of Languages and Information
Systems and Software Engineering

Technical University of Madrid, Spain
susana@�.upm.es

Wiratna Sari Wiguna
School of Computer Science

Technical University of Madrid
wiratna@gmail.com

Abstract— RoboCupSoccer domain has several leagues which
varies in the rule of play such as specification of players, number
of players, field size, and time length. Nevertheless, each RoboCup
league is a variant of a soccer league and therefore they are based
on some basic rules of soccer. A layered design of agents system
presented in [1] shows a modular approach to build control
for a team of robots participating in RoboCupSoccer E-League.
Based on this design, we propose a generalized architecture
offering flexibility to switch between leagues and programming
language while maintaining Prolog as cognitive layer. Prolog is a
very convenient tool to design strategies for soccer players using
simple rules close to human reasoning. Sometimes this reasoning
needs to deal with uncertainty, fuzziness or incompleteness of
the information. In these cases it is useful Fuzzy Prolog [2], [3],
[4], [5]. In this paper we propose to use a combination of Prolog
(that is crisp) and Fuzzy Prolog to implement the cognitive layer
in RoboCupSoccer, which has the advantage of incorporating as
conventional logic as fuzzy logic in this layer. A prototype of
a team based on this architecture has been build for RoboCup
Soccer Simulator, and we show that this approach provides a
convenient way of incorporating a team strategy in high level
(human-like) manner, where technical details are encapsulated
and fuzzy information is represented.

Keywords: Logic Programming, Constraint Logic Program-
ming Implementation, Fuzzy Reasoning, Prolog Application,
RoboCupSoccer, Cognitive Layer.

I. INTRODUCTION

The idea of robot playing soccer has been developed since
early 90s [6]. Soccer environment is a dynamically changing
environment which requires individual skill as well as team
skill and therefore is an interesting research �eld on Arti�cial
Intelligence and robotics. Prolog is a programming language
that represent logic reasoning. Is is a perfect tool to repre-
sent human reasoning, so it seems to be a good choice for
implementing the cognitive layer of soccer players that is
a simulation of human behaviour related to this game. For
example, applying the rule “if the goal keeper is not at the
goal then kick to ball”. But many of the most important
decisions that are made by soccer players deal with non-crisp
issues. They are related to fuzziness (e.g. “if other player
of my team is FAR from me then don’t pass him/her the
ball”), uncertainty (e.g. “if I CAN get the goal then kick the
ball”), or incompleteness (e.g. “if I cannot see the position of
a player, by default I’m not going to pass him the ball”).
Fuzzy Prolog is an attempt to introduce fuzzy reasoning
into logic programming that also deals with uncertainty and
incompleteness. It is aimed of this proposal to combine the

advantages of these different types of programming and to
show how to handle this combination.

There are many works that have been done on this research
area related to RoboCup [1], [7], [8] and to Fuzzy Prolog [2],
[3], [4], [5]. This work is the continuation of the research line
of the project [9].

The rest of the paper is organized as follow. Next section
gives brief overview on RoboCupSoccer and section 3 de-
scribes Fuzzy Prolog. Section 4 and 5 talks about our approach
and its evaluation. Section 6 concludes this paper and mentions
some further works.

II. ROBOCUPSOCCER

RoboCup is an international annual event promoting re-
search on Arti�cial Intelligence, robotics, and related �eld.
The original motivation of RoboCup is RoboCupSoccer. As
the nature of soccer game, autonomous robots participating in
RoboCupSoccer should have individual ability such as moving
and kicking the ball, cooperative ability such as coordinating
with teammates, and of course, the ability to deal with dynamic
environment.

RoboCupSoccer consists of several leagues, providing test
beds for various research scale:

• Simulation League
RoboCup Simulation League consists of a number of
simulated soccer matches as the main event. There are no
actual robots in this league, and the matches are shown
on large screen. A team consists of several computer
programs which act as players. The game consists of two
5-minutes halves.

• Small Size Robot League (F-180)
In Small Size Robot League each team consists of �ve
small sized robots, one of them might be the goalkeeper.
The team might have a global vision system with one or
two camera mounted above the �eld, or local vision for
each robot. The game lasts for two equal periods of 15
minutes.

• Middle Size Robot League (f-2000)
Each team in Middle Size Robot League consists of six
mid sized robots with all sensors on-board, one of whom
is the goalkeeper. The rule is changed continuously every
year, aiming to be closer to a real soccer match. A match
in RoboCup Middle Size Robot League lasts for two
equal periods of 10 minutes.

340

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

• Four-Legged Robot League
The Four-Legged Robot League teams consist of four
Sony AIBO robots with all sensors on-board, one of
whom is the goalkeeper. No modi�cations or additions
to the robot hardware are allowed. Event organizers for
this league will provide a computer for sending Game-
Controller messages to the robots. The game consists
of two 10-minutes halves. Apart from the soccer game,
this league also includes challenges to encourage research
within Four-Legged Robot League.

• Humanoid League
Humanoid League has been included in RoboCup com-
petition since 2002, but only at 2005 soccer game with
two humanoid robots per team was held for the �rst time.
Humanoid robots are autonomous robots with human-like
body plan and human-like sense. They are grouped into
two size classes, KidSize and TeenSize. Soccer match
for this league lasts for two equal periods of 10 minutes.
Penalty kick competitions and technical challenges are
also included in this league.

• E-League
The �rst E-League was held at RoboCup 2004. This
league is aimed as a bridge from RoboCupJunior to
RoboCupSoccer, to accommodate undergraduate students
which are too old for RoboCupJunior but do not have
enough resources to join leagues in RoboCupSoccer.
This league is a simpli�ed version of Small Size Robot
League, where vision processing and communications are
factored out, thus provided by the league. Each team
in this league consists of four small sized autonomous
robots, one of whom can be a goalkeeper. The match
lasts for two equal periods of 10 minutes.

• RoboCup Commentator Exhibition
Participants of RoboCup Commentator Exhibition are a
number of systems which automatically generate soccer
commentary for simulation league games. The comments
are in natural language and they are real-time generated.
In RoboCup Commentator Exhibition, the goal is to
observe and comment.

Our work is part of a joint research project [9] on RoboCup-
Soccer E-League with the National University of Comahue
(Argentina). However as a preliminary work, we employ
RoboCupSoccer Simulation League for the sake of simplicity.

III. FUZZY PROLOG

The Ciao Prolog System offers a complete Prolog system
supporting ISO-Prolog. Its modular design allows restriction
and extension of the language both syntactically and seman-
tically. The Ciao Prolog Development System provides many
libraries including a constraint logic programming system and
interfaces to some programming languages. In Ciao Prolog
terminology, a library is implemented as either a module
or a package. Fuzzy Prolog described in [2] and [3], [5] is
implemented as the package “fuzzy.pl”, a syntactic extension
of the CLP(R) system in the Ciao Prolog System. This is a
continuous variant of Fuzzy Prolog.

Fig. 1. Truth Value: Borel Algebra versus Discrete Borel Algebra [4]

We use in this work the discrete variant of Fuzzy Prolog that
is implemented using CLP(FD) as described in [4]. It offers an
implementation of a Fuzzy Prolog system with discrete (versus
continuous) truth values. The next subsection summarizes the
basic formal concepts that are described by the semantics of
this language.

A. Discrete Fuzzy Prolog Language

The set of continuous subintervals on [0,1] is denoted
by E([0, 1]). The Borel Algebra, B([0, 1]), is the power set
of E([0, 1]). We talk about discrete instead of continuous
interval when it is compound by a �nite set of elements
included in the corresponding continuous interval. The set of
discrete subintervals on [0,1] is denoted by Ed([0, 1]). We call
Bd([0, 1]) the Discrete Borel Algebra over the interval [0,1]
for representing the set of �nite unions of discrete subintervals
on [0,1].

As de�ned in [4], truth values in discrete Fuzzy Prolog are
elements of Discrete Borel Algebra over the interval [0,1].
Fuzzy sets are de�ned by functions of the form A : X →
Bd([0, 1]). The Fuzzy Prolog system with Borel Algebra as
in [2] and [3], [5] is often referred as continuous Fuzzy
Prolog system. Figure 1 illustrate the difference between Borel
Algebra and Discrete Borel Algebra.

Notice that the truth value representation of Fuzzy Prolog
and discrete Fuzzy Prolog is very general (union of intervals
of real numbers) and it can seem to be little intuitive. The
applications of this generality are disscussed in [2] and [3],
[5]. Simple truth values (as a unique interval or a plain
real number) can be more adequate to be used in RoboCup
game. These simple values are particular cases of the general
framework.

Definition 3.1 (discrete-interval): A discrete-interval
[X1, XN]ε is a �nite set of values, {X1, X2, ..., XN−1, XN},
0 ≤ X1 ≤ XN ≤ 1 such that ∃ 0 < ε < 1.
Xi = Xi−1 + ε, i ∈ {2..N}.

341

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

As indicated in the de�nition, the set of values of a discrete-
interval depends on the choice of ε. Smaller ε value represents
more precision. For example, an interval [0.3, 0.5]0.1 with
ε = 0.1 is a �nite set {0.3, 0.4, 0.5} while the interval
[0.30, 0.50]0.01 with ε = 0.01 is a �nite set {0.30, 0.31, 0.32,
..., 0.48, 0.49, 0.50}.

Therefore we denote the algebras Ed([0, 1]) and Bd([0, 1])
incorporating the granularity to the notation substituting d by
the particular ε (e.g. B0.1([0, 1])).

Definition 3.2 (discrete-aggregation): Discrete-aggregation
(in fuzzy sets) is the application of a numeric discrete-
aggregation operator (or discrete-aggregation) of type
f : [0, 1]n → [0, 1]. If it satis�es f(0, ..., 0) = 0 and
f(1, ..., 1) = 1, and in addition it is monotonic.
Notice that the operator is only monotonic by de�nition, not
continuous (that is why it is called “discrete”).

Definition 3.3 (discrete-interval-aggregation): Given a
discrete-aggregation f : [0, 1]n → [0, 1], a discrete-interval-
aggregation F : Eε([0, 1])n → Eε([0, 1]) is de�ned as
follows:

F ([xl
1
, xu

1
]ε, ..., [x

l
n, xu

n]ε) = [f(xl
1
, ..., xl

n), f(xu
1
, ..., xu

n)]ε

where 0 < ε < 1.
Intuitively we can say that F provide a discrete-interval from
the aggregation of n discrete-intervals.

Definition 3.4 (discrete-union-aggregation): Given a
discrete-interval-aggregation F : Eε([0, 1])n → Eε([0, 1])
de�ned over discrete-intervals, a discrete-union-aggregation
F : Bε([0, 1])n → Bε([0, 1]) is de�ned over union of
discrete-intervals as follows:

F(B1, ..., Bn) = ∪{F (E1ε, ..., Enε)|Eiε ∈ Bi}.
The alphabet of the fuzzy language consists of variables,

constants, function symbols, and predicate symbols. A term is
de�ned inductively as follows:

1) A variable is a term.
2) A constant is a term.
3) If f is an n-ary function symbol and t1, ..., tn are terms

then f(t1, ..., tn) is a term.
An atom or atomic formula is de�ned as the following:
If p is an n-ary predicate symbol and t1, ..., tn are terms, then
p(t1, ..., tn) is an atom.
A fuzzy program is a �nite set of fuzzy facts and fuzzy clauses.
Information is obtained from the fuzzy program through a
fuzzy query.

Definition 3.5 (fuzzy fact): If A is an atom,

A← v

is a fuzzy fact, where v, a truth value, is an element in
Bε([0, 1]) and 0 < ε < 1.

Definition 3.6 (fuzzy clause): Let A, B1, ..., Bn be atoms,

A←F B1, ..., Bn

is a fuzzy clause where F is a discrete-interval-aggregation
operator of truth values in Bε([0, 1]), 0 < ε < 1, and F induces
a discrete-union-aggregation as by de�nition 3.4.

TABLE I

DISCRETE FUZZY PROLOG SYNTAX FOR FUZZY FACT

Fuzzy Fact Discrete Fuzzy Prolog Syntax
p(john) ← 0.7 p(john,70) ::∼.

p(peter) ← p(peter,V) ::∼
[0.4, 0.6]0.01 { V in 400 .. 600}.

p(joan) ← p(joan,V) ::∼
[0.2, 0.5]0.1 ∪ [0.8, 1]0.1 { V in 20 .. 50}.

p(joan,V) ::∼
{ V in 80 .. 100}.

Definition 3.7 (fuzzy query): A fuzzy query is a tuple

v ← A?

where A is an atom, and v is a variable (possibly instantiated)
that represents a truth value in Bε([0, 1]), where 0 < ε < 1.

B. Discrete Fuzzy Prolog Syntax

Constraint Logic Programming, CLP, is one of the most
promising extensions of Logic Programming from the im-
plementation point of view. There are many Prolog systems
that implement it [10]. One of the most popular extensions
is CLP(FD), Constraint Logic Programming over Finite Do-
mains. It is related to constrain the set of possible values of the
variables for ef�ciency. So, the possible values can be obtained
according to a set of constraints that should be satis�ed by
each variable. In Ciao Prolog, CLP(FD) works on integer
domain. We use it to represent the set of truth values of a
fuzzy variable by a set of integer numbers. Therefore, given
the ε as in de�nition 3.1, truth value is interpreted as a �nite
union of discrete subintervals on [0, 1]ε. Hence, the discrete
subinterval is a set of integers.

The interval [X1, XN]1/k is interpreted for CLP(FD) as the
discrete interval [X1 ∗K ∗ 10, XN ∗K ∗ 10]1

For example, the interval [0.4, 0.6]0.01 is interpreted as the
set {400, 401, 402, ..., 598, 599, 600} while [0.4, 0.6]0.1 is
interpreted as the set {40, 41, ..., 59, 60}. Table III-B shows
the syntax for fuzzy facts. We use 0.1, 0.01, etc for simplicity,
but any other value (e.g. 0.2, 0.34, ...) can be used also.

The fuzzy clause is de�ned as Head ::∼ Aggregator
Body. For example, the syntax for fuzzy clause
slow dash (Distance, Power)←min

near(Distance),
low dash power(Power)

is in discrete Fuzzy Prolog
slow dash (Distance,Power,V) ::∼ min

near(Distance,V1),
dash power(Power,V2).

In Fuzzy Prolog syntax, the query is formulated as an
atom A with v, the truth value, as additional parameter. The
fuzzy query is de�ned similar with the ones in continuous
Fuzzy Prolog. For example, the syntax for the fuzzy query
that consults if running slowly is a good option taking into
account the distance that the player want to cover and the
power of his/her dash

342

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Fig. 2. Generic System Architecture

v ← slow dash(Distance, Power)?

is written in Fuzzy Prolog:
?−slow dash(Distance,Power,V).
The value of V is obtained from the aggregation (using the
operator min) of the truth values V 1 and V 2. The value
of V in Fuzzy Prolog with CLP(FD) ranges (values or
intervals) between 0 and 100, 0 and 1000, ... (depending on the
precision of the program and representing the corresponding
truth values between 0 and 1 obtained dividing by 100, 1000,
... respectively). As CLP(FD) supports labeling, V could
be instantiated to one or more values satisfying the constraints.
This is the reason why discrete Fuzzy Prolog is more useful
for this application than the continuous variant, because it
provides constructive answers as values instead of providing
constraints (as in the continuous variant).

Note that when more precision is needed, a suitable ε in the
de�nition 3.1 could be chosen, which results in a larger set of
integer between 0 and 1 for truth values.

IV. ARCHITECTURE AND IMPLEMENTATION DETAILS

Based on agent system architecture proposed by [1], we
propose a generic system architecture for RoboCup offering
�exibility on choice of programming language and minimal
modi�cation to switch between leagues. This architecture is
shown in �gure 2. Prolog is proposed for cognitive layer,
and in our work we use Fuzzy Prolog for implementing the
cognitive layer. The system architecture of our implementation
for RoboCupSoccer Simulation League is shown in �gure 3.
As it can be seen in the �gures and as it is going to be
described in this section, the generic architecture is customized
in our implementation for Simulation League.

A. Low Level Communication Layer

As the name suggests, this is the lowest layer of our
architecture. This layer includes all hardwares and softwares
provided by the league. The robots, infrared transmitter, video

Fig. 3. System Architecture for RoboCup Soccer Server

camera, communication network, and vision systems belong to
this layer. Different leagues in RoboCupSoccer are represented
by different Low Level Communication Layer. E-League has
the robots, Doraemon vision package, and communication
server as part of this layer, whereas Simulation League has
only The RoboCup Soccer Simulator as part of this layer.

B. Logical Communication Layer

This layer acts as the interface between low level communi-
cation layer and the upper layers. It is intended to hide physical
structure of the environment from the upper layer. As long
as the interface of the services offered by this layer remain
unchanged, then the rest of the upper layer can also remain
unchanged [1]. Basic services that should be offered for E-
league are :

• Reading the packets generated by video server.
• Establishing communication with the communication

server.
• Continuous sensing for the referee decision.

In our implementation for Simulation League, this layer is
represented by a Java library called Atan [11] which provides
following services :

• Connection to the simulation server via UDP.
• Side conversion to support the internal representation of

the state of the world.
• Parsing of the output string from simulation server.
• Generation of a command string that can be understood

by the simulation server.

C. Sensorial/Effectorial Layer
This layer serves as a bridging layer between logical

communication layer and cognitive layer. It translates visual
information into the representation needed by cognitive layer,
and also translates output from cognitive layer into basic action
to be performed by the robots. In our implementation for
Simulation League which use Prolog programs as cognitive
layer and Java library as logical communication layer, this

343

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

means translating visual information into prolog predicates and
interpreting prolog query result. Let us show an example of
the java translation code used when a player see a ball:

public void infoSeeBall
(double distance, double direction) {

infobuf.append("distance").
append(PrologConnection.ATOM_SPLITTER).

append("ball").
append(PrologConnection.ATOM_SPLITTER).

append(distance).
append(PrologConnection.FACT_SPLITTER).

append("direction").
append(PrologConnection.ATOM_SPLITTER).

append("ball").
append(PrologConnection.ATOM_SPLITTER).

append(direction).
append(PrologConnection.FACT_SPLITTER);

}

If the player see a ball in distance x and direction y,
then this information is translated into prolog predicates as
distance(ball,x) and direction(ball,y).

D. Cognitive Layer

Cognitive layer is where the strategy is implemented. It
is the highest level layer. Our work is focused in this layer
where we employ The Ciao Prolog System [12], and in
particulas the Fuzzy Prolog library, to do reasoning over
provided information. Our approach is providing the capability
of handling fuzzy, uncertain and incomplete information to the
cognitive layer. This information is very close to the human
reasoning, so this framework is improving the human-like
control of this layer. A strategy can be easily implemented on
this layer without having to put effort on low level technical
details more related to the machine than to the human mind.

V. EVALUATION

For testing our architecture (Figure 3) we have implemented
a prototype using Ciao Prolog and its library that provide
Fuzzy Prolog, a Java interface programs to connect to the Atan
library and a RoboCupSoccer Simulator.

Some simple scenarios have been prepared for observation
on difference between fuzzy and crisp approach on similar
strategy.

For example, if the strategy is implemented as a prolog
program, the program with crisp strategy takes only the best
action and fails when there is none. The program with fuzzy
strategy proposes the almost best action when there is no best
action.

The program with crisp strategy (using classical prolog)
looks like the following:

get command (Info,Command) :-
update info(Info),
best command(Command).

And the fuzzy approach for similar strategy:

get command (Info,Command) :-
update info(Info), !,
best command(Command,100).

get command (,Command) :-
best command(Command,V),
V . > . 80.

The strategy is coded into the predicate
best command/2. Below is the example of fuzzy
approach to determine next action when the player has the
ball, in other words, the ball is closed to him.

% play_on
% if i have the ball then
% - shoot to goal
% - dribble to goal
% - pass to teammate
best_command(Command,V) ::˜ min

play_mode(play_on),
\+ player_role(goalie),
ball_in_possesion(V1),
goal_position(Dist,Dir),
good_to_shoot(Dist,Dir,V2),
shoot(Dist,Dir,Command).

best_command(Command,V) ::˜ min
play_mode(play_on),
\+ player_role(goalie),
ball_in_possesion(V1),
not_guarded(V2),
goal_position(Dist,Dir),
dribble(Dist,Dir,Command).

best_command(Command,V) ::˜ min
play_mode(play_on),
\+ player_role(goalie),
ball_in_possesion(V1),
is_guarded(V2),
pass_to_teammate(Command).

In the above example there are many fuzzy concepts.
Depending on the distance to the goal position the player will
evaluate if it is a good for shooting to goal. In case it is, he
will do it. Otherwise, he will evaluate if his possesion of the
ball is save enaugh (no players of the other team are close
to the ball). If not, he will dribble with the ball to skip the
danger. Finally, if the player is not close to shoot to goal and
is is not possible to dribble and then shoot to goal, then he
will pass the ball to another player of his team.

This is only an example for representing the necesity of
using fuzzy rules and fuzzy concepts in soccer control.

The evaluation includes power calculation using set of rules,
rule based decision, and team play. Fuzzy rules enable fuzzy
control implementation for power calculation. In rule based
decision, there are certain cases where fuzzy approach offers
better solution than crisp approach. These small differences
in power calculation and decision leads to a slight better
performance of fuzzy approach on team play with respect to
the crisp approach. However, fuzzy approach requires more
processing time than crisp approach and this could lead to poor
performance if it is not managed properly. We will evaluate
the ef�ciency of the two approaches (crisp and fuzzy, Prolog

344

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

and Fuzzy Prolog) in further work.
We have realized that none of the two alternatives (crisp

versus fuzzy) are good for all scenarios. Indeed, it seems that a
combination of fuzzy reasoning with crisp predicates could be
the perfect combination and this is a promising result because
Fuzzy Prolog [5] is able to deal with this combination.

VI. CONCLUSION

We choose RoboCupSoccer domain as our case problem
to employs Fuzzy Prolog system (an approach to incorporate
fuzzy reasoning into logic programming). This work is an
initial step toward series of research in this area.

On the other side, we believe that logic programming is
a perfect environment for dealing with the cognitive layer
at RoboCupSoccer league as it is in general to implement
cognitive and control issues in robotics.

Our goal is to provide a framework to employ Prolog in
general and Fuzzy Prolog in particular for RoboCupSoccer.
A generic architecture for RoboCupSoccer is given, with
�exibility in changing leagues and programming languages
while maintaining a combination of Prolog and Fuzzy Prolog
as cognitive layer. For the implementation, we apply the
framework to work on the RoboCup Soccer Simulator, by
implementing a prototype player with Fuzzy Prolog as cogni-
tive layer and adapting properly the sensorial/effectorial layer.
Considering time and technical constraints, we choose the
discrete Fuzzy Prolog system over the continuous approach,
for this application, providing constructive answers as values
(instead of constraints) is translated into more ef�ciency for
the strategy (measurements will be studied in further work).

We observe that the fuzzy program is slower than crisp
program for several reasons :

• Fuzzy program needs to be translated into CLP(FD)
• Instead of failing immediately when a predicate in a body

clause is not satis�ed, the evaluation in a fuzzy rule
continues and the truth values are aggregated with the
truth value 0.

• When there is no best action to be done, fuzzy program
attempts to �nd an alternative action.

Therefore, the fuzzy program should be designed carefully by
taking into account the different procedural semantic between
a crisp prolog program and a Fuzzy Prolog program.

This work establishes a preliminary groundwork towards a
series of research on employing Fuzzy Prolog in RoboCup-
Soccer E-League. The results of this work are:

• A prototype of discrete Fuzzy Prolog system, imple-
mented as dfuzzy package in Ciao Prolog.

• A framework to employ Fuzzy Prolog in RoboCup Soc-
cer, including a prototype of cognitive layer for RoboCup
Soccer.

• A prototype of player client as application of the frame-
work for the RoboCup Soccer Simulator League (senso-
rial/effectorial layer).

• Simple scenarios to demonstrate the utility of fuzzy
reasoning for soccer players control.

There is room for improvement of this work. With regards to
the cognitive layer, more advanced strategy and various proper
aggregation operator can be applied, using either continuous or
discrete Fuzzy Prolog system. We intend to distinguish at the
players control, when is it better to use fuzzy reasoning (Fuzzy
Prolog), and when is it faster to use crisp reasoning (Prolog).
Our future work is to improve and employ the cognitive layer
for RoboCup Soccer E-League. Another possible work in this
research area is to use Fuzzy Prolog as cognitive layer in
different RoboCup domain, for example in RoboCup Rescue
or RoboCup@Home.

REFERENCES

[1] A.J.Garc�́a, G.I.Simari, and T.Delladio, “Designing an
Agent System for Controlling a Robotic Soccer Team,”
2004, argentine Conference on Computer Science (CACIC
2004). [Online]. Available: http://www.cs.umd.edu/ gisi-
mari/publications/cacic2004GarciaSimariDelladio.pdf

[2] S.Guadarrama, S.Muñoz, and C.Vaucheret, “Fuzzy prolog: A new ap-
proach using soft constraints propagation,” Fuzzy Sets and Systems, vol.
144, no. 1, pp. 127–150, 2004.

[3] S.Muñoz-Hernandez and C.Vaucheret, Eds., Extending Prolog with
Incomplete Fuzzy Information, ser. Proceedings of the 15th International
Workshop on Logic Programming Environments, 2005.

[4] S.Muñoz-Hernandez and J.M.Gomez-Perez, Eds., Solving Collaborative
Fuzzy Agents Problems with CLP(FD), ser. Proceedings of Interna-
tional Symposium on Practical Aspects of Declarative Languages 2005,
California, 2005.

[5] S.Muñoz-Hernandez and C.Vaucheret, Eds., Default values to handel
Incomplete Fuzzy Information, ser. IEEE Computational Intelligence
Society Electronic Letter, ISSN 0-7803-9489-5, vol. 14. IEEE, 2006.

[6] M.Chen, K.Dorer, and E.Foroughi, Users Manual RoboCup Soccer
Server, 2003.

[7] J.Anderson, J.Baltes, D.Livingston, E.Sklar, and J.Tower, “Toward an
Undergraduate League for Robocup,” in In Proceedings of Seventh
International RoboCup Syposium (RoboCup-2003), 2003.

[8] J.M.Santos, H.D.Scolnik, I.Laplagne, S.Daicz, F.Scarpettini, H.Fassi,
and C.Castelo, “Uba-sot: An approach to control and team strategy
in robot soccer,” International Journal of Control, Automation, and
Systems, vol. 1, no. 1, pp. 149–155, 2003.

[9] “AL05 PID 0040 project,”
http://faea.uncoma.edu.ar/materias/ia/Robotica.

[10] M. Hermenegildo, F. Bueno, D. Cabeza, M. Garc�́a de la Banda,
P. López, and G. Puebla, “The CIAO Multi-Dialect Compiler and
System: An Experimentation Workbench for Future (C)LP Systems,”
in Parallelism and Implementation of Logic and Constraint Logic
Programming. Commack, NY, USA: Nova Science, April 1999.

[11] “Atan library,” http://atan1.sourceforge.net.
[12] “The Ciao Prolog,” http://www.cliplab.org/Software/Ciao.

345

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

