
Abstract—Vidya is a strategy computer game, god-style, that
can be seen as a rich environment where virtual beings
compete among themselves for natural resources and strive
within the artificial ecosystem. Although in this game the
player cannot directly control the intelligent agents, he can give
some intuitions to them. Together with these intuitions the
agents, called Jivas – the most developed species of the
ecosystem, devise actions through evolutionary computation.
The game allows also the observation of all interactions among
the various beings inhabiting Vidya. Interactions happen in a
quasi-autonomous manner which grants the game with an
interesting dynamics. The evolved Jiva’s intelligence, which
build-up during the game, can be reused in other game
scenarios. This work might help on further understanding of
some emergent autonomous behaviors and parameterization of
intelligent agents that live in closely coupled ecosystems.
 Keywords: Computational Intelligence, God Game, Vidya,
Evolutionary Computation, Autonomous Behavior.

I. INTRODUCTION

VIDYA is a strategy computer game, posed as an
environment where virtual beings compete for available
natural resources of an ecosystem. Among many types of
beings that inhabit the virtual world, there is a special one
called Jiva. They are intelligent agents designed to be
autonomous and survive against all the odds. In the Vidya
game, the player is invited to be the Jivas’ clan Deva (i.e.
their god). That is, the one who provides guidance to
selected clan members. These instructions are not provided
not in fine details and appear in the Jiva’s mind as intuitions.
They are referred in the game as vidyas, which are useful for
helping the Jivas to take their own decisions. Due to their
“autonomy”, Jivas are capable of deciding which actions to
perform for various situations in the world regardless of
receiving any vidya provided by player.
 Artificial Intelligence (AI) techniques [1] are heavily used
in computer games [2]. They are today one of the main
factors of success or failure of any non-casual game. Two
main factors contribute to this in electronic games. First,
following the appearance of graphical accelerator boards,

All three authors are with Department of Computing Systems
Polytechnic School of Engineering - Pernambuco State University, Recife
50720-001, Brazil.

Fernando Buarque de Lima Neto (M'06), the corresponding author, can
be reached by phone: +55 (0)81 2119-3855 extension 3842; fax: +55 (0)81
2119-3855 extension 3836; and e-mail: fbln@dsc.upe.br).

much of central processing potential became available for
AI computations. Second, newer games are continuously
required to present greater degrees of realism [3], [4]. The
realism referred here applies not only in the graphical design
and physical modeling of the game, but also in the evoked
behavior of the agent

This means that a good non-casual game that explores
computational intelligence not only has to be playful, but
has to be aesthetically well cared-off as well; desirably an
even balance should be obtained between these two
ingredients.

In the Vidya game the algorithms are written in a way that
intelligent behavior is at the center of the game’s processing
load, especially when controlling the behavior of the Jivas.
There are others agents in the game, namely, animals like
sheep, wolfs, cows, that express non-monotonic behavior.
These agents’ behaviors are solely reactive processes. In
other words, for these lower beings of Vidya, behaviors are
state-to-actions static mappings, without evolution. As
opposed to that, Jivas’ intelligence evolves thru time and
increases their knowledge about the world. They
autonomously learn by their own experience as well as
godly received inspiration (i.e. the vidyas provided by the
player). This happens because all Jivas learn by self-
analyzing their own behavior, evaluating whether a given
action at a specific time was appropriate. In the long run,
this might help gathering new insights for Evolutionary
Computation [5].
 Apart from the ludic side of Vidya, the result of the
intelligence modeling of Jiva is the creation of evolutionary
intelligent agents that act and learn in a quasi-autonomous
way. Because of Vidya modular construction of interacting
characters, in the future it could be adapted to be a
simulation environment (i.e. a test-bed) to help on the
understanding of other social beings’ behaviors.

II. INTELLIGENT TECHNIQUES UTILIZED

 Genetic Algorithm (GA) is an intelligent technique widely
used for performing complex search and optimization
problems based on principles of natural evolution [6], [7].
Population, chromosomes, genes, fitness, reproduction,
offspring, and mutation are important concepts brought from
Genetics and Nature straight into this technique.
 The Population is a set of individuals (i.e. chromosomes),

Vidya: A God Game Based on Intelligent Agents Whose Actions are
Devised Through Evolutionary Computation

Marcelo R. de Souza Pita, Salomão Sampaio Madeiro, and Fernando Buarque de Lima Neto
Department of Computing Systems - Polytechnic School of Engineering

Pernambuco State University, Recife – Brazil
{mrsp, ssm, fbln}@dsc.upe.br

352

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

here possible solutions for the Jiva’s decisions. The fitness
function calculates a value used to classify how good an
individual is according to some given criterion. Selection,
reproduction and mutation are GA operators applied directly
on the population to generate a new one. This results in an
effective search system in the input space (i.e. Jiva’s world).

In GA possible solutions for the problem at hand are
individual chromosomes, which are composed of relevant
characteristics that are coded as their genes. An initial
population of individuals, i.e. set of chromosomes, is
randomly generated. After being classified by some fitness
criterion, they will evolve and guide de search process to an
optimal solution for the problem. After fitness value
calculation, pairs of individuals, selected due to methods
such as the Roulette Wheel [8] or the Tournament [8], have
their genes crossed-over. Following that their chromosomes
are combined to generate a new individual. At this time, it’s
possible to introduce a random operator, i.e. mutation. This
avoids premature convergence by modifications of one or
more gene values of that new individual. Crossover and
mutation will happen until a new population is generated.
Figure 1 illustrates all mentioned GA steps.

Fig. 1. Overview of all Genetic Algorithm steps.

Finding a good solution to a problem can be a very time
consuming operation, especially whether one tries to explore
the entire solutions surface. GA is capable of finding an
answer as good as needed by executing sufficiently the
above mentioned cycle. Note that for every cycle, there is
one best individual in the current population. Thus, as soon
as there is a need for the algorithm to stop (e.g. the user
demands an action to be taken in the game), a non-random
candidate solution – suitable for the problem – is readily
offered by the GA. It is important to be noticed that in
general GA does not take many cycles to find a reasonable
solution.

III. VIDYA

A. The Vidya Game

Vidya is a single-player strategy-god game [9] game that
includes AI and a new player-character interaction model.
Vidya is also a test-bed for investigations that aims at
advancing development of autonomous intelligent agent
through Evolutionary Computing.

The intelligent decision module of Vidya agents was
planned to be used in other games, mainly in characters that

need more autonomy, agents of ecosystem simulations, or
even in studies of emergent social behaviors.

The Vidya game environment is shared by many types of
beings (as shown Figure 2) that compete for available
natural resources, sometimes not abundant. The main
characters in this environment are the Jivas, they are
autonomous intelligent agents that are endowed with
evolutionary properties. Clan is the social unit of Jivas.

The player performs the role of a clan’s Deva and may
instruct the Jivas of one clan, by helping them to survive in
the game world. This is not an easy task, especially because
Jivas are autonomous beings and can choose to follow the
players instruction – the vidyas, or simply choose to ignore
the, so-perceived, “divine” intuition.

 Fig. 2. Screen-shot of the game world, showing the Jiva (at upper-center)
and other beings: grass, rock, fox, cow, tree and a dead-fox.

B. The Vidya Software

Vidya was completely developed using Java language
[10]. Java is easy for programming, has plenty of
Application Programming Interfaces (APIs) already
implemented for games and is Object-Oriented (OO), which
makes modeling much easier. The main concern regarding
Java is its notorious not-so-good performance when
compared to other programming languages, like C and C++.
Figure 3 shows the high level architecture of the game.

Fig. 3. High-level software architecture of the Vidya game.

353

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

The Listeners module tackles all player input, generating
events that, sometimes exchange screens, change the game
state (delegated by GameScreen screen). Events are still
generated to control the Sound Player.

The Resources repository is a set of image and sound files
that are accessed through Resources agent. The Screens and
Sound Player modules access (via Resources agent) image
and sound resources, respectively.

Inside the Game State module we programmed the game
motor, the world and its objects, on which we find the Jiva,
with its intelligent decision module.

C. The Jiva’s Intelligent Decision Module

Jiva (and other beings inhabiting the game world) follows
the agent model. Specifically, Jiva is an autonomous
intelligent agent, because it is capable of taking intelligent
decisions in an independent way.

Like all agents, Jiva perceives the environment, performs
an inner processing in order to select a good action and act
on the environment. The Jiva’s perception is partial, that is,
it does not perceive the whole environment, but only a
variable (smaller) part of it.

It is easy deduce that the basic problem of the Jiva is to
perform well on the environment for a given limited
perception. What they do is to minimize a cost function (or
maximize a gain function). Jiva’s decisions for actions
might be seen as control operations that intend to benefit
from the environment in order to create ideal conditions for
its own survival.

The task of the Jiva’s intelligent decision module is to be
responsible for selecting (or deciding) the best action to be
performed by the Jiva’s agent. This action selection is then
realized using GA. Actions are single-mapped to individuals
of the population, which is a subset of the available actions.

Jiva has a very large set of available actions that can be
performed. The selection of the best one can be very time
consuming if traditional techniques are used. With GA we
narrow down the search space and the choices converge
towards the best action promptly. This process produces a
good candidate solution even at few initial (GA)
generations.

Jiva perceives the world as a set of objects that are inside
its perception square. This perception limit depends directly
on Jiva’s vitality. In the beginning of the game, the Jiva has
the maximum vitality, hence perception level. As time goes
by it start losing its perception accordingly to the decay of
vitality. Jiva’s vitality can be interpreted as the remaining
life time of the Jiva. In all this could be interpreted as aging.

The perception square of the Jiva defines a set of cells
(grid) that Jivas can perceive. These cells also define the
complete possible future destinations for the Jiva (i.e. all
possible positions that the Jiva can occupy at the next time
step). Figure 4 shows the perception square of the Jiva, the
perceived objects and the cells with in the perception square.

The Jiva’s perception is composed by a set of world

objects. Each object in the perception is characterized by its
type and positioning in relation to the Jiva’s own position.

In the present work, the Jiva is able to perceive occluded
objects, that is, it can see all objects that are inside its
perception square, even whether some objects are behind
other objects. Uncertainties caused by occlusion of objects is
an interesting topic [11], however, we left it for future work.

Jiva’s agent, after it has perceived the environment and
created internal representation for every object within its
perception square, will select a good action for that
perception. An action is defined as the destination cell to
which the Jiva will move to. So, we characterize an action
by a coordinate pair (x, y), meaning that the Jiva will move
to that position in the next time step, as shown in Figure 5.

Fig. 5. Destination cell to where the Jiva possibly will move. Observe
that there is a cell selected with a fruit on it; the Jiva may want to eat it.

Fig. 4. Screen-shot of the game world, showing the perception square
of a Jiva. The objects inside the square are being perceived (a water
font, a small plant, a dead tree and a tree). The small squares that
compose the perception are the perception cells. Outside of the
perception square, in the bottom of image, a wolf (predator) is hunting a
cow (prey).

354

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

The semantic value associated to an action depends on the
object that is occupying the destination cell. For example, if
a Jiva migrate to a cell where there is a fruit on it (Figure
5), the semantic value associated to this action is “eating the
fruit”. Alternatively, if in the destination cell there is a wolf,
the semantic effect is “hunting the wolf”. If the destination
cell is empty (no object on it), the semantic value of the
action is just “keep walking to another destination”. For
each object type in the destination cell there is a different
semantic value associated. For some objects, the semantic
value associated may be the same (e.g. sheep and cow).

The semantic implications of actions by the Jiva are not
only dependent on the objects that are occupying the
destination cells but are also dependent on its vital function
to each being inhabiting Vidya. E.g., a Jiva eating a fruit will
increase a bit its vitality and energy, while eating a dead
wolf will increase its energy and decreases its vitality.

D. Solving the Problem through Evolutionary Computing

Given the time constraints of the game, a unique GA
instance might not solve the problem of selecting the best
action for all possible situations. Notice that a good action
for a given perception may not (probably will not) be good
to another perception. Each different perception is a
different problem, and then different GA instances have to
be created for each one of these different perceptions. The
Jiva’s intelligent decision module has a structure that maps
perceptions on instances of GAs (on a one-to-one mapping).

Each GA instance has the role of selecting the best action
for a given perception, following the natural selection
method that characterizes a GA. This includes the
evaluation, crossing and mutation of individuals.

When evaluating an action, the GA might care about not
only its immediate cost, but infer on the long term cost for it.
We will refer to this long term evaluation as an evaluation
“F steps in the future”, where F is the number of steps that
the GA will see in the future to estimate a long term cost.

The long term cost can be inferred because the Jiva’s
intelligent decision module can simulate the progress of an
action in the future. Of course, the estimated long term cost
have to be confronted with Jiva’s experience, that is, the real
cost obtained by interacting with the environment.

The path of a Jiva in the game world is internally
represented as a states machine (Figure 6), where each state
is a different perception configuration of the Jiva’s agent.

Associated to each state (si) there is an intelligent
processing element, that is an instance of a GA (GAi). The
task of this element is selecting the best action (aij) for the
state. Due a performed action, the Jiva migrate to another
position in the game world and has a new perception, for
which there is another GA instance to solve it.

When the Jiva reaches a perception state, it has a set of
positions to move to (the set of possible actions).
Calculating the cost to go for each destination cell is an
expensive task, because the number of possible destination

cells is large. For example, if we have a perception square of
20 × 20 cells and we would like to know its cost 3 steps in
the future (F = 3), 400 cells would be evaluated, having for
each cell a triple analysis (the 3 steps in the future). After
this task we would still have to perform a comparative
analysis between these 400 cells to choose one.

Using Genetic Algorithms, we have a convergent method
(converging towards the best solution) with a reasonably
smaller search space. Supposing a GA with a population size
of 40 individuals, for the problem described in the last
paragraph, we have a mean reduction of 90% in the search.
Figure 7 shows the initial spatial distribution of the
population for a given perception of the Jiva.

Located in a given state, the Jiva invokes the associated
GA instance to suggest an action. Each time this state is
reached, the GA instance advances one generation. In the
first generation we already have a converging solution. This
advance is governed by the well known GA sequence of
tasks: evaluating, crossing-over and mutating individuals.

Before all, evaluation of the population is done for
selecting the best action that will be performed by the Jiva.
The evaluation phase only is completed when the action is
performed and the Jiva has a real immediate cost obtained
by experience. So, the evaluation phase is divided in two
parts: before the selection and after the action.

Before the selection, each action is internally simulated F
steps in the future. The action that has the best qualification
in the simulation is then selected. Figure 8 shows the
simulation algorithm for one action. After obtaining the
qualification (i.e. inferred cost) for each action, the action
that has the greater qualification will be selected and
performed by the Jiva.

Fig. 6. State machine that represents the path (series of decisions) of a
Jiva in the game world throughout time. Each state is a different
perception configuration at a given time, for which there is one GA
instance that will select the best action for that state at that particular
time.

355

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

For the time being, Jiva’s experience is out of scene.

Now, the winner action, after its realization, will be
evaluated again. The immediate cost obtained by the Jiva in
realizing the recent action will be summed to the
qualification of the action, re-qualifying it. After this post-
evaluation, the winner action may keep on being the best
one, or may lose the first position to another action best
qualified. So, this post-evaluation tries to correct inference
errors in the simulation, re-ordering, in terms of
qualification, the individuals of the population. These
individuals are then ready to crossover and mutation phase.

An action for the Jiva is a move to a destination cell. So,
actions are represented by a coordinate pair (x, y), indicating
this destination.

The selection method used to choose pair of actions that
will cross is the Roulette Wheel selection method [8]. Pairs
of actions are selected and crossed, generating new actions
that will compose the next generation of the population.

The mutation operator is also applied to the population.
The mutation probability was arbitrarily set to 1/32, that is,
in average, for each 32 actions 1 is mutated.

The use of GA in the Jiva’s intelligent decision module
aims to reduce considerably the search space for selecting
actions in a coherent manner using natural selection
principles and generating good solution already in the initial
generations.

Each time a state is reached, a new generation of better
new actions replaces the old ones in the population. The old
actions are evaluated considering their probable long term
qualification F steps in the future, where F is a parameter of
the game. This is achieved through progress simulations,
where the selected action (that has the best qualification) is
re-qualified by its immediate cost after realization. So, these
old actions are submitted to crossover and mutation
operations, resulting in a new generation of actions better
qualified.

In the game industry there are strong indications that
computer games will became more and more complex [12];
this can be seen in the last generation of computer games.
This growing complexity has turned even hard the task of
explicitly programming agent behaviors (in the cases of
purely reactive agents). Even when AI is evolved, it is hard
to obtaining a representative knowledge database for a
specific game world, this because the number of different
possible situations is very large due to action produced by
players that are, at least in first analysis, non-deterministic.
The use of adaptive agents capable to learn in new situations
is a good way to overcome this difficulty.

The Jiva’s agent and its intelligent decision module is an
example of efficient use of Evolutionary Computing in
computer games, specifically in the behaviors of their
autonomous agents. The produced intelligent decision
module can be hypothetically reused in other computer
games and in autonomous agents that need to be adaptive,
that is, in various game worlds where learn abilities in new
situations will be required.

Fig. 8. Algorithm for the simulation of an action F steps in the future.

Fig. 7. Initial spatial distribution of the population for a given
perception. We can see all cells that are inside the 41×41 perception
area, the population distribution (168 individuals, that is, 10% of the
total search space, in light gray cells) and the destination cell (dark gray
cell), selected through an analytic simulation considering 5 steps in the
future. The decision interpretation is: the Jiva is going to hunt the cow.

356

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

E. A New Player-Character Interaction Model

As mentioned before, the main character in the Vidya
game is the Jiva – the focal point between player and game.

Traditionally, interaction between player and characters in
a computer game happens in a very direct way. Through
controls, the player can operate almost completely the
behavior of the characters (also referenced as avatars).

In the Vidya game, the player is a clan’s Deva, whose role
is to be the mentor of the clan and to promote survival in the
game world. This is a hard task, because Jivas are intelligent
agents, and can choose actions to perform, despite
suggestions of the Deva (i.e. the player).

The not-detailed instructions provided by the player given
to the Jivas’ clan (individually for each character) are
known in the Vidya game as vidyas. A vidya appears inside
of each Jiva as one “intuition”. The goal of the player should
be to provide good vidyas to the Jivas that might help them
to outlive others, Figures 9, 10 and 11 are examples of that.

Fig. 9. Player selecting a clan’s Jiva. By selecting a Jiva of his clan, the
player can perform the following tasks: (i) provide vidya for this Jiva; (ii)
show/hide perception area of this Jiva; (iii) show/hide the destination cell.

Fig. 10. Player providing vidya for a Jiva. In this situation, the player has to
select a cell inside the perception area that will be considered in the Jiva’s
decision own decision.

Fig. 11. Possible targets considered by the Jiva in its decisions.

When the player intercepts the Jiva to provide vidya, the
game pauses and the player can suggest a destination cell
that the Jiva may follow. Among others possible destination
cells, which are the individuals of the population of the GA
instance for that particular perception, the provided vidya
will selectively compete for the best qualification. The most
qualified ones will pass their characteristics for the next
generation. If the action suggested by the player is a good
action, it will help the long term learning of the Jiva – this is
the main goal of Vidya.

IV. EXPERIMENTS AND RESULTS

The experiments included in this section were used to
evaluate the intelligent evolutionary algorithm proposed in
the last section. Basically, this algorithm aims at
implementing the Jiva’s intelligent behavior, which is based
on Genetic Algorithms. In the proposed algorithm all Jiva’s
actions are mapped on individuals of a given population.
The feature of each individual is obtained through
simulation of future action. Then, the so-called best actions
will pass on its characteristics to the next generation.

The focus of all experiments is at computational
performance evaluation of the algorithm as an indirect
method for evaluating intelligence. The idea is to assess
intelligence through analysis of the adaptability of the Jiva.

We can identify two main parameters within the
algorithm: (i) the GA’s population size – PS and (ii) the
number of future steps that the simulations can see – F. We
varied these two parameters to observe the algorithm
behavior according to possible actions.

The set of individuals, for which the GA’s population is a
subset, has a size equals to the Jiva’s perceptive area. We
assumed a constant perception area of 961 cells (31 × 31
square) in these experiments, so that they can be compared
among themselves. The PS values were assumed to be 10%,
20% and 40% of all possible actions, that is, PS = 96, PS =
192 and PS = 384, respectively. The F values were assumed
to be F = 2, F = 4 and F = 6.

357

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Absolute values expressed in the results are not so
relevant here. Actually, the experiments propose a
comparative analysis of the same algorithm with different
values assumed by parameters PS and F. They show the best
parameter configuration, which maximizes the Jiva’s
performance in both aspects: computation time and
intelligent levels.

The hardware used was a entry-level personal computer
AMD Duron™ 1.6 GHz, with mere 352MB of RAM.

A. Performance of the Algorithm

The graphic of Figure 12 shows the performance, in
milliseconds, of the proposed algorithm for the selected
parameters; that is, variations for F (steps into the future)
and PS (population size of the GA).
 The three lines shown in Figure 12 are trends evoked by
the algorithm related to its computational performance. For
every trend, processing time augment as function of F. The
observed growth is practically linear. Each point in the
graphic was obtained by an arithmetic average over 100
executions.

In order to obtain this data we have to add extra routines
to the main code. However, the observed results only refer
to the examined code.

This algorithm behavior appears to be predictable with
respect of processing load. The differences in the measured
values across populations of different sizes, for the same
values of F, seem to be predictable too and present an
almost linear growth trend.

The absolute values obtained in the experiments also
reveal that the overall computational performance of the
algorithm is not large. For the tested cases, it did not exceed
600ms, which is perfectly acceptable in real game problems
that require short response time.

B. Jiva’s Intelligence Measurement

Measuring intelligence is difficult. To do it, we have used
an indirect method that, in our case (the Jiva’s intelligence

decision module) was to evaluate the gain (that can be
positive or negative) obtained by the Jiva, during a period of
time interacting with the environment. That is, we are using
the Jiva’s adaptation capability in the Vidya game to
measure the algorithm performance in providing intelligent
behavior.

The most relevant Jiva’s features, the ones that interested
most for evaluation of the Jiva’s adaptability, were:
‘vitality’, ‘hydration’ and ‘energy’. A weighed average of
these values, which can be obtained instantaneously from
every Jiva, produces what we refer as ‘general vital
condition’ (GVC); this value changes thru time. The weight
for the general vital condition, assumed for vitality,
hydration and energy were 50%, 30% and 20%,
respectively.

If we measure the gain obtained in the general vital
condition by the Jiva after a period of time, we can state that
this value represents approximately the Jiva’s increased
capability for surviving. Moreover, this also means how well
it has performed to obtain additional resources for its own
survival. Note that in our experiments we do not evaluate
the social behavior of the Jivas, which probably is
qualitatively superior, but only the Jiva’s individual
behavior (i.e. relating to its individual survival). The
analysis of emergent social behavior of the Jivas is left as a
future work.

The graphic of Figure 13 shows the gain in general vital
condition obtained by a Jiva for the selected parameters
variations (F and PS), in a period of 10 min. Each value in
the graphic is the arithmetic average over three executions.
A death in any test represented a loss of -100 (negative
gain), because 100 is the Jiva’s maximum initial general
vital condition. E.g., for PS = 96 and F = 6, the gain of -100
indicates that the Jiva has died in the three tests.

Theoretically, the larger is PS and F, the larger should be
the gain in general vital condition of the Jiva. But, this
expectation was disproved by our experiment.

Fig. 13. Gain in the general vital condition of the Jiva for selected
parameters variations (F and PS).

Fig. 12. Evoked performance of the proposed algorithm subject to
selected parameters variations (F and PS).

358

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

When analyzing the average gains for variations in PS,
say for PS = 96, we observed an average gain of 29.8 points
in the general vital condition. For PS = 192, we have the
greater standard deviation, with the best and the worst
values, resulting in an average gain of 69.28 points for the
GVC. For PS = 384, we have an average gain of 32.15
points for the Jiva GVC. Then, the best value for PS is 192.

When analyzing the average gain for variations in F, say
for F = 2 we observed an average gain of 47.48 points; for F
= 4, we have an average gain of 71.16 points; and, for F = 6,
we have an average gain of -10.49. Based on these results,
we conclude that the best value for F is 4.

Overall, the best parameter combination, considering the
synergy among them was PS = 92 and F = 2.

These results are interesting because they are counter-
intuitive. When F grows, the Jiva can see more steps in the
future but, this fact does not take into account the immediate
cost of realizing the specific action. This action, even if it
produces the best gain in long term, may lead the Jiva to
situations where the short-term cost is very large, causing its
death. This elucidates why the best configuration uses small
values for F (i.e. F= 2) and the best average value for F
(i.e. F= 4) is not the greater one.

C. Compromise between Intelligence and Performance

Increasing values of PS in the experiments (e.g. PS = 384)
also do not help, because the Jiva “thinks” much more
before acting, consequently, becoming too slow in such a
dynamic world.

The parameters configuration PS = 92 and F = 2 was
found to be the best compromise of parameters for Jiva’s
adaptability. In addition to establishing this compromise,
regarding computational performance, PS = 92 and for F = 2
is also the best option (as shown in Figure 8).

V. CONCLUSION

This paper introduced the Vidya game and put forward a
particular autonomous intelligent agent, the Jiva. It is an
artificial living being capable to take non-monotonic
behavioral decisions and learning by self-analyzing its own
behavior in the world. The game also offers a new player-
character interaction model, where the Jivas are not fully
controlled by the player.

Computer games are continuously requiring good
artificial intelligent agents, and the Jiva’s AI module intends
to contribute towards this demand, especially at modeling
the Jiva’s intelligence through Evolutionary Computation.

The use of Genetic Algorithms here proved to be a good
choice because not only it produces good results in
improving Jiva’s intelligence (which was assessed through
simulations on the Jiva’s adaptability), but also the
computational performance was acceptable in supporting
agents decision processes.

Regarding computation performance, we have noticed
that processing time increased almost linearly with the

problem size, namely, increase of PS and F parameters. In
the worst case, the algorithm did not exceeded 600ms of
processing time for one decision step – which is acceptable
given de relative complexity of the environment.

Regarding intelligence performance, the results were also
very interesting. We have learned about tradeoffs in
increasing or decreasing the population size of the AG
according to future steps in the inner actions simulations.
We noticed that not too many future steps in the inner
actions simulations is favorable towards the game
objectives. That is, the fastest the Jiva thinks the better.

Finally, the Jiva’s adaptability results due to parameter
setting were also useful in determining the best
configuration that corresponds to a compromise between
computational intelligence and performance.

We left as future works the following tasks:
To reuse Jiva’s intelligence in other computer games

and game scenarios;
To analyze emergent behaviors of Jivas societies;
To study more complex ecosystems and societies

behaviors using the proposed environment;
To tackle uncertainties due occluded perception;
To program Vidya in faster programming languages,

such as C++, for higher performances.

ACKNOWLEDGMENT

This work was partially sponsored by CNPq, the Brazilian
federal agency that supports scientific and technological
development, under grant CT-INFO 31/2004 – PDPG-TI.

REFERENCES

[1] S. Russell and P. Norving, Artificial Intelligence: a modern approach.
New Jersey: Prentice-Hall, 1995.

[2] A. Nareyek, “AI in computer games,” in Queue, Game Development:
Serious Business, Serious Coding, vol. 1, issue 10, ACM Press, New
York, 2004.

[3] B. C. Bridger and C. S. Groskopf, “Fundamentals of artificial
intelligence in computer games,” Proceedings of the 38th annual on
Southeast regional conference, ACM Press, Clemson, South Carolina,
2000.

[4] J.E. Laird and M. van Lent, "Interactive Computer Games: Human-
Level AI’s Killer Application," in Proc. Nat’l Conf. A.I., AAAI Press,
Menlo Park, Calif., 2000.

[5] Z. Michalewicz and M. Michalewicz, “Evolutionary computation

techniques and their applications,” in IEEE International Conference
on Intelligent Processing Systems, 1997.

[6] D. E. Goldberg, Genetic algorithms in search, optimization, and
machine learning. New York: Addison-Wesley, 1989.

[7] L. Nang and K. Matsuo, “A survey on the parallel genetic algorithms,”
in JSICE, 1994.

[8] Z. Jinghui, “Comparison of Performance between Different Selection
Strategies on Simple Genetic Algorithms,” in CIMCA, vol. 2, 2005,
pp. 1115 – 1121.

[9] C. Crowford, The art of computer game design. Washington State
University, 1982.

[10] Sun Microsystems. Java 2 Platform, Standard Edition. Available:
http://java.sun.com/javase/index.jsp (30/10/2006).

[11] K. Fukushima, “Recognition of occluded patterns: a neural network
model,” in IJCNN, 2000.

[12] J. E. Laird, “Using computer game to develop advanced AI,” in
Computer, vol. 34, issue 7, 2001, pp. 70-75.

359

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

