
Abstract—Vidya is a strategy computer game, god-style, that 
can be seen as a rich environment where virtual beings 
compete among themselves for natural resources and strive 
within the artificial ecosystem. Although in this game the 
player cannot directly control the intelligent agents, he can give 
some intuitions to them. Together with these intuitions the 
agents, called Jivas – the most developed species of the 
ecosystem, devise actions through evolutionary computation. 
The game allows also the observation of all interactions among 
the various beings inhabiting Vidya. Interactions happen in a 
quasi-autonomous manner which grants the game with an 
interesting dynamics. The evolved Jiva’s intelligence, which 
build-up during the game, can be reused in other game 
scenarios. This work might help on further understanding of 
some emergent autonomous behaviors and parameterization of 
intelligent agents that live in closely coupled ecosystems. 
 Keywords: Computational Intelligence, God Game, Vidya, 
Evolutionary Computation, Autonomous Behavior.  

I. INTRODUCTION

VIDYA is a strategy computer game, posed as an 
environment where virtual beings compete for available 
natural resources of an ecosystem. Among many types of 
beings that inhabit the virtual world, there is a special one 
called Jiva. They are intelligent agents designed to be 
autonomous and survive against all the odds. In the Vidya
game, the player is invited to be the Jivas’ clan Deva (i.e.
their god). That is, the one who provides guidance to 
selected clan members. These instructions are not provided 
not in fine details and appear in the Jiva’s mind as intuitions. 
They are referred in the game as vidyas, which are useful for 
helping the Jivas to take their own decisions. Due to their 
“autonomy”, Jivas are capable of deciding which actions to 
perform for various situations in the world regardless of 
receiving any vidya provided by player. 
 Artificial Intelligence (AI) techniques [1] are heavily used 
in computer games [2]. They are today one of the main 
factors of success or failure of any non-casual game. Two 
main factors contribute to this in electronic games. First, 
following the appearance of graphical accelerator boards, 
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much of central processing potential became available for 
AI computations. Second, newer games are continuously 
required to present greater degrees of realism [3], [4]. The 
realism referred here applies not only in the graphical design 
and physical modeling of the game, but also in the evoked  
behavior of the agent 

This means that a good non-casual game that explores 
computational intelligence not only has to be playful, but 
has to be aesthetically well cared-off as well; desirably an 
even balance should be obtained between these two 
ingredients. 

In the Vidya game the algorithms are written in a way that 
intelligent behavior is at the center of the game’s processing 
load, especially when controlling the behavior of the Jivas.
There are others agents in the game, namely, animals like 
sheep, wolfs, cows, that express non-monotonic behavior. 
These agents’ behaviors are solely reactive processes. In 
other words, for these lower beings of Vidya, behaviors are 
state-to-actions static mappings, without evolution. As 
opposed to that, Jivas’ intelligence evolves thru time and 
increases their knowledge about the world. They 
autonomously learn by their own experience as well as 
godly received inspiration (i.e. the vidyas provided by the 
player). This happens because all Jivas learn by self-
analyzing their own behavior, evaluating whether a given 
action at a specific time was appropriate. In the long run, 
this might help gathering new insights for Evolutionary 
Computation [5]. 
 Apart from the ludic side of Vidya, the result of the 
intelligence modeling of Jiva is the creation of evolutionary 
intelligent agents that act and learn in a quasi-autonomous 
way.  Because of Vidya modular construction of interacting 
characters, in the future it could be adapted to be a 
simulation environment (i.e. a test-bed) to help on the 
understanding of other social beings’ behaviors. 

II. INTELLIGENT TECHNIQUES UTILIZED

 Genetic Algorithm (GA) is an intelligent technique widely 
used for performing complex search and optimization 
problems based on principles of natural evolution [6], [7]. 
Population, chromosomes, genes, fitness, reproduction, 
offspring, and mutation are important concepts brought from 
Genetics and Nature straight into this technique. 
 The Population is a set of individuals (i.e. chromosomes), 
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here possible solutions for the Jiva’s decisions. The fitness 
function calculates a value used to classify how good an 
individual is according to some given criterion. Selection,  
reproduction and mutation are GA operators applied directly 
on the population to generate a new one. This results in an 
effective search system in the input space (i.e. Jiva’s world). 

In GA possible solutions for the problem at hand are 
individual chromosomes, which are composed of relevant 
characteristics that are coded as their genes. An initial 
population of individuals, i.e. set of chromosomes, is 
randomly generated. After being classified by some fitness 
criterion, they will evolve and guide de search process to an 
optimal solution for the problem. After fitness value 
calculation, pairs of individuals, selected due to methods 
such as the Roulette Wheel [8] or the Tournament [8], have 
their genes crossed-over. Following that their chromosomes 
are combined to generate a new individual. At this time, it’s 
possible to introduce a random operator, i.e. mutation. This 
avoids premature convergence by modifications of one or 
more gene values of that new individual. Crossover and 
mutation will happen until a new population is generated. 
Figure 1 illustrates all mentioned GA steps. 

Fig. 1.  Overview of all Genetic Algorithm steps. 

Finding a good solution to a problem can be a very time 
consuming operation, especially whether one tries to explore 
the entire solutions surface. GA is capable of finding an 
answer as good as needed by executing sufficiently the 
above mentioned cycle. Note that for every cycle, there is 
one best individual in the current population. Thus, as soon 
as there is a need for the algorithm to stop (e.g. the user 
demands an action to be taken in the game), a non-random 
candidate solution – suitable for the problem – is readily 
offered by the GA. It is important to be noticed that in 
general GA does not take many cycles to find a reasonable 
solution. 

III. VIDYA

A. The Vidya Game 

Vidya is a single-player strategy-god game [9] game that 
includes AI and a new player-character interaction model. 
Vidya is also a test-bed for investigations that aims at 
advancing development of autonomous intelligent agent 
through Evolutionary Computing. 

The intelligent decision module of Vidya agents was 
planned to be used in other games, mainly in characters that 

need more autonomy, agents of ecosystem simulations, or 
even in studies of emergent social behaviors. 

The Vidya game environment is shared by many types of 
beings (as shown Figure 2) that compete for available 
natural resources, sometimes not abundant. The main 
characters in this environment are the Jivas, they are 
autonomous intelligent agents that are endowed with 
evolutionary properties. Clan is the social unit of Jivas.

The player performs the role of a clan’s Deva and may 
instruct the Jivas of one clan, by helping them to survive in 
the game world. This is not an easy task, especially because 
Jivas are autonomous beings and can choose to follow the 
players instruction – the vidyas, or simply choose to ignore 
the, so-perceived, “divine” intuition.  

 Fig. 2.  Screen-shot of the game world, showing the Jiva (at upper-center) 
and other beings: grass, rock, fox, cow, tree and a dead-fox.  

B. The Vidya Software 

Vidya was completely developed using Java language 
[10]. Java is easy for programming, has plenty of  
Application Programming Interfaces (APIs) already 
implemented for games and is Object-Oriented (OO), which 
makes modeling much easier. The main concern regarding 
Java is its notorious not-so-good performance when 
compared to other programming languages, like C and C++. 
Figure 3 shows the high level architecture of the game. 

Fig. 3.  High-level software architecture of the Vidya game. 
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The Listeners module tackles all player input, generating 
events that, sometimes exchange screens, change the game 
state (delegated by GameScreen screen). Events are still 
generated to control the Sound Player.

The Resources repository is a set of image and sound files 
that are accessed through Resources agent. The Screens and 
Sound Player modules access (via Resources agent) image 
and sound resources, respectively. 

Inside the Game State module we programmed the game 
motor, the world and its objects, on which we find the Jiva,
with its intelligent decision module. 

C. The Jiva’s Intelligent Decision Module 

Jiva (and other beings inhabiting the game world) follows 
the agent model. Specifically, Jiva is an autonomous 
intelligent agent, because it is capable of taking intelligent 
decisions in an independent way. 

Like all agents, Jiva perceives the environment, performs 
an inner processing in order to select a good action and act 
on the environment. The Jiva’s perception is partial, that is, 
it does not perceive the whole environment, but only a 
variable (smaller) part of it. 

It is easy deduce that the basic problem of the Jiva is to 
perform well on the environment for a given limited 
perception. What they do is to minimize a cost function (or 
maximize a gain function). Jiva’s decisions for actions 
might be seen as control operations that intend to benefit 
from the environment in order to create ideal conditions for 
its own survival.  

The task of the Jiva’s intelligent decision module is to be 
responsible for selecting (or deciding) the best action to be 
performed by the Jiva’s agent. This action selection is then 
realized using GA. Actions are single-mapped to individuals 
of the population, which is a subset of the available actions. 

Jiva has a very large set of available actions that can be 
performed. The selection of the best one can be very time 
consuming if traditional techniques are used. With GA we 
narrow down the search space and the choices converge 
towards the best action promptly. This process produces a 
good candidate solution even at few initial (GA) 
generations.  

Jiva perceives the world as a set of objects that are inside 
its perception square. This perception limit depends directly 
on Jiva’s vitality. In the beginning of the game, the Jiva has 
the maximum vitality, hence perception level. As time goes 
by it start losing its perception accordingly to the decay of 
vitality. Jiva’s vitality can be interpreted as the remaining 
life time of the Jiva. In all this could be interpreted as aging. 

The perception square of the Jiva defines a set of cells 
(grid) that Jivas can perceive. These cells also define the 
complete possible future destinations for the Jiva (i.e. all  
possible positions that the Jiva can occupy at the next time 
step). Figure 4 shows the perception square of the Jiva, the 
perceived objects and the cells with in the perception square. 

The Jiva’s perception is composed by a set of world 

objects. Each object in the perception is characterized by its 
type and positioning in relation to the Jiva’s own position. 

In the present work, the Jiva is able to perceive occluded 
objects, that is, it can see all objects that are inside its 
perception square, even whether some objects are behind 
other objects. Uncertainties caused by occlusion of objects is 
an interesting topic [11], however, we left it for future work. 

Jiva’s agent, after it has perceived the environment and 
created internal representation for every object within its 
perception square, will select a good action for that 
perception. An action is defined as the destination cell to 
which the Jiva will move to. So, we characterize an action 
by a coordinate pair (x, y), meaning that the Jiva will move 
to that position in the next time step, as shown in Figure 5. 

Fig. 5.  Destination cell to where the Jiva possibly will move. Observe 
that there is a cell selected with a fruit on it; the Jiva may want to eat it.

Fig. 4.  Screen-shot of the game world, showing the perception square 
of a Jiva. The objects inside the square are being perceived (a water 
font, a small plant, a dead tree and a tree). The small squares that 
compose the perception are the perception cells. Outside of the 
perception square, in the bottom of image, a wolf (predator) is hunting a 
cow (prey). 
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The semantic value associated to an action depends on the 
object that is occupying the destination cell. For example, if 
a Jiva migrate to a cell where there is a fruit on it  (Figure 
5), the semantic value associated to this action is “eating the 
fruit”. Alternatively, if in the destination cell there is a wolf, 
the semantic effect is “hunting the wolf”. If the destination 
cell is empty (no object on it), the semantic value of the 
action is just “keep walking to another destination”. For 
each object type in the destination cell there is a different 
semantic value associated. For some objects, the semantic 
value associated may be the same (e.g. sheep and cow). 

The semantic implications of actions by the Jiva are not 
only dependent on the objects that are occupying the 
destination cells but are also dependent on its vital function 
to each being inhabiting Vidya. E.g., a Jiva eating a fruit will 
increase a bit its vitality and energy, while eating a dead 
wolf will increase its energy and decreases its vitality.  

D. Solving the Problem through Evolutionary Computing 

Given the time constraints of the game, a unique GA 
instance might not solve the problem of selecting the best 
action for all possible situations. Notice that a good action 
for a given perception may not (probably will not) be good 
to another perception. Each different perception is a 
different problem, and then different GA instances have to 
be created for each one of these different perceptions. The 
Jiva’s intelligent decision module has a structure that maps 
perceptions on instances of GAs (on a one-to-one mapping). 

Each GA instance has the role of selecting the best action 
for a given perception, following the natural selection 
method that characterizes a GA. This includes the 
evaluation, crossing and mutation of individuals. 

When evaluating an action, the GA might care about not 
only its immediate cost, but infer on the long term cost for it. 
We will refer to this long term evaluation as an evaluation 
“F steps in the future”, where F is the number of steps that 
the GA will see in the future to estimate a long term cost. 

The long term cost can be inferred because the Jiva’s
intelligent decision module can simulate the progress of an 
action in the future. Of course, the estimated long term cost 
have to be confronted with Jiva’s experience, that is, the real 
cost obtained by interacting with the environment.  

The path of a Jiva in the game world is internally 
represented as a states machine (Figure 6), where each state 
is a different perception configuration of the Jiva’s agent. 

Associated to each state (si) there is an intelligent 
processing element, that is an instance of a GA (GAi). The 
task of this element is selecting the best action (aij) for the 
state. Due a performed action, the Jiva migrate to another 
position in the game world and has a new perception, for 
which there is another GA instance to solve it. 

When the Jiva reaches a perception state, it has a set of 
positions to move to (the set of possible actions). 
Calculating the cost to go for each destination cell is an 
expensive task, because the number of possible destination 

cells is large. For example, if we have a perception square of 
20 × 20 cells and we would like to know its cost 3 steps in 
the future (F = 3), 400 cells would be evaluated, having for 
each cell a triple analysis (the 3 steps in the future). After 
this task we would still have to perform a comparative 
analysis between these 400 cells to choose one.

Using Genetic Algorithms, we have a convergent method 
(converging towards the best solution) with a reasonably 
smaller search space. Supposing a GA with a population size 
of 40 individuals, for the problem described in the last 
paragraph, we have a mean reduction of 90% in the search. 
Figure 7 shows the initial spatial distribution of the 
population for a given perception of the Jiva.

Located in a given state, the Jiva invokes the associated 
GA instance to suggest an action. Each time this state is 
reached, the GA instance advances one generation. In the 
first generation we already have a converging solution. This 
advance is governed by the well known GA sequence of 
tasks: evaluating, crossing-over and mutating individuals. 

Before all, evaluation of the population is done for 
selecting the best action that will be performed by the Jiva.
The evaluation phase only is completed when the action is 
performed and the Jiva has a real immediate cost obtained 
by experience. So, the evaluation phase is divided in two 
parts: before the selection and after the action. 

Before the selection, each action is internally simulated F
steps in the future. The action that has the best qualification 
in the simulation is then selected. Figure 8 shows the 
simulation algorithm for one action. After obtaining the 
qualification (i.e. inferred cost) for each action, the action 
that has the greater qualification will be selected and 
performed by the Jiva.

Fig. 6.  State machine that represents the path (series of decisions) of a 
Jiva in the game world throughout time. Each state is a different 
perception configuration at a given time, for which there is one GA 
instance that will select the best action for that state at that particular 
time. 
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For the time being, Jiva’s experience is out of scene. 

Now, the winner action, after its realization, will be 
evaluated again. The immediate cost obtained by the Jiva in 
realizing the recent action will be summed to the 
qualification of the action, re-qualifying it. After this post-
evaluation, the winner action may keep on being the best 
one, or may lose the first position to another action best 
qualified. So, this post-evaluation tries to correct inference 
errors in the simulation, re-ordering, in terms of 
qualification, the individuals of the population. These 
individuals are then ready to crossover and mutation phase. 

An action for the Jiva is a move to a destination cell. So, 
actions are represented by a coordinate pair (x, y), indicating 
this destination. 

The selection method used to choose pair of actions that 
will cross is the Roulette Wheel selection method [8]. Pairs 
of actions are selected and crossed, generating new actions 
that will compose the next generation of the population. 

The mutation operator is also applied to the population. 
The mutation probability was arbitrarily set to 1/32, that is, 
in average, for each 32 actions 1 is mutated. 

The use of GA in the Jiva’s intelligent decision module 
aims to reduce considerably the search space for selecting 
actions in a coherent manner using natural selection 
principles and generating good solution already in the initial 
generations. 

Each time a state is reached, a new generation of better 
new actions replaces the old ones in the population. The old 
actions are evaluated considering their probable long term 
qualification F steps in the future, where F is a parameter of 
the game. This is achieved through progress simulations, 
where the selected action (that has the best qualification) is 
re-qualified by its immediate cost after realization. So, these 
old actions are submitted to crossover and mutation 
operations, resulting in a new generation of actions better 
qualified. 

In the game industry there are strong indications that 
computer games will became more and more complex [12]; 
this can be seen in the last generation of computer games. 
This growing complexity has turned even hard the task of 
explicitly programming agent behaviors (in the cases of 
purely reactive agents). Even when AI is evolved, it is hard 
to obtaining a representative knowledge database for a 
specific game world, this because the number of different 
possible situations is very large due to action produced by 
players that are, at least in first analysis, non-deterministic. 
The use of adaptive agents capable to learn in new situations 
is a good way to overcome this difficulty.  

The Jiva’s agent and its intelligent decision module is an 
example of efficient use of Evolutionary Computing in 
computer games, specifically in the behaviors of their 
autonomous agents.  The produced intelligent decision 
module can be hypothetically reused in other computer 
games and in autonomous agents that need to be adaptive, 
that is, in various game worlds where learn abilities in new 
situations will be required. 

Fig. 8.  Algorithm for the simulation of an action F steps in the future. 

Fig. 7.  Initial spatial distribution of the population for a given 
perception. We can see all cells that are inside the 41×41 perception 
area, the population distribution (168 individuals, that is, 10% of the 
total search space, in light gray cells) and the destination cell (dark gray 
cell), selected through an analytic simulation considering 5 steps in the 
future. The decision interpretation is: the Jiva is going to hunt the cow. 
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E. A New Player-Character Interaction Model 

As mentioned before, the main character in the Vidya
game is the Jiva – the focal point between player and game. 

Traditionally, interaction between player and characters in 
a computer game happens in a very direct way. Through 
controls, the player can operate almost completely the 
behavior of the characters (also referenced as avatars).

In the Vidya game, the player is a clan’s Deva, whose role 
is to be the mentor of the clan and to promote survival in the 
game world. This is a hard task, because Jivas are intelligent 
agents, and can choose actions to perform, despite 
suggestions of the Deva  (i.e. the player). 

The not-detailed instructions provided by the player given 
to the Jivas’ clan (individually for each character) are 
known in the Vidya game as vidyas. A vidya appears inside 
of each Jiva as one “intuition”. The goal of the player should 
be to provide good vidyas to the Jivas that might help them 
to outlive others, Figures 9, 10 and 11 are examples of that. 

Fig. 9. Player selecting a clan’s Jiva. By selecting a Jiva of his clan, the 
player can perform the following tasks: (i) provide vidya for this Jiva; (ii) 
show/hide perception area of this Jiva; (iii) show/hide the destination cell. 

Fig. 10.  Player providing vidya for a Jiva. In this situation, the player has to 
select a cell inside the perception area that will be considered in the Jiva’s
decision own decision. 

Fig. 11.  Possible targets considered by the Jiva in its decisions. 

When the player intercepts the Jiva to provide vidya, the 
game pauses and the player can suggest a destination cell 
that the Jiva may follow. Among others possible destination 
cells, which are the individuals of the population of the GA 
instance for that particular perception, the provided vidya
will selectively compete for the best qualification. The most 
qualified ones will pass their characteristics for the next 
generation. If the action suggested by the player is a good 
action, it will help the long term learning of the Jiva – this is 
the main goal of Vidya.

IV. EXPERIMENTS AND RESULTS

The experiments included in this section were used to 
evaluate the intelligent evolutionary algorithm proposed in 
the last section. Basically, this algorithm aims at 
implementing the Jiva’s intelligent behavior, which is based 
on Genetic Algorithms. In the proposed algorithm all Jiva’s
actions are mapped on individuals of a given population. 
The feature of each individual is obtained through 
simulation of future action. Then, the so-called best actions 
will pass on its characteristics to the next generation. 

The focus of all experiments is at computational 
performance evaluation of the algorithm as an indirect 
method for evaluating intelligence. The idea is to assess 
intelligence through analysis of the adaptability of the Jiva.

We can identify two main parameters within the 
algorithm: (i) the GA’s population size – PS and (ii) the 
number of future steps that the simulations can see – F. We 
varied these two parameters to observe the algorithm 
behavior according to possible actions. 

The set of individuals, for which the GA’s population is a 
subset, has a size equals to the Jiva’s perceptive area. We 
assumed a constant perception area of 961 cells (31 × 31 
square) in these experiments, so that they can be compared 
among themselves. The PS values were assumed to be 10%, 
20% and 40% of all possible actions, that is, PS = 96, PS =
192 and PS = 384, respectively. The F values were assumed 
to be F = 2, F = 4 and F = 6. 
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Absolute values expressed in the results are not so 
relevant here. Actually, the experiments propose a 
comparative analysis of the same algorithm with different 
values assumed by parameters PS and F. They show the best 
parameter configuration, which maximizes the Jiva’s
performance in both aspects: computation time and 
intelligent levels.  

The hardware used was a entry-level personal computer 
AMD Duron™ 1.6 GHz, with mere 352MB of RAM. 

A. Performance of the Algorithm  

The graphic of Figure 12 shows the performance, in 
milliseconds, of the proposed algorithm for the selected 
parameters; that is, variations for F (steps into the future) 
and PS (population size of the GA). 
 The three lines shown in Figure 12 are trends evoked by 
the algorithm related to its computational performance. For 
every trend, processing time augment as function of F. The 
observed growth is practically linear. Each point in the 
graphic was obtained by an arithmetic average over 100 
executions.

In order to obtain this data we have to add extra routines 
to the main code. However, the observed results only refer 
to the examined code. 

This algorithm behavior appears to be predictable with 
respect of processing load. The differences in the measured 
values across populations of different sizes, for the same 
values of F, seem to be predictable too and present an 
almost linear growth trend. 

The absolute values obtained in the experiments also 
reveal that the overall computational performance of the 
algorithm is not large. For the tested cases, it did not exceed 
600ms, which is perfectly acceptable in real game problems 
that require short response time. 

B. Jiva’s Intelligence Measurement 

Measuring intelligence is difficult. To do it, we have used 
an indirect method that, in our case (the Jiva’s intelligence 

decision module) was to evaluate the gain (that can be 
positive or negative) obtained by the Jiva, during a period of 
time interacting with the environment. That is, we are using 
the Jiva’s adaptation capability in the Vidya game to 
measure the algorithm performance in providing intelligent 
behavior. 

The most relevant Jiva’s features, the ones that interested 
most for evaluation of the Jiva’s adaptability, were: 
‘vitality’, ‘hydration’ and ‘energy’. A weighed average of 
these values, which can be obtained instantaneously from 
every Jiva, produces what we refer as ‘general vital 
condition’ (GVC); this value changes thru time. The weight 
for the general vital condition, assumed for vitality, 
hydration and energy were 50%, 30% and 20%, 
respectively.

If we measure the gain obtained in the general vital 
condition by the Jiva after a period of time, we can state that 
this value represents approximately the Jiva’s increased 
capability for surviving. Moreover, this also means how well 
it has performed to obtain additional resources for its own 
survival. Note that in our experiments we do not evaluate 
the social behavior of the Jivas, which probably is 
qualitatively superior, but only the Jiva’s individual 
behavior (i.e. relating to its individual survival). The 
analysis of emergent social behavior of the Jivas is left as a 
future work. 

The graphic of Figure 13 shows the gain in general vital 
condition obtained by a Jiva for the selected parameters 
variations (F and PS), in a period of 10 min. Each value in 
the graphic is the arithmetic average over three executions. 
A death in any test represented a loss of -100 (negative 
gain), because 100 is the Jiva’s maximum initial general 
vital condition. E.g., for PS = 96 and F = 6, the gain of -100 
indicates that the Jiva has died in the three tests. 

Theoretically, the larger is PS and F, the larger should be 
the gain in general vital condition of the Jiva. But, this 
expectation was disproved by our experiment. 

Fig. 13.  Gain in the general vital condition of the Jiva for selected 
parameters variations (F and PS).

Fig. 12.  Evoked performance of the proposed algorithm subject to 
selected parameters variations (F and PS).
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When analyzing the average gains for variations in PS,
say for PS = 96, we observed an average gain of 29.8 points 
in the general vital condition. For PS = 192, we have the 
greater standard deviation, with the best and the worst 
values, resulting in an average gain of 69.28 points for the 
GVC. For PS = 384, we have an average gain of 32.15 
points for the Jiva GVC. Then, the best value for PS  is 192. 

When analyzing the average gain for variations in F, say 
for F = 2 we observed an average gain of 47.48 points; for F
= 4, we have an average gain of 71.16 points; and, for F = 6, 
we have an average gain of -10.49. Based on these results, 
we conclude that the best value for F is 4. 

Overall, the best parameter combination, considering the 
synergy among them was PS = 92 and F = 2. 

These results are interesting because they are counter-
intuitive. When F grows, the Jiva can see more steps in the 
future but, this fact does not take into account the immediate 
cost of realizing the specific action. This action, even if it 
produces the best gain in long term, may lead the Jiva to 
situations where the short-term cost is very large, causing its 
death. This elucidates why the best configuration uses small 
values for F (i.e. F= 2) and  the best average value for F
(i.e. F= 4) is not the greater one. 

C. Compromise between Intelligence and Performance 

Increasing values of PS in the experiments (e.g. PS = 384) 
also do not help, because the Jiva “thinks” much more 
before acting, consequently, becoming too slow in such a 
dynamic world. 

The parameters configuration PS = 92 and F = 2 was 
found to be the best compromise of parameters for Jiva’s
adaptability. In addition to establishing this compromise, 
regarding computational performance, PS = 92 and for F = 2 
is also the best option (as shown in Figure 8). 

V. CONCLUSION

This paper introduced the Vidya game and put forward a 
particular autonomous intelligent agent, the Jiva. It is an 
artificial living being capable to take non-monotonic 
behavioral decisions and learning by self-analyzing its own 
behavior in the world. The game also offers a new player-
character interaction model, where the Jivas are not fully 
controlled by the player. 

Computer games are continuously requiring good  
artificial intelligent agents, and the Jiva’s AI module intends 
to contribute towards this demand, especially at modeling 
the Jiva’s intelligence through Evolutionary Computation. 

The use of Genetic Algorithms here proved to be a good 
choice because not only it produces good results in 
improving Jiva’s intelligence (which was assessed through 
simulations on the Jiva’s adaptability), but also the 
computational performance was acceptable in supporting 
agents decision processes. 

Regarding computation performance, we have noticed 
that processing time increased almost linearly with the 

problem size, namely, increase of PS and F parameters.  In 
the worst case, the algorithm did not exceeded 600ms of 
processing time for one decision step – which is acceptable 
given de relative complexity of the environment. 

Regarding intelligence performance, the results were also 
very interesting. We have learned about tradeoffs in 
increasing or decreasing the population size of the AG 
according to future steps in the inner actions simulations. 
We noticed that not too many future steps in the inner 
actions simulations is favorable towards the game 
objectives. That is, the fastest the Jiva thinks the better.  

Finally, the Jiva’s adaptability results due to parameter 
setting were also useful in determining the best 
configuration that corresponds to a compromise between 
computational intelligence and performance.  

We left as future works the following tasks: 
To reuse Jiva’s intelligence in other computer games 

and game scenarios; 
To analyze emergent behaviors of Jivas societies; 
To study more complex ecosystems and societies 

behaviors using the proposed environment; 
To tackle uncertainties due occluded perception; 
To program Vidya in faster programming languages, 

such as C++, for higher performances. 
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