
  

  

Abstract—Coevolutionary techniques have been proven to be 
effective in evolving solutions to many game related problems, 
with successful applications in many complex chess-like games 
like Othello, Checkers and Western Chess. This paper explores 
the application of coevolutionary models to learn Chinese Chess 
strategies. The proposed Chinese Chess engine uses alpha-beta 
search algorithm, quiescence search and move ordering. Three 
different models are studied: single-population competitive, host-
parasite competitive and cooperative coevolutionary models.  A 
modified alpha-beta algorithm is also developed for performance 
evaluation and an archiving mechanism is implemented to handle 
intransitive behaviour. Interesting traits are revealed when the 
coevolution models are simulated under different settings - with 
and without opening book. Results show that the coevolved 
players can perform relatively well, with the cooperative model 
being best for finding good players under random strategy 
initialization and the host-parasite model being best for the case 
when strategies are initialized with a good set of starting seeds.  
    Keywords: Coevolution, Evolutionary Algorithms, Chinese 
Chess, Game Strategies, Opening Book  

I. INTRODUCTION 
Chinese Chess [1] is one of the most widely played strategy 
board games worldwide. A two-player, zero-sum game with a 
complexity level similar to Western Chess [1], Chinese Chess 
is beginning to gain popularity among researchers in the field 
of Artificial Intelligence. With the defeat of World Chess 
Champion, Garry Kasporov, by IBM’s “Deep Blue” in 1997, 
it is believed that Chinese Chess will be the next chess-like 
game which a program will defeat a human top player. Even 
so, computer Chinese Chess [2] has yet to reach a level that is 
on par with Grandmasters. Existing research is mainly 
centered on incrementing search depths with efficient pruning 
strategies, preprogramming larger opening, mid-game and 
endgame databases and using more learning heuristics, all of 
which entails expert knowledge. Such methods simply 
produce programs that play the game in a way human experts 
think is best and this might stifle the computer’s potential to 
play even better games. It will be more interesting to allow the 
computer player to learn effective chess strategies freely as it 
not only removes any dependency on expert knowledge, but is 
also able to reveal certain traits of effective strategies that no 
known mathematical model is able to unveil as yet. In this 
aspect, evolutionary approaches have been applied to discover 
chess-like game strategies by virtue of their ability to explore 
complex problems [3] by selecting optimal solutions through 
natural selection and reproduction, similar to how living 
organisms evolved through a competitive process where the 
weaker perish and fittest survive. This process not only offers 
a viable means to find good solutions to complex problems, 
but is also able to do so with minimal expert knowledge. 

Coevolutionary algorithm [4] is a branch of Evolutionary 
Algorithm (EA) that is widely used to solve problems where 
an objective measure to guide the search process is extremely 
difficult to devise. Unlike most EAs, coevolutionary methods 
use a subjective instead of objective fitness function. Fitness 
of individuals is assessed via interaction with similar species 
within the population or with other species from one or more 
populations [5]. There are two main variants of coevolution: 
competitive and cooperative. In the prior, fitness of an agent is 
based on direct contest with other agents. In the latter, agents 
share the rewards and penalties of successes and failures [6]. 
Hillis’s seminal paper on coevolving sorting networks and 
data sets in a predator-prey model opened the research for 
competitive coevolution [7] while studies on cooperative 
coevolution was initiated by Potter and De Jong [8] when they 
developed a relatively general framework for static function 
optimization and neural network learning [9]. The research on 
coevolution in chess-like games dates back a decade ago, with 
one of the earlier works on the coevolution of backgammon 
strategy [10]. Fogel and Chellapilla [11] also used coevolution 
to evolve neural networks for playing Checkers. Their work 
was extended by Chong, Tan and White [12] to learn Othello 
strategies. In coevolving neural network for Go, Lubberts and 
Miikkulainen utilized a Symbiotic Adaptive Neuro-Evolution 
method [13] to evolve two populations that challenge each 
other [14]. In one of the first attempts to coevolve a Western 
Chess game, Fogel and his team also successfully applied 
evolutionary methods with three neural networks [15].  

In this paper, the application of coevolutionary models to 
discover Chinese Chess strategies is studied. While existing 
works hinge mostly on exploring competitive coevolutionary 
models [10]–[12], [14], [15], this paper also looks into the use 
of cooperative models. In total, three distinct models - the 
single-population competitive, host-parasite competitive and 
cooperative coevolutionary models are explored. A modified 
alpha-beta algorithm is developed for performance evaluation 
while an archiving mechanism is implemented to handle 
intransitive behaviour within the game. Simulation results 
reveal the relatively good performance of evolved players and 
interesting insights to the varied capability of each model in 
different scenarios. Organization of the paper is as follows: 
Section II presents the development of the Chinese Chess 
engine. Section III discusses the implementation of the various 
coevolution models. Section IV and V look at issues in 
performance evaluation and onset of intransitive phenomenon 
in the actual game play while Section VI focuses on the 
simulation results, observations and discussions. Section VII 
concludes the paper with a general summary and some 
possible future works.   
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II. DEVELOPING THE CHINESE CHESS ENGINE 

A. Representation 
The basic rules of Chinese Chess are straightforward and 

can be found easily on the internet1. Before embarking on the 
learning process, a Chinese Chess engine needs to be devised 
and tested to ensure that all piece movements and game rules 
are strictly adhered to and the program contains no logical bug 
that would otherwise be detrimental to the decision made by 
the computer player when intelligence is incorporated. The 
proposed engine is a simple program implementing basic rules 
of the game. The boardstate, denoted a 10 by 9 matrix (Fig.1), 
is the most important information that determines a player’s 
next move. The boardstate matrix represents the positions of 
all pieces on board, with a nonzero number assigned uniquely 
to each piece type. One player will have its pieces represented 
by the positive values of these numbers while the other by the 
negative equivalent. A “0” indicates an unoccupied position. 
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Chess Piece Piece Value 

King 6000 

Advisor 120 

Elephant 120 

Horse 270 

Rook 600 

Cannon 285 

Pawn 30  
Fig. 1. Boardstate matrix showing 

positions of all pieces at the start of game 
Fig. 2. Piece values used by the 

unevolved strategy 
 

From the boardstate matrix, two sources of information that 
ultimately guide the move decision are the piece and position 
values. The piece value is numerically assigned to each chess 
piece in accordance to its relative importance in the game. The 
values used by the unevolved strategy (Fig.2) in the program 
are adapted from Yen et al [1]. The position value is assigned 
to each piece at each possible position of the board based on 
the strategic advantage of capturing or moving a piece into 
that position. Each piece’s position values are represented by a 
unique Positional Value Table (PVT). The opponent’s PVT is 
simply a 180° rotation of the player’s PVT. Assessing the 
worth of a move is done via an evaluation function, based on 
the linear combination of both the player’s piece and position 
advantage. As piece advantage often plays a more important 
role, a positive (>1) weighting term is usually tagged to it. 

B.  Planning move decision 
The program uses an alpha-beta search algorithm [16] for 

searching the associated game tree of each board position to 
determine the next best move that the computer player should 
execute. It is essentially a tree searching technique that builds 
on the basis of the minimax algorithm. With efficient pruning 
[17], the alpha-beta search algorithm presents a much more 
effective method to obtain the next move in a much reduced 
computational time. The ply depth of search is set at 4 (looks 
two moves ahead for each player) for reasonable execution 
time. A move ordering mechanism is also employed to further 
 
1 Xiangqi Club. “CXQ Chinese Chess Rules”.  
< http://www.clubxiangqi.com/rules/ > 

reduce the computation time. At intermediate play, quiescence 
searching is implemented to reduce the “horizon effect” – 
inability of the computer player to “see” beyond the search 
window. Quiescence search performs selective exploration 
and Beal defined it as the idea of expanding the search just 
enough to avoid any tactical disruption [18]. While there can 
be many different forms of disruptions, the chess program 
effectively considers the immediate capture of pieces as the 
only form of tactical disruption for simplicity.  

C.  Program Testing and integration 
Through a user-friendly GUI (Fig.3) designed in Microsoft 

Visual C++ MFC Application Wizard, the chess engine was 
tested with human players of moderate standard to ensure an 
error free program. Integration of the engine was subsequently 
done to allow two computer players to play against each other. 

  

 
Fig. 3. GUI showing a typical midgame state 

III. COEVOLUTION IMPLEMENTATION 

A. Coevolution Representation 
The two types of parameters used for the simulations are (i) 

the piece values of all pieces and weight term attached to the 
piece advantage (Parameter Set A) and (ii) the piece values of 
all pieces and position values of all the powerful pieces (rook, 
cannon and horse) (Parameter Set B). Piece parameters of all 
chess pieces are represented with the exception of king, which 
has a non-evolvable value of 6000. Two distinct parameters 
are also assigned to pawn to capture the changes in its relative 
importance (e.g. value) before crossing river (pawnOne) and 
after crossing river (pawnTwo). Due to the symmetry of the 
PVT, a total of 50 position values will be evolved for each 
powerful piece. A binary-coded representation is adopted for 
coevolution. Piece values assume integer values from 1 to 
1023 (represented as 10-bit genes), while position values take 
on even integer numerals from -24 to 38 (represented as 5-bit 
genes). Binary tournament selection is used in combination 
with uniform crossover as well as a mutation operator with 
probability that is dependent on the bit position and generation 
number. An elitism scheme ensures that the best individual is 
kept in the population from time to time. To reduce chances of 
encountering premature convergence and also to encourage 
the search for multiple niches, a simple niching function is 
also implemented to preserve and maintain diversity in the 
population of chess players over the generations. 
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B. Competitive Fitness Sharing 
The notion of competitive fitness sharing was first proposed 

by Rosin and Belew [19] when they attempted to apply a new 
method of fitness sharing [3] to host-parasite coevolution. In 
the scheme, each parasite is treated as an independent resource 
to be shared by those hosts in the population that can defeat it. 
The purpose of such a scheme is to reward hosts that are able 
to defeat parasites few other hosts can defeat. This reduces the 
probability of discarding hosts that can only defeat a below-
average number of parasites but could, nonetheless, defeat 
powerful parasites. In coevolving Chinese Chess strategies, 
this concept of competitive fitness sharing is adapted for the 
single-population model. The general idea is to reward players 
that could defeat powerful opponents which few others in the 
population can defeat. For an individual xi the shared fitness 
value obtained for defeating another individual xj, is given by: 

 

              Fi,j = 
jN

1          (1) 

where Nj is the number of individuals that defeated xj in the 
round-robin competition. This equation well resembles the 
one proposed by Rosin and Belew. If individual xi happens to 
draw with xj, the shared fitness value obtained by xi is given 
by the new proposed equation: 
 

Fi,j =
jWjD NWND

D

,, ×+×
     (2)  

 

where D is the points awarded to each player for a draw game, 
W is the points awarded to the winning player when the game 
has a clear winner while jDN ,  and jWN ,  are the number of 

players that drew with and won player xj in the round-robin 
competition respectively. A player can thus also be rewarded 
for managing a draw with players that few others can draw or 
defeat. The shared fitness of an individual xi competing with 
an individual xj is thus summarized as follows: 
 

jN
1         , if xi defeats xj 

Fi,j =  
jWjD NWND

D

,, ×+×
 , if xi draws with xj   (3) 

  
0         , if xi loses to xj 

 

The total competitive shared fitness of an individual over 
all its competitors in the population would be given by: 

 

∑
≠∈ inXn

niF
,

,          (4) 

 

where X is the set of indices for all individuals. Tournament 
selection will then be conducted based on the shared fitness 
value obtained for each individual in the population instead of 
the original fitness value. 

C. Coevolution Models 
1) Single-Population Competitive Coevolution 

In the single-population coevolution model, a population of 
players engages in a round-robin competition with one another 
in each generation. Points are awarded after each game based 
on the following scheme: 2 points for the winning player, 1 

point for each player in a draw game and 0 point for the losing 
player. The subjective fitness of each player is then computed 
by the sum total of all the points obtained by competing with 
every other player in the competition.  

2) Host-parasite Competitive Coevolution 
In this model, two populations (host and parasite) of players 

evolve independently. Players from the host population will 
play against those from the parasite population and vice versa. 
The algorithm selects the 10 best parent players in the 
previous generation from each population and places them in 
the evaluation pool to compete with players in the opposing 
population (Fig.4).  

 
Fig. 4. Host-Parasite model showing evaluating pools 

 

In subjective fitness evaluation, two distinct point systems 
are formulated to evolve different traits in the two coevolving 
pools. Parasite players are heavily penalized for not winning a 
game while host players suffer huge penalties for losing one. 
Such a scheme signals to the parasite population that winning 
a game is paramount and to the host population that losing a 
game is detrimental. The assignment schemes developed for 
both the host and parasite populations are shown in Table I. 

 

TABLE I 
ASSIGNMENT SCHEME IN HOST-PARASITE MODEL 

Population Win Draw Lose 
Parasite 5 points 0 point 0 point 

Host 5 points 5 points 0 point 
  

The above schemes tend to drive parasite players towards 
developing strong offensive traits, while host players towards 
acquiring strong defensive traits. By presenting a recurrent 
pool of strong defensive players for the parasites and strong 
offensive players for the hosts, an ensuing arms race would 
accelerate the learning process and players would be able to 
improve faster and better under cross-population competition. 

3) Cooperative Coevolution 
In cooperative coevolution (Fig.5), a problem is solved by 

piecing together solutions of subproblems that define the main 
problem. Upon decomposition, each component is assigned to 
a unique subpopulation and evolved independently of other 
subpopulations. Since any given individual from a particular 
subpopulation denotes only a component of potential solution 
to the main problem, collaborators are selected from the other 
subpopulations to represent the remaining components. The 
individual is then combined with its collaborators to form the 
complete solution for fitness evaluation [20].  

In cooperatively coevolving Chinese Chess strategies, two 
subpopulations are used. Subpopulation 1 contains individuals 
representing the piece values while subpopulation 2 contains 
those representing the position values. The best strategy in the 
previous generation of each subpopulation is chosen as the 
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collaborator for the accompanying subpopulation. In the first 
generation, collaborators are chosen after a pre-initialization 
phase (Fig.6). After which, the sub-chromosome representing 
piece values of the best strategy is chosen as the collaborator 
for subpopulation 2 while that representing position values of 
the best strategy is likewise chosen to be the collaborator for 
subpopulation 1. Similarly, individuals are ranked subjectively 
based on how well they can cooperate with the collaborators. 

 
Fig. 5. Cooperative coevolution model 

  

 
Fig. 6. Obtaining the two subpopulations after pre-initialization 

 

In cooperative coevolution, pressure for improvement may 
not be as great as in the case of the host-parasite competitive 
coevolution model. Nevertheless, similar in spirit to the divide 
and conquer strategy, its attempt to split the complex problem 
into simpler subtasks to solve them separately might actually 
prove to be more effective in finding a good set of solutions. 

IV. PERFORMANCE MEASUREMENT 

A. Subjective versus Objective fitness 
During coevolution, the selection process is based on the 

relative performance of an individual against other members 
of the population. Such a performance measure is deemed to 
be a subjective performance measure. In general, Wiegand 
[20] defines four different types of measures: 
 
Definition 1: Objective measure 
A measurement of an individual is objective if the measure 
considers that individual independently from any other 
individuals, aside from scaling or normalization effects. 
 

Definition 2: Subjective measure 
A measurement of an individual is subjective if the measure 
does not consider that individual independently from other 
individuals.  

Definition 3: Internal measure 
A measurement of an individual is internal if the measure 
influences the course of evolution in some way. 
 

Definition 4: External measure 
A measurement of an individual is external if the measure 
does not influence the course of evolution in any way. 
 

From the definitions, it is clear that traditional EC adopts an 
objective internal measure to assess fitness while coevolution 
adopts a subjective internal measure. Whilst the subjective 
measure is useful for problems where a truly objective fitness 
measure is absent, there has to be a means of evaluating the 
performance of the best evolved individual ultimately. It is not 
suffice to conclude that the best evolved individual in the final 
generation is good if there is no objective measure to assess its 
performance. This will require an objective, external measure. 

B. Modified Alpha-beta Algorithm 
Evaluating the performance of the best evolved individual 

entails playing 200 games against the test player, which serves 
as the objective, external measure. The parameters2 of the test 
player are taken from [1]. In the original alpha-beta algorithm, 
the process of pruning has prevented the true minimax values 
(values as though the minimax algorithm has been used) of all 
the available next moves to be found, resulting in the inability 
to probabilistically pick the next move based on all the moves’ 
minimax values. This renders the algorithm inadequate to play 
200 non-deterministic games. While the minimax algorithm 
could allow for the introduction of stochasticity, it is however, 
also too computationally expensive to be implemented. Thus, 
alpha-beta algorithm is modified with the notion of pruning 
threshold (PT). The new algorithm will prune off a branch 
between a second and third level node (root node represents 
first level node) when the value passed back from the third 
level node is less that the α – PT value (instead of α value in 
the original algorithm). Figs. 7 and 8 depict the differences in 
pruning (indicated by dotted lines) using the alpha-beta and 
modified alpha-beta algorithm with PT = 4 respectively.  
 

 
Fig. 7. Tree structure subjected to alpha-beta pruning 

 

 
Fig. 8. Tree structure evaluated using modified alpha-beta algorithm 

 

The original alpha-beta algorithm will prune off the branch 
B-D (since value of B found so far is less than α), rendering 
node B unsuitable for move decision (since its true minimax 
 
2 The missing PVTs of the king, advisor and elephant in [1] are consequently 
filled up with the help of an advanced Chinese Chess player based on 
observations of the other PVTs 
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value is unknown). The modified alpha-beta search, however, 
does not prune off the B-D branch as the value passed back 
from H is within the PT limit of the α value. Thus, the 
minimax value of B represents its true minimax value, and can 
be used for move decision. The X-Z branch is, however, 
pruned in both cases. In the modified algorithm, the PT value 
is set to 4, with all moves (subjected to a maximum of 4) 
evaluated to be within the PT limit of the minimax value of 
the best move being given equal probability of being chosen. 
Overall, the modified alpha-beta algorithm presents an elegant 
way of introducing variations to the game in ways similar to 
how human plays it. This is because a move made by a human 
player is often a decision from a set of good moves. Unless a 
substantial amount of time is spent to analyze these moves, 
each of these possibly non-dominated moves will very likely 
be given an equal probability of being selected.  

V. INTRANSITIVE BEHAVIOUR 
The concept of intransitive superiority has been a central 

issue in coevolutionary failure [21]. An intransitive relation R 
occurs when aRb and bRc does not imply that aRc. In chess, it 
is not difficult to encounter such a situation. By definition, the 
superiority of players in chess is clearly not transitive [22]. 
Furthermore, if cRa also holds true, this is often known as a 
circularly superiority or dominance relation. One such classic 
example will be the “rock, scissors, paper” game. Existence of 
such intransitive relation in coevolution could lead to the 
occurrence of cycling – recurrence of previously visited states 
[23]. The problem of intransitive behaviour occurs in complex 
games (i.e. chess) due to the multi-dimensional abilities of 
players. In such games, the relative criticality of a player’s 
characteristics really depends on the nature of the opponent 
itself and it is always possible that a circularly superiority 
relationship [22] may just form between three or more players.  

The problem of cycling arising from intransitive superiority 
has been thought of as a possible obstacle that could prevent 
coevolution from being a reliable problem solving technique 
[23]. In fact, “cycling problem, like the local minima problem 
in gradient-descent methods…, is an intrinsic problem of 
coevolution that cannot be eliminated completely” [24]. While 
there have been approaches to reduce the problem of cycling, 
this paper does not attempt to reduce intransitive behaviour. 
Rather, a simple archiving scheme has been implemented to 
prevent the loss of good individuals that could achieve a high 
objective fitness, due to the effect of cycling. In this paper, the 
archive and elite players are different, unlike in conventional 
EAs. The archive player, at any one time, is the player with 
the best objective fitness, while the elite player is the player 
with the best subjective fitness in a particular generation. 
Archiving ensures that the player that performs best against 
the objective test evaluator is preserved as the coevolution 
process continues to be guided by the players’ interactions. To 
prevent losing the genetic materials of the archive player, the 
archive player is re-introduced into the population after every 
generation as long as it is not the elite player. Niching helps to 
maintain high population diversity and reduces the likelihood 
of premature convergence, which can occur due to repeated 
re-introduction of the same archive player back into the 

mating pool, should the archive player remain unchanged for a 
few generations. Through this setup, the archive player will 
represent the best evolved player at the end of the entire 
coevolution process. 

VI. SIMULATION RESULTS 
Due to computation limitations, simulations are performed 

without the use of quiescence searching. For each experiment, 
five independent runs are simulated. Hypothesis testing is then 
conducted at the 5% level of significance to determine if the 
evolved player could match the standard of the test player (Z 
> -1.645) or outperform it (Z > 1.645). All runs are simulated 
with an initial population of 20 players over 50 generations. 

A. Evolving Parameter Set A with random initialization 
In this set of simulations, parameter set A is evolved with 

random initialization using the single-population competitive 
coevolution model. Table II shows the performance of the best 
evolved player against the test player over 200 games. 

 

 
Based on the Z-values obtained, all the best evolved players 

manage to outperform the test player in all runs. The objective 
and subjective fitness traces of the best player (averaged over 
all the five runs) are plotted in Fig.9 for every generation. 

 
Fig. 9. Objective and subjective fitness trace of best player 

 

An overall rise in objective fitness trace over 50 generations 
indicates that coevolution drives the best individual to achieve 
better and better performance over time. Fluctuation in fitness 
level, despite the introduction of elitism, reveals the existence 
of intransitivity as discussed previously. The subjective fitness 
plot, on the other hand, shows a decreasing trend as the 
generation progresses. This is a logical expectation as the 
overall standard of players in the population has improved 
over the generations. The best player will find more difficulty 
to score points against their peers in the later generations as 
compared to the earlier generations. However, unlike the elite 
player, objective fitness of the archive player depicts a non-
decreasing trace (Fig.10), signifying an improvement in 
performance over the generations. 

TABLE II 
SINGLE-POPULATION COEVOLUTION WITH RANDOM INITIALIZATION 

Simulation Wins Draws Losses %Wins Z-value 
1 114 24 62 64.77% 3.919 
2 107 19 74 59.12% 2.454 
3 121 14 65 65.05% 4.105 
4 93 41 66 58.49% 2.141 
5 110 25 65 62.86% 3.402 

Average 109.0 24.6 66.4 62.06% 3.204 
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Fig. 10. Objective fitness trace of archive player 

Table III shows the piece values of the best evolved player 
in all the five runs. From a completely random set of piece 
parameters, the coevolutionary algorithm recognizes the rook 
as the most important piece in the Chinese Chess by assigning 
the highest piece value to it across all runs. The algorithm also 
values the cannon higher than the horse in all runs, similar to 
the piece values provided by Yen et. al. [1]. While this is a 
disputable case (some expert may value a horse more than a 
cannon), the algorithm actually acknowledges that the cannon 
is a relatively more important piece than the horse for the type 
of tree structure that the computer uses to find the best move. 
The simulation results also indicate that a pawn after crossing 
river (pawnTwo) is valued very much higher than one before 
crossing (pawnOne). In most runs, pawnTwo’s values are 
even higher than the advisor and elephant. This reflects the 
importance of pawnTwo due to its increased mobility and the 
threat it can pose to the opponent’s king. In all, the learning 
capability of coevolution is revealed through the evolved 
parameter values, which is somewhat similar to how human 
players would perceive a good set of parameter values to be.  

TABLE III 
EVOLVED PIECE VALUES 

Simulations Piece 
1 2 3 4 5 

Advisor 111 24 10 189 310 
Elephant 372 51 337 220 185 

Horse 539 291 460 585 428 
Rook 1018 983 997 971 931 

Cannon 853 970 887 656 788 
PawnOne 71 27 6 15 115 
PawnTwo 392 208 336 220 354 

B. Evolving Parameter Set B with random initialization 
After obtaining good performance from evolving parameter 

set A, the number of evolvable parameters is now increased to 
157 in parameter set B. Tables IV – VI depict the performance  
of the best evolved player against the test player (in terms of 
objective fitness) over 200 games for all the three coevolution 
models. The results illustrate that the host-parasite competitive 
and cooperative coevolution models yield better performance 
than the single-population coevolution model in general while 
the cooperative model is able to evolve the best players when 
the population starts off with a randomized set of parameter 
values. A discussion of this will be done in section D. 

TABLE IV 
SINGLE-POPULATION MODEL WITH RANDOM INITIALIZATION 

Simulation Wins Draws Losses %Wins Z-value 
1 90 26 84 51.72% 0.455 
2 66 46 88 42.86% -1.773 
3 48 69 83 36.64% -3.058 
4 51 49 100 33.77% -3.988 
5 60 29 111 35.09% -3.900 

Average 63 43.8 93.2 40.02% -2.453 

TABLE V 
HOST-PARASITE MODEL WITH RANDOM INITIALIZATION 

Simulation Wins Draws Losses %Wins Z-value 
1 72 44 84 46.15% -0.961 
2 55 53 92 37.41% -3.052 
3 87 36 77 53.05% 0.781 
4 60 60 80 42.86% -1.690 
5 66 48 86 43.42% -1.622 

Average 68 48.2 83.8 44.58% -1.309 
TABLE VI 

COOPERATIVE MODEL WITH RANDOM INITIALIZATION 
Simulation Wins Draws Losses %Wins Z-value 

1 79 49 72 52.32% 0.570 
2 87 40 73 54.38% 1.107 
3 87 52 61 58.78% 2.137 
4 76 40 84 47.50% -0.632 
5 86 33 81 51.50% 0.387 

Average 83 42.8 74.2 52.89% 0.714 

Performance of the best evolved players in all five runs pale 
in comparison to those in Table II due to the huge increase in 
the number of parameters. Nevertheless, the overall rise in the 
objective fitness (Fig.11) is an indication that the learning 
process is actively taking place throughout the generations.  

 
 

 
Fig. 11. Objective fitness trace of best player in (a) single-population model, 
(b) host population (host-parasite model), (c) parasite population (host-
parasite mode), (d) subpopulation 1 (cooperative model) and (e) 
subpopulation 2 (cooperative model) 

C. Evolving Parameter Set B with starting seeds 
While it is clear from the fitness traces in the previous 

section that learning is taking place, performance of the best 
evolved player still shows the inability of coevolution to find 
good solutions with random parameter values. To assist the 
coevolution process, a set of starting seed values is now used 
as initialization centres to create the starting population. Such 
attempt will possibly place the initial individuals at the near 
optimal regions. Tables VII - IX shows the performance of the 
best evolved players in all the three coevolution models. 

(a) 

(b) (c)

(e)

 

 

(d)
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TABLE VII 
SINGLE-POPULATION MODEL WITH STARTING SEEDS 

Simulation Wins Draws Losses %Wins Z-value 
1 86 45 69 55.48% 1.365 
2 93 43 64 59.24% 2.314 
3 85 54 61 58.22% 1.986 
4 74 62 64 53.62% 0.851 
5 78 61 61 56.12% 1.442 

Average 83.2 53 63.8 56.54% 1.592 
 

TABLE VIII 
HOST-PARASITE MODEL WITH STARTING SEEDS 

Simulation Wins Draws Losses %Wins Z-value 
1 79 59 62 56.03% 1.432 
2 113 28 59 65.70% 4.117 
3 105 37 58 64.42% 3.681 
4 103 38 59 63.58% 3.457 
5 100 41 59 62.89% 3.252 

Average 100 40.6 59.4 62.52% 3.189 
 

TABLE IX 
COOPERATIVE MODEL WITH STARTING SEEDS 

Simulation Wins Draws Losses %Wins Z-value 
1 94 35 71 56.97% 1.791 
2 98 38 64 60.49% 2.671 
3 81 62 57 58.70% 2.043 
4 85 41 74 53.46% 0.872 
5 101 35 64 61.21% 2.880 

Average 91.8 42.2 66 58.17% 2.052 
 

Results show that starting seeds are effective in assisting 
coevolution to find much better players. Most are now able to 
surpass the test player. There is also an overall improvement 
in average performance of the best evolved player in each 
model compared to the prior case. While the simulation with 
random initialization seems to suggest that the cooperative 
model can produce the best player amongst the three models, 
results in this section seem to indicate that the host-parasite 
model is able to produce the best performing player instead.  

D. Discussion on general performance of the models 
The performance difference between the host-parasite and 

cooperative model in sections B and C is due to the relative 
strength of the two models under different conditions. Success 
of the cooperative model largely hinges on its ability to 
decompose a complex problem into its simpler subproblems, 
in particular, coevolving two sets of relatively independent 
parameters separately while relying on the best evolved player 
from the other subpopulation as the collaborator to find good 
solutions. Despite random initialization of parameter values, 
this collaborative nature between the two subpopulations is 
exploited to find desirable solutions in the high-dimensional 
search space through multiple searches, where each deals with 
a sub-domain with a search space of smaller dimension. In this 
scenario, the host-parasite model is unable to perform as well, 
since the random distribution of the initial population across 
the huge, complex search space has prevented the competing 
partners in the evaluation pools to be strong enough to push 
the overall fitness of the population up fast. The pressure for 
players to improve is virtually not present. 

With a good set of starting seeds, the advantage gained by 
the cooperative model in splitting the problem domain into 
subproblems is, however, less than the benefit gained by the 
host-parasite model from having a good set of competing 

partners. The good initialization of parameters has brought the 
population into regions where possible good solutions exist. 
As such, the evaluation pools in the host-parasite model, after 
some generations, will consist of individuals that are strong in 
their respective areas: players in the parasite evaluation pool 
are strong defensive players while those in the host evaluation 
pool are strong offensive players. This is unlike the random 
initialization case where players in the evaluation pool might 
not be very strong. Pressure to improve in simulations with 
good starting seeds is much greater than those with random 
initialization for the host-parasite model, due to the escalating 
arms race between the host and parasite populations. 

E. Imparting Opening Book knowledge 
In all the earlier simulations, players compete against each 

other purely based on the piece and position values that they 
have. Move decisions are made with respect to these values 
right from the start of the game. Nonetheless, it is known that 
opening book is an integral part of chess games [25]. A player 
with no opening book knowledge would have a clear 
disadvantage when playing against one with wide knowledge 
of opening book moves. This section thus attempts to evolve 
players that play with opening book moves where each game 
starts with one series of opening book moves. As the opening 
book is merely meant to serve as a guide to assist players in 
making good starting moves, a maximum use of 10 opening 
book moves is imposed. This is to prevent players from being 
too dependent on the opening book and fail to discover good 
strategies, which is in fact the ultimate aim of coevolution.  

Table X shows the average performance of the best evolved 
players with random initialization in the single-population 
model. The results indicate a slight dip in performance when 
compared with the case when no opening book was used. This 
might mean that the test player could play better with opening 
book, rendering it more difficult for the evolved players to 
score a larger number of points against it. Nevertheless, the 
results do indicate the relatively desirable performance of the 
single-population model in evolving the two parameter sets. 

Tables XI and XII show the piece values of each of the best 
evolved players from the two sets of simulations. The evolved 
values seem to differ from those obtained without opening 
book, with the most obvious difference being the change in 
relative value of horse and cannon. Previous simulations have 
produced players that value the cannon more than the horse. 
In Tables XI and XII, 6 out of 10 simulations have recognized 
the horse to be a more valuable piece. This is attributed to the 
opening book moves that bring the horse to strategic positions 
where its uses would be more appreciated. As most Chinese 
Chess experts will agree, the horse towards endgame - where 
number of pieces remaining on board is relatively few, would 
be more important than cannon, due to its ability to threaten 
the opponent’s king with more ease. At opening game, a horse 
is seen less important than a canon due to its low ‘speed’ and 
difficulty to threaten opponent’s pieces far away, especially 
for a search depth of 4. The large number of pieces on board 
during early stages of the game also made it easier for cannon 
mounting to take place. Importance of cannon at the beginning 
and possibly mid game thus made it a more valuable piece in 
the opinion of coevolution, if opening book is not used. With 
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opening book, all games are brought to midgame stage before 
the evolved parameters are used. At this stage, a horse might 
sometimes prove more useful than the cannon. As such, some 
simulations do recognize the importance of horse, leading to a 
larger number of players which favour horse over cannon. 

 
TABLE X 

AVERAGE PERFORMANCE OF BEST EVOLVED PLAYERS (WITH OPENING 
BOOK) 

Simulation Wins Draw
s Losses %Wins Z-value 

Parameter Set A 91 37 72 55.84% 1.489 
Parameter Set B 59.2 55 85.8 40.82% -2.151 

 
TABLE XI 

EVOLVED PIECE VALUES (OPENING BOOK WITH PARAMETER SET A)  
Simulations Piece 

1 2 3 4 5 
Advisor 195 170 81 136 231 
Elephant 17 106 90 100 239 

Horse 517 368 316 784 715 
Rook 907 862 657 905 1018 

Cannon 491 324 312 768 713 
PawnOne 118 56 45 80 186 
PawnTwo 310 116 140 86 262 

 
TABLE XII 

EVOLVED PIECE VALUES (OPENING BOOK WITH PARAMETER SET B) 
Simulations Piece 

1 2 3 4 5 
Advisor 194 125 246 130 238 
Elephant 164 275 236 373 81 

Horse 526 513 581 501 528 
Rook 985 951 895 1015 1001 

Cannon 421 626 591 568 612 
PawnOne 205 230 167 123 32 
PawnTwo 359 417 295 301 238 

VII. CONCLUSION 
In conclusion, this paper shows the successful application 

of coevolutionary approaches to discover strategies in Chinese 
Chess. Interesting traits are revealed when various coevolution 
models are assessed under different settings, with and without 
opening book. Results show that the coevolved players can 
perform relatively well, with the cooperative model being best 
for finding good players under random strategy initialization 
and the host-parasite model being best when strategies are 
initialized with a good set of starting seeds.  

Possible future works can include the formulation of a two-
tier coevolution process which first evolve position values that 
are dependent on two parameters – row and column values, 
instead of the current 50 independent values. This allows for 
an easier search of optimal regions before performing fine 
tuning of solutions by independently evolving the 50 position 
values. Coevolution can also be used to engage the tuning of 
two parameter sets – one for midgame and one for endgame 
(assuming opening game follows the opening book), instead 
of using only just one set. This allows for the shift in relative 
importance of different piece values as the game proceeds 
from midgame to endgame. With the combination of both 
human expert knowledge and the coevolutionary algorithm’s 
capability to perform good parameter tuning in vastly complex 
environments, it is hoped that computer Chinese Chess players 
can eventually acquire the ability to attain grandmaster levels.  
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