

Abstract—Coevolutionary techniques have been proven to be
effective in evolving solutions to many game related problems,
with successful applications in many complex chess-like games
like Othello, Checkers and Western Chess. This paper explores
the application of coevolutionary models to learn Chinese Chess
strategies. The proposed Chinese Chess engine uses alpha-beta
search algorithm, quiescence search and move ordering. Three
different models are studied: single-population competitive, host-
parasite competitive and cooperative coevolutionary models. A
modified alpha-beta algorithm is also developed for performance
evaluation and an archiving mechanism is implemented to handle
intransitive behaviour. Interesting traits are revealed when the
coevolution models are simulated under different settings - with
and without opening book. Results show that the coevolved
players can perform relatively well, with the cooperative model
being best for finding good players under random strategy
initialization and the host-parasite model being best for the case
when strategies are initialized with a good set of starting seeds.
 Keywords: Coevolution, Evolutionary Algorithms, Chinese
Chess, Game Strategies, Opening Book

I. INTRODUCTION
Chinese Chess [1] is one of the most widely played strategy
board games worldwide. A two-player, zero-sum game with a
complexity level similar to Western Chess [1], Chinese Chess
is beginning to gain popularity among researchers in the field
of Artificial Intelligence. With the defeat of World Chess
Champion, Garry Kasporov, by IBM’s “Deep Blue” in 1997,
it is believed that Chinese Chess will be the next chess-like
game which a program will defeat a human top player. Even
so, computer Chinese Chess [2] has yet to reach a level that is
on par with Grandmasters. Existing research is mainly
centered on incrementing search depths with efficient pruning
strategies, preprogramming larger opening, mid-game and
endgame databases and using more learning heuristics, all of
which entails expert knowledge. Such methods simply
produce programs that play the game in a way human experts
think is best and this might stifle the computer’s potential to
play even better games. It will be more interesting to allow the
computer player to learn effective chess strategies freely as it
not only removes any dependency on expert knowledge, but is
also able to reveal certain traits of effective strategies that no
known mathematical model is able to unveil as yet. In this
aspect, evolutionary approaches have been applied to discover
chess-like game strategies by virtue of their ability to explore
complex problems [3] by selecting optimal solutions through
natural selection and reproduction, similar to how living
organisms evolved through a competitive process where the
weaker perish and fittest survive. This process not only offers
a viable means to find good solutions to complex problems,
but is also able to do so with minimal expert knowledge.

Coevolutionary algorithm [4] is a branch of Evolutionary
Algorithm (EA) that is widely used to solve problems where
an objective measure to guide the search process is extremely
difficult to devise. Unlike most EAs, coevolutionary methods
use a subjective instead of objective fitness function. Fitness
of individuals is assessed via interaction with similar species
within the population or with other species from one or more
populations [5]. There are two main variants of coevolution:
competitive and cooperative. In the prior, fitness of an agent is
based on direct contest with other agents. In the latter, agents
share the rewards and penalties of successes and failures [6].
Hillis’s seminal paper on coevolving sorting networks and
data sets in a predator-prey model opened the research for
competitive coevolution [7] while studies on cooperative
coevolution was initiated by Potter and De Jong [8] when they
developed a relatively general framework for static function
optimization and neural network learning [9]. The research on
coevolution in chess-like games dates back a decade ago, with
one of the earlier works on the coevolution of backgammon
strategy [10]. Fogel and Chellapilla [11] also used coevolution
to evolve neural networks for playing Checkers. Their work
was extended by Chong, Tan and White [12] to learn Othello
strategies. In coevolving neural network for Go, Lubberts and
Miikkulainen utilized a Symbiotic Adaptive Neuro-Evolution
method [13] to evolve two populations that challenge each
other [14]. In one of the first attempts to coevolve a Western
Chess game, Fogel and his team also successfully applied
evolutionary methods with three neural networks [15].

In this paper, the application of coevolutionary models to
discover Chinese Chess strategies is studied. While existing
works hinge mostly on exploring competitive coevolutionary
models [10]–[12], [14], [15], this paper also looks into the use
of cooperative models. In total, three distinct models - the
single-population competitive, host-parasite competitive and
cooperative coevolutionary models are explored. A modified
alpha-beta algorithm is developed for performance evaluation
while an archiving mechanism is implemented to handle
intransitive behaviour within the game. Simulation results
reveal the relatively good performance of evolved players and
interesting insights to the varied capability of each model in
different scenarios. Organization of the paper is as follows:
Section II presents the development of the Chinese Chess
engine. Section III discusses the implementation of the various
coevolution models. Section IV and V look at issues in
performance evaluation and onset of intransitive phenomenon
in the actual game play while Section VI focuses on the
simulation results, observations and discussions. Section VII
concludes the paper with a general summary and some
possible future works.

Discovering Chinese Chess Strategies through Coevolutionary
Approaches

C. S. Ong, H. Y. Quek, K. C. Tan and A. Tay
Department of Electrical and Computer Engineering

National University of Singapore
ocsdrummer@hotmail.com, {g0500073, eletankc, eletaya}@nus.edu.sg

360

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

II. DEVELOPING THE CHINESE CHESS ENGINE

A. Representation
The basic rules of Chinese Chess are straightforward and

can be found easily on the internet1. Before embarking on the
learning process, a Chinese Chess engine needs to be devised
and tested to ensure that all piece movements and game rules
are strictly adhered to and the program contains no logical bug
that would otherwise be detrimental to the decision made by
the computer player when intelligence is incorporated. The
proposed engine is a simple program implementing basic rules
of the game. The boardstate, denoted a 10 by 9 matrix (Fig.1),
is the most important information that determines a player’s
next move. The boardstate matrix represents the positions of
all pieces on board, with a nonzero number assigned uniquely
to each piece type. One player will have its pieces represented
by the positive values of these numbers while the other by the
negative equivalent. A “0” indicates an unoccupied position.

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−−−−−−−

−−
−−−−−

543212345
000000000
060000060
707070707

000000000
000000000
707070707
060000060
000000000
543212345

Chess Piece Piece Value

King 6000

Advisor 120

Elephant 120

Horse 270

Rook 600

Cannon 285

Pawn 30
Fig. 1. Boardstate matrix showing

positions of all pieces at the start of game
Fig. 2. Piece values used by the

unevolved strategy

From the boardstate matrix, two sources of information that
ultimately guide the move decision are the piece and position
values. The piece value is numerically assigned to each chess
piece in accordance to its relative importance in the game. The
values used by the unevolved strategy (Fig.2) in the program
are adapted from Yen et al [1]. The position value is assigned
to each piece at each possible position of the board based on
the strategic advantage of capturing or moving a piece into
that position. Each piece’s position values are represented by a
unique Positional Value Table (PVT). The opponent’s PVT is
simply a 180° rotation of the player’s PVT. Assessing the
worth of a move is done via an evaluation function, based on
the linear combination of both the player’s piece and position
advantage. As piece advantage often plays a more important
role, a positive (>1) weighting term is usually tagged to it.

B. Planning move decision
The program uses an alpha-beta search algorithm [16] for

searching the associated game tree of each board position to
determine the next best move that the computer player should
execute. It is essentially a tree searching technique that builds
on the basis of the minimax algorithm. With efficient pruning
[17], the alpha-beta search algorithm presents a much more
effective method to obtain the next move in a much reduced
computational time. The ply depth of search is set at 4 (looks
two moves ahead for each player) for reasonable execution
time. A move ordering mechanism is also employed to further

1 Xiangqi Club. “CXQ Chinese Chess Rules”.
< http://www.clubxiangqi.com/rules/ >

reduce the computation time. At intermediate play, quiescence
searching is implemented to reduce the “horizon effect” –
inability of the computer player to “see” beyond the search
window. Quiescence search performs selective exploration
and Beal defined it as the idea of expanding the search just
enough to avoid any tactical disruption [18]. While there can
be many different forms of disruptions, the chess program
effectively considers the immediate capture of pieces as the
only form of tactical disruption for simplicity.

C. Program Testing and integration
Through a user-friendly GUI (Fig.3) designed in Microsoft

Visual C++ MFC Application Wizard, the chess engine was
tested with human players of moderate standard to ensure an
error free program. Integration of the engine was subsequently
done to allow two computer players to play against each other.

Fig. 3. GUI showing a typical midgame state

III. COEVOLUTION IMPLEMENTATION

A. Coevolution Representation
The two types of parameters used for the simulations are (i)

the piece values of all pieces and weight term attached to the
piece advantage (Parameter Set A) and (ii) the piece values of
all pieces and position values of all the powerful pieces (rook,
cannon and horse) (Parameter Set B). Piece parameters of all
chess pieces are represented with the exception of king, which
has a non-evolvable value of 6000. Two distinct parameters
are also assigned to pawn to capture the changes in its relative
importance (e.g. value) before crossing river (pawnOne) and
after crossing river (pawnTwo). Due to the symmetry of the
PVT, a total of 50 position values will be evolved for each
powerful piece. A binary-coded representation is adopted for
coevolution. Piece values assume integer values from 1 to
1023 (represented as 10-bit genes), while position values take
on even integer numerals from -24 to 38 (represented as 5-bit
genes). Binary tournament selection is used in combination
with uniform crossover as well as a mutation operator with
probability that is dependent on the bit position and generation
number. An elitism scheme ensures that the best individual is
kept in the population from time to time. To reduce chances of
encountering premature convergence and also to encourage
the search for multiple niches, a simple niching function is
also implemented to preserve and maintain diversity in the
population of chess players over the generations.

361

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

B. Competitive Fitness Sharing
The notion of competitive fitness sharing was first proposed

by Rosin and Belew [19] when they attempted to apply a new
method of fitness sharing [3] to host-parasite coevolution. In
the scheme, each parasite is treated as an independent resource
to be shared by those hosts in the population that can defeat it.
The purpose of such a scheme is to reward hosts that are able
to defeat parasites few other hosts can defeat. This reduces the
probability of discarding hosts that can only defeat a below-
average number of parasites but could, nonetheless, defeat
powerful parasites. In coevolving Chinese Chess strategies,
this concept of competitive fitness sharing is adapted for the
single-population model. The general idea is to reward players
that could defeat powerful opponents which few others in the
population can defeat. For an individual xi the shared fitness
value obtained for defeating another individual xj, is given by:

 Fi,j =
jN

1 (1)

where Nj is the number of individuals that defeated xj in the
round-robin competition. This equation well resembles the
one proposed by Rosin and Belew. If individual xi happens to
draw with xj, the shared fitness value obtained by xi is given
by the new proposed equation:

Fi,j =
jWjD NWND

D

,, ×+×
 (2)

where D is the points awarded to each player for a draw game,
W is the points awarded to the winning player when the game
has a clear winner while jDN , and jWN , are the number of

players that drew with and won player xj in the round-robin
competition respectively. A player can thus also be rewarded
for managing a draw with players that few others can draw or
defeat. The shared fitness of an individual xi competing with
an individual xj is thus summarized as follows:

jN
1 , if xi defeats xj

Fi,j =
jWjD NWND

D

,, ×+×
 , if xi draws with xj (3)

0 , if xi loses to xj

The total competitive shared fitness of an individual over
all its competitors in the population would be given by:

∑
≠∈ inXn

niF
,

, (4)

where X is the set of indices for all individuals. Tournament
selection will then be conducted based on the shared fitness
value obtained for each individual in the population instead of
the original fitness value.

C. Coevolution Models
1) Single-Population Competitive Coevolution

In the single-population coevolution model, a population of
players engages in a round-robin competition with one another
in each generation. Points are awarded after each game based
on the following scheme: 2 points for the winning player, 1

point for each player in a draw game and 0 point for the losing
player. The subjective fitness of each player is then computed
by the sum total of all the points obtained by competing with
every other player in the competition.

2) Host-parasite Competitive Coevolution
In this model, two populations (host and parasite) of players

evolve independently. Players from the host population will
play against those from the parasite population and vice versa.
The algorithm selects the 10 best parent players in the
previous generation from each population and places them in
the evaluation pool to compete with players in the opposing
population (Fig.4).

Fig. 4. Host-Parasite model showing evaluating pools

In subjective fitness evaluation, two distinct point systems
are formulated to evolve different traits in the two coevolving
pools. Parasite players are heavily penalized for not winning a
game while host players suffer huge penalties for losing one.
Such a scheme signals to the parasite population that winning
a game is paramount and to the host population that losing a
game is detrimental. The assignment schemes developed for
both the host and parasite populations are shown in Table I.

TABLE I
ASSIGNMENT SCHEME IN HOST-PARASITE MODEL

Population Win Draw Lose
Parasite 5 points 0 point 0 point

Host 5 points 5 points 0 point

The above schemes tend to drive parasite players towards
developing strong offensive traits, while host players towards
acquiring strong defensive traits. By presenting a recurrent
pool of strong defensive players for the parasites and strong
offensive players for the hosts, an ensuing arms race would
accelerate the learning process and players would be able to
improve faster and better under cross-population competition.

3) Cooperative Coevolution
In cooperative coevolution (Fig.5), a problem is solved by

piecing together solutions of subproblems that define the main
problem. Upon decomposition, each component is assigned to
a unique subpopulation and evolved independently of other
subpopulations. Since any given individual from a particular
subpopulation denotes only a component of potential solution
to the main problem, collaborators are selected from the other
subpopulations to represent the remaining components. The
individual is then combined with its collaborators to form the
complete solution for fitness evaluation [20].

In cooperatively coevolving Chinese Chess strategies, two
subpopulations are used. Subpopulation 1 contains individuals
representing the piece values while subpopulation 2 contains
those representing the position values. The best strategy in the
previous generation of each subpopulation is chosen as the

362

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

collaborator for the accompanying subpopulation. In the first
generation, collaborators are chosen after a pre-initialization
phase (Fig.6). After which, the sub-chromosome representing
piece values of the best strategy is chosen as the collaborator
for subpopulation 2 while that representing position values of
the best strategy is likewise chosen to be the collaborator for
subpopulation 1. Similarly, individuals are ranked subjectively
based on how well they can cooperate with the collaborators.

Fig. 5. Cooperative coevolution model

Fig. 6. Obtaining the two subpopulations after pre-initialization

In cooperative coevolution, pressure for improvement may
not be as great as in the case of the host-parasite competitive
coevolution model. Nevertheless, similar in spirit to the divide
and conquer strategy, its attempt to split the complex problem
into simpler subtasks to solve them separately might actually
prove to be more effective in finding a good set of solutions.

IV. PERFORMANCE MEASUREMENT

A. Subjective versus Objective fitness
During coevolution, the selection process is based on the

relative performance of an individual against other members
of the population. Such a performance measure is deemed to
be a subjective performance measure. In general, Wiegand
[20] defines four different types of measures:

Definition 1: Objective measure
A measurement of an individual is objective if the measure
considers that individual independently from any other
individuals, aside from scaling or normalization effects.

Definition 2: Subjective measure
A measurement of an individual is subjective if the measure
does not consider that individual independently from other
individuals.

Definition 3: Internal measure
A measurement of an individual is internal if the measure
influences the course of evolution in some way.

Definition 4: External measure
A measurement of an individual is external if the measure
does not influence the course of evolution in any way.

From the definitions, it is clear that traditional EC adopts an
objective internal measure to assess fitness while coevolution
adopts a subjective internal measure. Whilst the subjective
measure is useful for problems where a truly objective fitness
measure is absent, there has to be a means of evaluating the
performance of the best evolved individual ultimately. It is not
suffice to conclude that the best evolved individual in the final
generation is good if there is no objective measure to assess its
performance. This will require an objective, external measure.

B. Modified Alpha-beta Algorithm
Evaluating the performance of the best evolved individual

entails playing 200 games against the test player, which serves
as the objective, external measure. The parameters2 of the test
player are taken from [1]. In the original alpha-beta algorithm,
the process of pruning has prevented the true minimax values
(values as though the minimax algorithm has been used) of all
the available next moves to be found, resulting in the inability
to probabilistically pick the next move based on all the moves’
minimax values. This renders the algorithm inadequate to play
200 non-deterministic games. While the minimax algorithm
could allow for the introduction of stochasticity, it is however,
also too computationally expensive to be implemented. Thus,
alpha-beta algorithm is modified with the notion of pruning
threshold (PT). The new algorithm will prune off a branch
between a second and third level node (root node represents
first level node) when the value passed back from the third
level node is less that the α – PT value (instead of α value in
the original algorithm). Figs. 7 and 8 depict the differences in
pruning (indicated by dotted lines) using the alpha-beta and
modified alpha-beta algorithm with PT = 4 respectively.

Fig. 7. Tree structure subjected to alpha-beta pruning

Fig. 8. Tree structure evaluated using modified alpha-beta algorithm

The original alpha-beta algorithm will prune off the branch
B-D (since value of B found so far is less than α), rendering
node B unsuitable for move decision (since its true minimax

2 The missing PVTs of the king, advisor and elephant in [1] are consequently
filled up with the help of an advanced Chinese Chess player based on
observations of the other PVTs

363

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

value is unknown). The modified alpha-beta search, however,
does not prune off the B-D branch as the value passed back
from H is within the PT limit of the α value. Thus, the
minimax value of B represents its true minimax value, and can
be used for move decision. The X-Z branch is, however,
pruned in both cases. In the modified algorithm, the PT value
is set to 4, with all moves (subjected to a maximum of 4)
evaluated to be within the PT limit of the minimax value of
the best move being given equal probability of being chosen.
Overall, the modified alpha-beta algorithm presents an elegant
way of introducing variations to the game in ways similar to
how human plays it. This is because a move made by a human
player is often a decision from a set of good moves. Unless a
substantial amount of time is spent to analyze these moves,
each of these possibly non-dominated moves will very likely
be given an equal probability of being selected.

V. INTRANSITIVE BEHAVIOUR
The concept of intransitive superiority has been a central

issue in coevolutionary failure [21]. An intransitive relation R
occurs when aRb and bRc does not imply that aRc. In chess, it
is not difficult to encounter such a situation. By definition, the
superiority of players in chess is clearly not transitive [22].
Furthermore, if cRa also holds true, this is often known as a
circularly superiority or dominance relation. One such classic
example will be the “rock, scissors, paper” game. Existence of
such intransitive relation in coevolution could lead to the
occurrence of cycling – recurrence of previously visited states
[23]. The problem of intransitive behaviour occurs in complex
games (i.e. chess) due to the multi-dimensional abilities of
players. In such games, the relative criticality of a player’s
characteristics really depends on the nature of the opponent
itself and it is always possible that a circularly superiority
relationship [22] may just form between three or more players.

The problem of cycling arising from intransitive superiority
has been thought of as a possible obstacle that could prevent
coevolution from being a reliable problem solving technique
[23]. In fact, “cycling problem, like the local minima problem
in gradient-descent methods…, is an intrinsic problem of
coevolution that cannot be eliminated completely” [24]. While
there have been approaches to reduce the problem of cycling,
this paper does not attempt to reduce intransitive behaviour.
Rather, a simple archiving scheme has been implemented to
prevent the loss of good individuals that could achieve a high
objective fitness, due to the effect of cycling. In this paper, the
archive and elite players are different, unlike in conventional
EAs. The archive player, at any one time, is the player with
the best objective fitness, while the elite player is the player
with the best subjective fitness in a particular generation.
Archiving ensures that the player that performs best against
the objective test evaluator is preserved as the coevolution
process continues to be guided by the players’ interactions. To
prevent losing the genetic materials of the archive player, the
archive player is re-introduced into the population after every
generation as long as it is not the elite player. Niching helps to
maintain high population diversity and reduces the likelihood
of premature convergence, which can occur due to repeated
re-introduction of the same archive player back into the

mating pool, should the archive player remain unchanged for a
few generations. Through this setup, the archive player will
represent the best evolved player at the end of the entire
coevolution process.

VI. SIMULATION RESULTS
Due to computation limitations, simulations are performed

without the use of quiescence searching. For each experiment,
five independent runs are simulated. Hypothesis testing is then
conducted at the 5% level of significance to determine if the
evolved player could match the standard of the test player (Z
> -1.645) or outperform it (Z > 1.645). All runs are simulated
with an initial population of 20 players over 50 generations.

A. Evolving Parameter Set A with random initialization
In this set of simulations, parameter set A is evolved with

random initialization using the single-population competitive
coevolution model. Table II shows the performance of the best
evolved player against the test player over 200 games.

Based on the Z-values obtained, all the best evolved players

manage to outperform the test player in all runs. The objective
and subjective fitness traces of the best player (averaged over
all the five runs) are plotted in Fig.9 for every generation.

Fig. 9. Objective and subjective fitness trace of best player

An overall rise in objective fitness trace over 50 generations
indicates that coevolution drives the best individual to achieve
better and better performance over time. Fluctuation in fitness
level, despite the introduction of elitism, reveals the existence
of intransitivity as discussed previously. The subjective fitness
plot, on the other hand, shows a decreasing trend as the
generation progresses. This is a logical expectation as the
overall standard of players in the population has improved
over the generations. The best player will find more difficulty
to score points against their peers in the later generations as
compared to the earlier generations. However, unlike the elite
player, objective fitness of the archive player depicts a non-
decreasing trace (Fig.10), signifying an improvement in
performance over the generations.

TABLE II
SINGLE-POPULATION COEVOLUTION WITH RANDOM INITIALIZATION

Simulation Wins Draws Losses %Wins Z-value
1 114 24 62 64.77% 3.919
2 107 19 74 59.12% 2.454
3 121 14 65 65.05% 4.105
4 93 41 66 58.49% 2.141
5 110 25 65 62.86% 3.402

Average 109.0 24.6 66.4 62.06% 3.204

364

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Fig. 10. Objective fitness trace of archive player

Table III shows the piece values of the best evolved player
in all the five runs. From a completely random set of piece
parameters, the coevolutionary algorithm recognizes the rook
as the most important piece in the Chinese Chess by assigning
the highest piece value to it across all runs. The algorithm also
values the cannon higher than the horse in all runs, similar to
the piece values provided by Yen et. al. [1]. While this is a
disputable case (some expert may value a horse more than a
cannon), the algorithm actually acknowledges that the cannon
is a relatively more important piece than the horse for the type
of tree structure that the computer uses to find the best move.
The simulation results also indicate that a pawn after crossing
river (pawnTwo) is valued very much higher than one before
crossing (pawnOne). In most runs, pawnTwo’s values are
even higher than the advisor and elephant. This reflects the
importance of pawnTwo due to its increased mobility and the
threat it can pose to the opponent’s king. In all, the learning
capability of coevolution is revealed through the evolved
parameter values, which is somewhat similar to how human
players would perceive a good set of parameter values to be.

TABLE III
EVOLVED PIECE VALUES

Simulations Piece
1 2 3 4 5

Advisor 111 24 10 189 310
Elephant 372 51 337 220 185

Horse 539 291 460 585 428
Rook 1018 983 997 971 931

Cannon 853 970 887 656 788
PawnOne 71 27 6 15 115
PawnTwo 392 208 336 220 354

B. Evolving Parameter Set B with random initialization
After obtaining good performance from evolving parameter

set A, the number of evolvable parameters is now increased to
157 in parameter set B. Tables IV – VI depict the performance
of the best evolved player against the test player (in terms of
objective fitness) over 200 games for all the three coevolution
models. The results illustrate that the host-parasite competitive
and cooperative coevolution models yield better performance
than the single-population coevolution model in general while
the cooperative model is able to evolve the best players when
the population starts off with a randomized set of parameter
values. A discussion of this will be done in section D.

TABLE IV
SINGLE-POPULATION MODEL WITH RANDOM INITIALIZATION

Simulation Wins Draws Losses %Wins Z-value
1 90 26 84 51.72% 0.455
2 66 46 88 42.86% -1.773
3 48 69 83 36.64% -3.058
4 51 49 100 33.77% -3.988
5 60 29 111 35.09% -3.900

Average 63 43.8 93.2 40.02% -2.453

TABLE V
HOST-PARASITE MODEL WITH RANDOM INITIALIZATION

Simulation Wins Draws Losses %Wins Z-value
1 72 44 84 46.15% -0.961
2 55 53 92 37.41% -3.052
3 87 36 77 53.05% 0.781
4 60 60 80 42.86% -1.690
5 66 48 86 43.42% -1.622

Average 68 48.2 83.8 44.58% -1.309
TABLE VI

COOPERATIVE MODEL WITH RANDOM INITIALIZATION
Simulation Wins Draws Losses %Wins Z-value

1 79 49 72 52.32% 0.570
2 87 40 73 54.38% 1.107
3 87 52 61 58.78% 2.137
4 76 40 84 47.50% -0.632
5 86 33 81 51.50% 0.387

Average 83 42.8 74.2 52.89% 0.714

Performance of the best evolved players in all five runs pale
in comparison to those in Table II due to the huge increase in
the number of parameters. Nevertheless, the overall rise in the
objective fitness (Fig.11) is an indication that the learning
process is actively taking place throughout the generations.

Fig. 11. Objective fitness trace of best player in (a) single-population model,
(b) host population (host-parasite model), (c) parasite population (host-
parasite mode), (d) subpopulation 1 (cooperative model) and (e)
subpopulation 2 (cooperative model)

C. Evolving Parameter Set B with starting seeds
While it is clear from the fitness traces in the previous

section that learning is taking place, performance of the best
evolved player still shows the inability of coevolution to find
good solutions with random parameter values. To assist the
coevolution process, a set of starting seed values is now used
as initialization centres to create the starting population. Such
attempt will possibly place the initial individuals at the near
optimal regions. Tables VII - IX shows the performance of the
best evolved players in all the three coevolution models.

(a)

(b) (c)

(e)

(d)

365

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

TABLE VII
SINGLE-POPULATION MODEL WITH STARTING SEEDS

Simulation Wins Draws Losses %Wins Z-value
1 86 45 69 55.48% 1.365
2 93 43 64 59.24% 2.314
3 85 54 61 58.22% 1.986
4 74 62 64 53.62% 0.851
5 78 61 61 56.12% 1.442

Average 83.2 53 63.8 56.54% 1.592

TABLE VIII
HOST-PARASITE MODEL WITH STARTING SEEDS

Simulation Wins Draws Losses %Wins Z-value
1 79 59 62 56.03% 1.432
2 113 28 59 65.70% 4.117
3 105 37 58 64.42% 3.681
4 103 38 59 63.58% 3.457
5 100 41 59 62.89% 3.252

Average 100 40.6 59.4 62.52% 3.189

TABLE IX
COOPERATIVE MODEL WITH STARTING SEEDS

Simulation Wins Draws Losses %Wins Z-value
1 94 35 71 56.97% 1.791
2 98 38 64 60.49% 2.671
3 81 62 57 58.70% 2.043
4 85 41 74 53.46% 0.872
5 101 35 64 61.21% 2.880

Average 91.8 42.2 66 58.17% 2.052

Results show that starting seeds are effective in assisting
coevolution to find much better players. Most are now able to
surpass the test player. There is also an overall improvement
in average performance of the best evolved player in each
model compared to the prior case. While the simulation with
random initialization seems to suggest that the cooperative
model can produce the best player amongst the three models,
results in this section seem to indicate that the host-parasite
model is able to produce the best performing player instead.

D. Discussion on general performance of the models
The performance difference between the host-parasite and

cooperative model in sections B and C is due to the relative
strength of the two models under different conditions. Success
of the cooperative model largely hinges on its ability to
decompose a complex problem into its simpler subproblems,
in particular, coevolving two sets of relatively independent
parameters separately while relying on the best evolved player
from the other subpopulation as the collaborator to find good
solutions. Despite random initialization of parameter values,
this collaborative nature between the two subpopulations is
exploited to find desirable solutions in the high-dimensional
search space through multiple searches, where each deals with
a sub-domain with a search space of smaller dimension. In this
scenario, the host-parasite model is unable to perform as well,
since the random distribution of the initial population across
the huge, complex search space has prevented the competing
partners in the evaluation pools to be strong enough to push
the overall fitness of the population up fast. The pressure for
players to improve is virtually not present.

With a good set of starting seeds, the advantage gained by
the cooperative model in splitting the problem domain into
subproblems is, however, less than the benefit gained by the
host-parasite model from having a good set of competing

partners. The good initialization of parameters has brought the
population into regions where possible good solutions exist.
As such, the evaluation pools in the host-parasite model, after
some generations, will consist of individuals that are strong in
their respective areas: players in the parasite evaluation pool
are strong defensive players while those in the host evaluation
pool are strong offensive players. This is unlike the random
initialization case where players in the evaluation pool might
not be very strong. Pressure to improve in simulations with
good starting seeds is much greater than those with random
initialization for the host-parasite model, due to the escalating
arms race between the host and parasite populations.

E. Imparting Opening Book knowledge
In all the earlier simulations, players compete against each

other purely based on the piece and position values that they
have. Move decisions are made with respect to these values
right from the start of the game. Nonetheless, it is known that
opening book is an integral part of chess games [25]. A player
with no opening book knowledge would have a clear
disadvantage when playing against one with wide knowledge
of opening book moves. This section thus attempts to evolve
players that play with opening book moves where each game
starts with one series of opening book moves. As the opening
book is merely meant to serve as a guide to assist players in
making good starting moves, a maximum use of 10 opening
book moves is imposed. This is to prevent players from being
too dependent on the opening book and fail to discover good
strategies, which is in fact the ultimate aim of coevolution.

Table X shows the average performance of the best evolved
players with random initialization in the single-population
model. The results indicate a slight dip in performance when
compared with the case when no opening book was used. This
might mean that the test player could play better with opening
book, rendering it more difficult for the evolved players to
score a larger number of points against it. Nevertheless, the
results do indicate the relatively desirable performance of the
single-population model in evolving the two parameter sets.

Tables XI and XII show the piece values of each of the best
evolved players from the two sets of simulations. The evolved
values seem to differ from those obtained without opening
book, with the most obvious difference being the change in
relative value of horse and cannon. Previous simulations have
produced players that value the cannon more than the horse.
In Tables XI and XII, 6 out of 10 simulations have recognized
the horse to be a more valuable piece. This is attributed to the
opening book moves that bring the horse to strategic positions
where its uses would be more appreciated. As most Chinese
Chess experts will agree, the horse towards endgame - where
number of pieces remaining on board is relatively few, would
be more important than cannon, due to its ability to threaten
the opponent’s king with more ease. At opening game, a horse
is seen less important than a canon due to its low ‘speed’ and
difficulty to threaten opponent’s pieces far away, especially
for a search depth of 4. The large number of pieces on board
during early stages of the game also made it easier for cannon
mounting to take place. Importance of cannon at the beginning
and possibly mid game thus made it a more valuable piece in
the opinion of coevolution, if opening book is not used. With

366

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

opening book, all games are brought to midgame stage before
the evolved parameters are used. At this stage, a horse might
sometimes prove more useful than the cannon. As such, some
simulations do recognize the importance of horse, leading to a
larger number of players which favour horse over cannon.

TABLE X

AVERAGE PERFORMANCE OF BEST EVOLVED PLAYERS (WITH OPENING
BOOK)

Simulation Wins Draw
s Losses %Wins Z-value

Parameter Set A 91 37 72 55.84% 1.489
Parameter Set B 59.2 55 85.8 40.82% -2.151

TABLE XI

EVOLVED PIECE VALUES (OPENING BOOK WITH PARAMETER SET A)
Simulations Piece

1 2 3 4 5
Advisor 195 170 81 136 231
Elephant 17 106 90 100 239

Horse 517 368 316 784 715
Rook 907 862 657 905 1018

Cannon 491 324 312 768 713
PawnOne 118 56 45 80 186
PawnTwo 310 116 140 86 262

TABLE XII

EVOLVED PIECE VALUES (OPENING BOOK WITH PARAMETER SET B)
Simulations Piece

1 2 3 4 5
Advisor 194 125 246 130 238
Elephant 164 275 236 373 81

Horse 526 513 581 501 528
Rook 985 951 895 1015 1001

Cannon 421 626 591 568 612
PawnOne 205 230 167 123 32
PawnTwo 359 417 295 301 238

VII. CONCLUSION
In conclusion, this paper shows the successful application

of coevolutionary approaches to discover strategies in Chinese
Chess. Interesting traits are revealed when various coevolution
models are assessed under different settings, with and without
opening book. Results show that the coevolved players can
perform relatively well, with the cooperative model being best
for finding good players under random strategy initialization
and the host-parasite model being best when strategies are
initialized with a good set of starting seeds.

Possible future works can include the formulation of a two-
tier coevolution process which first evolve position values that
are dependent on two parameters – row and column values,
instead of the current 50 independent values. This allows for
an easier search of optimal regions before performing fine
tuning of solutions by independently evolving the 50 position
values. Coevolution can also be used to engage the tuning of
two parameter sets – one for midgame and one for endgame
(assuming opening game follows the opening book), instead
of using only just one set. This allows for the shift in relative
importance of different piece values as the game proceeds
from midgame to endgame. With the combination of both
human expert knowledge and the coevolutionary algorithm’s
capability to perform good parameter tuning in vastly complex
environments, it is hoped that computer Chinese Chess players
can eventually acquire the ability to attain grandmaster levels.

REFERENCES
[1] S. J. Yen, J. C. Chen, T. N. Yang, and S. C. Hsu, “Computer chinese

chess,” ICGA Journal, vol. 27, no. 1, pp. 3-18, Mar 2004.
[2] Y. T. Zhang, “Application of artificial intelligence in computer chinese

chess,” M.Sc. thesis, Department of Electrical Engineering, National
Taiwan University, Taiwan, 1981.

[3] D. E. Goldberg., Genetic Algorithms in Search, Optimisation and
Machine Learning. Addison Wesley, 1989.

[4] P. Darwen and X. Yao, “Coevolution in iterated prisoner’s dilemma with
intermediate levels of cooperation: Application to missile defense,”
International Journal of Computational Intelligence Applications, vol. 2,
no. 1, pp. 83–107, 2002.

[5] C. K. Goh, H. Y. Quek, K. C. Tan and H. A. Abbass, “Modeling civil
violence: An evolutionary, multi-Agent, game-theoretic approach,” in
Proceedings of the IEEE Congress on Evolutionary Computation, 2006,
Vancouver, Canada, 16-21 July, pp. 6088-6095.

[6] C. H. Yong and R. Miikkulainen, “Cooperative coevolution of multi-
agent systems,” University of Texas, Austin, USA, Tech. Rep. AI01-
287, 2001.

[7] D. Hillis, “Co-evolving parasites improve simulated evolution as an
optimization procedure,” Artificial Life II, Santa Fe Institute Studies in
the Sciences of Complexity, vol. 10, pp. 313–324, 1991.

[8] M. Potter and K. De Jong, “A cooperative coevolutionary approach to
function Optimization,” in Proceedings from the fifth conference on
Parallel Problem Solving from Nature, 1994, pp. 530–539.

[9] M. Potter and K. De Jong, “Cooperative coevolution: An architecture for
evolving coadapted subcomponents,” Evolutionary Computation, vol. 8,
no. 1, pp. 1–29, 2000.

[10] J. B. Pollack and A. D. Blair, “Coevolution in the successful learning of
backgammon strategy,” Machine Learning, vol. 32, no.1, pp. 225–240, 1998.

[11] K. Chellapilla and D. B. Fogel, “Evolving neural networks to play
checkers without relying on expert knowledge,” IEEE Transactions on
Neural Networks, vol. 10, no. 6, pp. 1382-1391, Nov 1999.

[12] S. Y. Chong, M. K. Tan and J. D. White, “Observing the evolution of
neural networks learning to play the game of Othello,” IEEE Transaction
on Evolutionary Computation, vol. 9, no. 3, pp. 240-251, 2005.

[13] D. E. Moriarty and R. Miikkulainen, “Discovering complex Othello
strategies through evolutionary neural networks,” Connection Science.
vol. 7, no. 3, pp. 195-209, 1995.

[14] A. Lubberts and R. Miikkulainen, “Co-evolving a Go-playing neural
network,” in Proceedings of the Genetic and Evolutionary Computation
Conference Workshop Program, 2001, pp. 14-19.

[15] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon, “A self-learning
evolutionary chess program,” in Proceedings of the IEEE International
Conference, vol. 92, no. 12, pp. 1947-1954, Dec 2004.

[16] T. A. Marsland, “Computer chess and search,” in Encyclopedia of
Artificial Intelligence, S. Shapiro, Ed. J. Wiley & Sons, 2nd edition,
1992, pp. 224-241.

[17] S. Russell and P. Norvig, Artificial Intelligence – A Modern Approach,
2nd Edition. New Jersey: Pearson Education Inc, 2003.

[18] D. F. Beal, “A generalized quiescence search algorithm,” Artificial
Intelligence, vol. 43, no. 1, pp. 85-98, 1990.

[19] C. D. Rosin and R. K. Belew, “Methods for competitive co-evolution:
Finding opponents worth beating,” in Proceedings of the Sixth
International Conference on Genetic Algorithms, 1995, pp. 373-380.

[20] R. P. Wiegand, “An analysis of cooperative coevolution algorithm,”
Ph.D. Thesis, George Mason University, Fairfax, VA, 2004.

[21] D, Cliff and G. F. Miller, “Tracking the red queen: Measurements of
adaptive progress in co-evolutionary simulations,” in Proceedings of the
Third European conference on Artificial Life, 1995, pp. 200-218,
Springer-Verlag, LNCS 929.

[22] R. A. Watson and J. B. Pollack. “Coevolutionary dynamics in a minimal
substrate,” in Proceedings of the Genetic and Evolutionary Computation
Conference, 2001, pp. 702-709.

[23] E. D. De Jong, “Intransitivity in coevolution,” in Proceedings of the
Eighth Conference on Parallel Problem Solving from Nature, 2004, pp.
843-851.

[24] S. Nolfi and D. Floreano, “Co-evolving predator and prey robots: Do
'arms races' arise in artificial evolution?” Artificial Life, vol. 4, no. 4, pp.
311-335, 1998.

[25] M. Buro, “Towards opening book learning,” International Computer
Chess Association Journal, vol. 22, pp. 98–102, 1999.

367

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

