
 

 

 

  

Abstract—Multiplayer games with imperfect information, such 

as Bridge, are especially challenging for game theory 

researchers.  Although several algorithmic techniques have 

been successfully applied to the card play phase of the game, 

bidding requires a much different approach.  We have shown 

that a special form of a neural network, called a self-organizing 

map (SOM), can be used to effectively bid no trump hands.  The 

characteristic boundary that forms between resulting 

neighboring nodes in a SOM is an ideal mechanism for 

modeling the imprecise and ambiguous nature of the game.   
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I. INTRODUCTION 

Game theory is a particularly rich area for study.  Many 

researchers deal with two-player games, such as chess or 

checkers, where each opponent is presented with full 

information.  A greater challenge, however, is multiplayer 

games with both incomplete information and an element of 

chance, such as Poker or Blackjack.  The game of Bridge 

falls in between these two extremes.  It is a multiplayer 

game, with opposing teams and incomplete information, but 

the only element of chance involved is the initial randomness 

in the deal. 

 Several algorithmic approaches have proven somewhat 

successful with multiplayer imperfect information games. [1] 

Given the limited information provided, the missing 

information is inferred.  Generally, a Monte-Carlo sampling 

technique generates a set of representative hands the 

opponents may have.  A standard minimax algorithm selects 

the most likely holding and makes a corresponding move.  

The model is update as additional information becomes 

available.  Eventually converging on an acceptable solution.  

In Bridge, however, we are looking for the ideal solution 

rather than just an acceptable solution.   

The dealer distributes 13 cards from a standard 52-card 

deck to each of four players who have been named according 

the compass directions (North-South against East-West).  

The game consists of two activities, the bid and the play of 

the cards. Commercial products such as Bridge Baron, 

GIB[2] and Jack, the World Computer Bridge champion, 

have proven to be especially effective in the play of the 

cards.  Bidding, however, has shown to be a more complex 

problem.  

 
 

Bidding is a conversation between two cooperating team 

members against an opposing partnership. Each partnership 

uses an established bidding system to exchange information 

and interpret their partner’s bidding sequence.  Each player 

only has knowledge of their own hand and any previous bids.  

Bidding begins with the dealer and ends with a legitimate bid 

followed by three sequential passes.  The highest bid 

becomes the contract.  A Bridge contract consists of a suit 

(or no trump) and a level. The level means the number of 

tricks over a standard “book” of 6 tricks.  Teams are 

awarded bonus points if they bid and make “game” (3NT, 

4♥, 4♠, 5♣, or 5♦) or “slam” (12-13 total tricks).             

Once the final contract is reached, the opposing team lays 

down an initial card and the play phase of the game begins.   

Each player must present one card for each of the 13 tricks.  

Players must all follow suit, if they have that suit, or play an 

alternate suit if they don’t.  In a no trump contract, the 

highest card of the suit led takes the trick.  In a trump 

contract, in contrast, the highest card of the trump suit takes 

precedence over all others.  The contract indicates a guess as 

to the number of tricks the team can take.   

The scoring depends on the number of tricks taken and the 

final contract.  Points are scored for that team if they make or 

exceed their contract or given to the other team if they fail in 

their attempt.  Additional points are granted based on 

“vulnerability” of the team who wins the contract.  Point 

values vary depending scoring system used and the number 

of competing tables.  The IMP method awards points based 

on the arithmetic difference between scores according to a 

standard conversion table.  The MP method, in contrast, 

gives 2 points for each score worst that the pair’s score, 1 

point for each equal score, and 0 points for each better score.  

The winner is determined by the total points at the end of a 

finite number of rounds.    

Because the biggest differentiator between Bridge-playing 

ability is the quality of the bidding, we will focus on creating 

an effective method for computer bidding using an artificial 

neural network.  Cognitive studies have shown that human 

performance in Bridge can be attributed to the acquisition of 

high-level patterns and chunks of knowledge gained through 

experience.  Frank, Bundy and Basin [3] showed that 

standard minimax may be applicable to the card play portion 

of the game, but fails to extend to the bidding phase of the 

game.  Other models and algorithms needed to be developed 

for this complex problem.   
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Bridge bidding can be reduced to a multifaceted 

conversation between partners.  As such, it would seem 

natural reduce it to its semantic and pragmatic elements [4].  

Each bid can be classified as one of four common acts:  

1. Asserting. “By making this bid, I assert that my hand 

has these properties” 

2. Denying.  “By making this bid, I deny that my hand 

has these properties” 

3. Asking and Answering Questions. “If your hand is of 

type 1, make bid 1; if it is of type 2, make bid 2, etc. 

(e.g. asking how many aces your partner has) 

4. Interrupting. “The primary purpose of this bid is to 

stop the opponents communicating     

 

Another approach that has shown some promise is a neural 

network [5].  Neural networks take the raw input data and 

construct appropriate outputs by successively recalculating 

the weights on the connections between their nodes.  Some 

of the input nodes in a network for contract bridge would 

include preprocessed values such as high card points and suit 

length.  Although these other approaches have used neural 

networks in conjunction with other artificial intelligence 

techniques, a special form of neural network is showing 

some promise.      

II. SELF-ORGANIZING MAPS 

The Self-Organizing Map, also called a Kohonen Map, is 

one of the most prominent artificial neural network models 

adhering to the unsupervised learning model [6].  The model 

consists of many neural processing units. Each of the units is 

assigned a multi-dimensional weight vector, mi. The weight 

vectors have the same dimensionality as the input patterns. 

Training self-organizing maps involves input pattern 

presentation and weight vector adaptation. Each training 

iteration starts with the random selection of one input 

pattern. The self-organizing map examines this pattern and 

decides each unit’s activation. 

Usually, the Euclidean distance between weight vector and 

input pattern is used to calculate a unit's activation. The unit 

with the lowest activation becomes the winner of the training 

iteration. Finally, the weight vectors of the winner as well as 

the weight vectors of selected units around the winner are 

adapted. This adaptation results in a gradual reduction of the 

component-wise difference between input pattern and weight 

vector. The model generally consists of a two-dimensional 

neuron arrangement (map), as shown in Figure 1, though 

topologies of higher dimensions are also conceivable.   

 

 

Figure 1: Self-Organizing Map 

 

Each neuron has a representative set of M features, called 

a vector. During the training process, the feature weights are 

modified according to the input signal and the neurons 

proximity to the winning neuron. Each weight is increased or 

decreased to more closely resemble the matching the input 

vector, with neurons closer to the winning neuron making 

greater changes in the weights than those further away. 

Because of the algorithm, an organized network develops 

where similar input patterns are arranged with a degree of 

proximity between the locations of excited neurons. The 

neurons are arranged by the input patterns by neighborhoods. 

That is, the neurons not are adapted individually, but with 

neighboring neurons. 

Unlike many other types of networks, a Self-Organizing 

Map does not need a target output to be specified. Instead, 

the area of the lattice where the node weights match the input 

vector are selectively optimized to more closely resemble the 

data for the class of the input vector. From an initial 

distribution of random weights, and over many iterations, the 

SOM eventually settles into a map of stable zones. Each 

zone is effectively a feature classifier, so you can think of the 

graphical output as a feature map of the input space. Any 

new, previously unseen input vectors presented to the 

network will stimulate nodes in the zone with similar weight 

vectors. 

Several variations of the Kohonen algorithm exist [7].  

The algorithm used for the SOMs in this research is as 

follows: 

 

1. Initialize each node's weights. 

2. Choose a vector at random from the set of 

training data and present it to the lattice. 

3. Examine every node and determine which 

one's weights are most like the input vector. 

The winning node is commonly known as the 

Best Matching Unit (BMU). 

4. Calculate the radius of the neighborhood of the 

BMU. This is a value that starts large, 

typically set to the 'radius' of the lattice, but 

diminishes each time-step.  Any nodes found 

within this radius are deemed to be inside the 

BMU's neighborhood. 

5. Adjust the weights of each neighboring node 

to make them more like the input vector. The 

closer a node is to the BMU, the more its 

weights get altered. 

6. Repeat step 2 for N iterations. 

 

One method to determine the best matching unit is to 

iterate through all the nodes and calculate the Euclidean 

distance between each node's weight vector, Wi, and the 

current input vector, Vi. The node with a weight vector 

closest to the input vector is tagged as the BMU.  The 

Euclidean distance is given as: 
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A unique feature of the Kohonen learning algorithm is the 

area of the neighborhood shrinks over time. This is 

accomplished by making the radius of the neighborhood 

shrink over time. To do this, we use the exponential decay 

function: 

 

 

where σ0, stands for the width of the lattice at time t0, λ 

denotes a time constant, and t is the current time-step 

(iteration of the loop). Over time the neighborhood will 

shrink to the size of just one node – the BMU. After fixing 

the radius, we iterate through all the nodes in the lattice to 

decide if they lie within the radius and adjust the weights 

accordingly. Every node within the BMU's neighborhood 

(including the BMU) has its weight vector adjusted 

according to the following equation: 

 
where t represents the time-step and L is a small variable 

called the learning rate, which decreases with time.  The 

decay of the learning rate is calculated each iteration using 

the following equation: 

 
The learning rate at the start of training is set to some 

constant and then gradually decays over time so during the 

last few iterations it is close to zero. The effect of the 

learning should decrease proportionally according to the 

distance of the node from the BMU. In fact, the edges of the 

BMU’s neighborhood should have barely any effect at all.  

Ideally, the learning should fade over distance according to 

the Gaussian decay shown in Figure 2. 

 

 

 

 

Figure 2: Gaussian Decay Around BMU 

 

To achieve this, all it takes is a slight adjustment to the 

equation above. 

 
where θ, represents the influence a node's distance from the 

BMU has on its learning. θ(t) is given by 

 

where dist is the distance a node is from the BMU and σ, is 

the width of the neighborhood function. Note that θ also 

decays over time.  Geometrically speaking, the weight 

vectors of the adapted units are moved a bit towards the 

input pattern. The amount of weight vector movement is 

guided by a learning rate decreasing in time. The number of 

units that are affected by adaptation is determined by a so-

called neighborhood function. This number of units also 

decreases in time. This movement has as a consequence. The 

Euclidean distance between those vectors decreases and thus, 

the weight vectors become more similar to the input pattern. 

The respective unit is more likely to win at future 

presentations of this input pattern. The consequence of 

adapting not only the winner alone but also a number of units 

in the neighborhood of the winner leads to a spatial 

clustering of similar input patterns in neighboring parts of 

the self-organizing map. Thus, similarities between input 

patterns that are present in the multi-dimensional input space 

are mirrored within the two- dimensional output space of the 

self-organizing map.  

The training process of the self-organizing map describes 

a topology-preserving mapping from a high-dimensional 

input space onto a two-dimensional output space where 

patterns that are similar in terms of the input space are 

mapped to geographically close locations in the output 

space. 

III. EXERIMENTAL SETUP 

 

When setting up the initial training vector of the self-

organizing map, we decided that the only information 

available to the bidder is the layout of his hand and the 

current bidding history.  Therefore, the input vector is a 

series of discrete values to show the distribution of cards in 

each suit and quality of the cards.  Generally, Bridge players 

value cards according to rank with ace = 4 points, king = 3 

points, queen = 2 points and jack = 1 point.  Although some 

players also add or subtract points based on length or 

shortness in a particular suit, we will ignore that factor 

because it will be captured in the card distribution.   

As with other attempts at using machine learning for 

Bridge bidding [8], the first step is to produce training 

examples.  We generate a set of training instances that 

represent card distribution by suit and the total number of 

high card points (HCP) as described above.  Each 

distribution is then mapped to an appropriate bid according 

to the guidelines published by the American Contract Bridge 

League [9].  Generally a Bridge contract can be determined 

in four phases: the opening bid, the responder’s response to 

the opening bid, the opener’s response and, finally, the 

responder’s final placement of the contract.  Although some 

card distributions benefit from additional communication, we 

will limit the bidding history to these four phases. 
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The bidding history is necessary to interpret previous bids.  

We have determined only 6 SOMs are required for an 

accurate bidding scheme: opening bids, no trump responses, 

primary responses, overcalls, re-bids by opener, and re-bids 

by responder.  The first SOM, the opening bid SOM (Figure 

3), does not require any information on any previous bidding 

history because these are based solely on the construction of 

the hand under consideration.  Opening bids fall into three 

general categories: no-trump, major suit (hearts and spades) 

and minor suits (clubs and diamonds).  The remaining SOMs 

are constructed to respond successively to the opening bid.  

   

 

 

Figure 3: Opening Bids 

 

To test the effectiveness of this bidding mechanism, we 

will separate the auction from the play and stage a small 

tournament between four teams at two tables.  One table will 

have two players sitting East-West bidding with our system, 

designated as BridgeSOM, and North-South bidding with 

Jack.  The other table will have North-South bidding with 

BridgeSOM and East-West bidding with Jack.  The two 

tables will play the same set of 24 boards.  Once the bidding 

is complete, Jack will play the cards for all four players.   

A. No Trump Hands 

Although BridgeSOM is able to bid on all randomly 

distributed Bridge hands, we will simplify this initial 

evaluation by using a special type of bridge hand that can be 

played using very well defined rules.  A No-trump hand has 

15-17 High Card Points and is balanced.  High Card Points 

are simply the sum of the accumulated card ranks.  Consider 

the following hand:  

 

♠KT ♥AKQ3 ♦J63 ♣K864 

 

It has a total of 16 HCP spread among the four suits (3 in 

spades + 9 in hearts + 1 in diamonds + 3 in clubs).  In 

addition, this hand is balanced which means that it has all 

four suits distributed in a 3-3-3-4 configuration or with only 

one card changed from that (ie, 2-3-3-5 or 4-2-3-4).   

A computational scheme such as a self-organizing map is 

ideal for Bridge because of the fuzzy boundaries between 

sets.  Note the Gaussian decay around each BMU in the 

SOM, Figure 4.  This means that adjacent nodes will match 

both patterns to some degree, but the node will be labeled 

with the pattern that matches best.  If you ask any Bridge 

player about a particular hand, they may be able to describe 

two or more possible responses.  These are the hands that fall 

on these boundaries.   

Mathematicians love to play Bridge because there are 

some very logical guidelines for bidding and play.  For 

example, guidance suggests that a partnership needs a total 

of 25 points for a game in no trump (3NT), 26 points for a 

game in either hearts or spades (4♥or 4♠) and 29 points for 

a game in diamonds and clubs (5♦ and 5♣). 

 

 

Figure 4: Neighboring Neurons 

 

If the first bidder sees a balanced hand with 15-17 points, 

they should open the auction with 1 NT.  Recall that a total 

of 25 points is needed for a game in no trump.  Therefore, 

the responder (opener’s partner) should respond according to 

the following rules: 

 

1. With 0-7 points: Pass  

 

2. With 8-9 points: bid 2NT (opener will go to 

game, 3NT, with 17 points for a total of 25 

points or pass and stay at 2NT for the contract.   

 

3. With 10-15 points: bid 4NT, which asks the 

partner to pass with 15 points, bid 5NT with 16, 

bid 6NT with 17. 

 

These rules are not programmed as a set of conditionals.  

Instead, we create a set of training vectors that reflect these 

possible configurations and label them with the appropriate 

responses.  The input vector consists of 5 values: the number 

of cards in each suit and the total number of high card points. 

For this evaluation, we will use the initial opening bid 

SOM and the no trump response SOM, Figure 5.  If there are 

any opening bids other than the expected 1 NT bid, they will 

be handled with the appropriate SOMs until a contract is 

reached.  The SOMs are created using representative training 

sets well before the tournament.  Getting a bid is almost 

instantaneous, as we are simply finding the node that is the 

best match to the current player’s card distribution, HCPs 

and bidding history.   
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Figure 5: No Trump Responses 

B. No Trump Results  

 We tested the performance of BridgeSOM against Jack in 

a match of 24 boards.  Although the match was performed 

and scored the same way as an official bridge match, all the 

boards were configured for an initial 1NT bid, with the same 

dealer each hand and no vulnerability designated for either 

side.  We turned off all special bidding features for Jack.  

Neither Jack nor BridgeSOM made all bids as expected. 

 Table 1 indicates the initial bid, the resulting final 

contract, and final result for both Jack and BridgeSOM when 

opening the bidding with identical hands.     

 
Table 1  

Jack vs BridgeSOM  

Board Jack BridgeSOM 

1 1NT/2NT/2NT 1NT/2NT/2NT 

2 1NT/4NT/4NT 1NT/3NT/4NT 

3 1NT/2NT/2NT 1C/2NT/2NT 

4 1NT/3NT/3NT 1NT/4NT/3NT 

5 1NT/3NT/3NT 1NT/3NT/3NT 

6 1C/2H/2H 1NT/2NT/2NT 

7 1NT/3NT/3NT 1NT/3NT/3NT 

8 1NT/2NT/3NT 1NT/2NT/3NT 

9 1NT/2NT/2NT 1H/2H/2NT 

10 1NT/3NT/3NT 1NT/4NT/3NT 

11 1NT/2NT/3NT 1NT/3NT/3NT 

12 1NT/3NT/3NT 1NT/3NT/3NT 

13 1H/3H/3H 1NT/3NT/2NT 

14 1NT/3NT/2NT 1NT/3NT/2NT 

15 1NT/2NT/3NT 1NT/3NT/3NT 

16 1NT/3NT/2NT 1NT/2NT/2NT 

17 1NT/3NT/4NT 1NT/3NT/4NT 

18 1NT/3NT/3NT 1S/3S/3S 

19 1NT/3NT/3NT 1NT/3NT/3NT 

20 1NT/4NT/4NT 1NT/4NT/4NT 

21 1NT/3NT/3NT 1NT/3NT/3NT 

22 1NT/2NT/2NT 1NT/1NT/2NT 

23 1NT/3NT/5NT 1NT/3NT/5NT 

24 1NT/2NT/2NT 1NT/2NT/2NT 

 

 

 

Points were awarded for the differences between final board 

scores according to table 2.  

 
Table 2 

 IMP Table 

 
Source: Duplicate Bridge, wikipedia.com 

 

Jack won the tournament with 22 IMPs to BridgeSOM’s 

17 IMPs.  There were only 6 boards that presented 

significant differences between the two systems: Boards 10, 

11, 13, 15, 16, and 18.  Of these, board 10 was the most 

important.  If the bidding had been different on this one 

board, BridgeSOM could have won the tournament.  The 

bidding began the same with both systems.  Jack however, 

ended up with a 3NT game contract while BridgeSOM 

ended up a level higher at 4NT.  Because of the unlucky 

distribution of the cards, the results were, in fact, just 3NT.   

When we later examined the actual node that caused the 

4NT bid rather than the alternative 3NT bid, it was on the 

boundary between the two.  The distribution and card values 

for this hand, therefore, could have supported either a 3NT 

or 4NT bid.  If the cards had been distributed differently in 

the opponents’ hands, we could both have both made 4NT.  

This would have ended the tournament at 11 to 17, in our 

favor. 

IV. CONCLUSION 

Self-organizing maps and other computational intelligence 

methods are ideal for games with incomplete information.  

They are tolerant of imprecision, uncertainty and partial 

information.  Neural networks allow a degree of imprecision 

in the data used to train the nets without a great impact on 

the learning.  Our Self-Organizing Map was trained with a 

minimal subset of the training data, yet is quite capable of 

operating with immense data variability because perfect 

discrimination between bidding options is not required.   

We have shown that a combination of two self-organizing 

maps can be used to find an optimal strategy for no trump 

Bridge hands.  Although this uses only assertion, one of the 

four semantic and pragmatic elements of a bidding 

conversation, we can use similar techniques to model denial, 

asking questions, and interrupting.    
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