

Abstract—Multiplayer games with imperfect information, such

as Bridge, are especially challenging for game theory

researchers. Although several algorithmic techniques have

been successfully applied to the card play phase of the game,

bidding requires a much different approach. We have shown

that a special form of a neural network, called a self-organizing

map (SOM), can be used to effectively bid no trump hands. The

characteristic boundary that forms between resulting

neighboring nodes in a SOM is an ideal mechanism for

modeling the imprecise and ambiguous nature of the game.

Keywords : Bridge, Self-Organizing Map, Kohonen, Bidding

I. INTRODUCTION

Game theory is a particularly rich area for study. Many

researchers deal with two-player games, such as chess or

checkers, where each opponent is presented with full

information. A greater challenge, however, is multiplayer

games with both incomplete information and an element of

chance, such as Poker or Blackjack. The game of Bridge

falls in between these two extremes. It is a multiplayer

game, with opposing teams and incomplete information, but

the only element of chance involved is the initial randomness

in the deal.

 Several algorithmic approaches have proven somewhat

successful with multiplayer imperfect information games. [1]

Given the limited information provided, the missing

information is inferred. Generally, a Monte-Carlo sampling

technique generates a set of representative hands the

opponents may have. A standard minimax algorithm selects

the most likely holding and makes a corresponding move.

The model is update as additional information becomes

available. Eventually converging on an acceptable solution.

In Bridge, however, we are looking for the ideal solution

rather than just an acceptable solution.

The dealer distributes 13 cards from a standard 52-card

deck to each of four players who have been named according

the compass directions (North-South against East-West).

The game consists of two activities, the bid and the play of

the cards. Commercial products such as Bridge Baron,

GIB[2] and Jack, the World Computer Bridge champion,

have proven to be especially effective in the play of the

cards. Bidding, however, has shown to be a more complex

problem.

Bidding is a conversation between two cooperating team

members against an opposing partnership. Each partnership

uses an established bidding system to exchange information

and interpret their partner’s bidding sequence. Each player

only has knowledge of their own hand and any previous bids.

Bidding begins with the dealer and ends with a legitimate bid

followed by three sequential passes. The highest bid

becomes the contract. A Bridge contract consists of a suit

(or no trump) and a level. The level means the number of

tricks over a standard “book” of 6 tricks. Teams are

awarded bonus points if they bid and make “game” (3NT,

4♥, 4♠, 5♣, or 5♦) or “slam” (12-13 total tricks).

Once the final contract is reached, the opposing team lays

down an initial card and the play phase of the game begins.

Each player must present one card for each of the 13 tricks.

Players must all follow suit, if they have that suit, or play an

alternate suit if they don’t. In a no trump contract, the

highest card of the suit led takes the trick. In a trump

contract, in contrast, the highest card of the trump suit takes

precedence over all others. The contract indicates a guess as

to the number of tricks the team can take.

The scoring depends on the number of tricks taken and the

final contract. Points are scored for that team if they make or

exceed their contract or given to the other team if they fail in

their attempt. Additional points are granted based on

“vulnerability” of the team who wins the contract. Point

values vary depending scoring system used and the number

of competing tables. The IMP method awards points based

on the arithmetic difference between scores according to a

standard conversion table. The MP method, in contrast,

gives 2 points for each score worst that the pair’s score, 1

point for each equal score, and 0 points for each better score.

The winner is determined by the total points at the end of a

finite number of rounds.

Because the biggest differentiator between Bridge-playing

ability is the quality of the bidding, we will focus on creating

an effective method for computer bidding using an artificial

neural network. Cognitive studies have shown that human

performance in Bridge can be attributed to the acquisition of

high-level patterns and chunks of knowledge gained through

experience. Frank, Bundy and Basin [3] showed that

standard minimax may be applicable to the card play portion

of the game, but fails to extend to the bidding phase of the

game. Other models and algorithms needed to be developed

for this complex problem.

Bridge Bidding with Imperfect Information

Lori L. DeLooze United

States Naval Academy

572M Holloway Rd

Annapolis, MD 21402

delooze@usna.edu

 James Downey

University of Central Arkansas

201 Donaghey Avenue

Conway, AR 72035

downey@uca.edu

368

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

1-4244-0709-5/07/$20.00 ©2007 IEEE

Bridge bidding can be reduced to a multifaceted

conversation between partners. As such, it would seem

natural reduce it to its semantic and pragmatic elements [4].

Each bid can be classified as one of four common acts:

1. Asserting. “By making this bid, I assert that my hand

has these properties”

2. Denying. “By making this bid, I deny that my hand

has these properties”

3. Asking and Answering Questions. “If your hand is of

type 1, make bid 1; if it is of type 2, make bid 2, etc.

(e.g. asking how many aces your partner has)

4. Interrupting. “The primary purpose of this bid is to

stop the opponents communicating

Another approach that has shown some promise is a neural

network [5]. Neural networks take the raw input data and

construct appropriate outputs by successively recalculating

the weights on the connections between their nodes. Some

of the input nodes in a network for contract bridge would

include preprocessed values such as high card points and suit

length. Although these other approaches have used neural

networks in conjunction with other artificial intelligence

techniques, a special form of neural network is showing

some promise.

II. SELF-ORGANIZING MAPS

The Self-Organizing Map, also called a Kohonen Map, is

one of the most prominent artificial neural network models

adhering to the unsupervised learning model [6]. The model

consists of many neural processing units. Each of the units is

assigned a multi-dimensional weight vector, mi. The weight

vectors have the same dimensionality as the input patterns.

Training self-organizing maps involves input pattern

presentation and weight vector adaptation. Each training

iteration starts with the random selection of one input

pattern. The self-organizing map examines this pattern and

decides each unit’s activation.

Usually, the Euclidean distance between weight vector and

input pattern is used to calculate a unit's activation. The unit

with the lowest activation becomes the winner of the training

iteration. Finally, the weight vectors of the winner as well as

the weight vectors of selected units around the winner are

adapted. This adaptation results in a gradual reduction of the

component-wise difference between input pattern and weight

vector. The model generally consists of a two-dimensional

neuron arrangement (map), as shown in Figure 1, though

topologies of higher dimensions are also conceivable.

Figure 1: Self-Organizing Map

Each neuron has a representative set of M features, called

a vector. During the training process, the feature weights are

modified according to the input signal and the neurons

proximity to the winning neuron. Each weight is increased or

decreased to more closely resemble the matching the input

vector, with neurons closer to the winning neuron making

greater changes in the weights than those further away.

Because of the algorithm, an organized network develops

where similar input patterns are arranged with a degree of

proximity between the locations of excited neurons. The

neurons are arranged by the input patterns by neighborhoods.

That is, the neurons not are adapted individually, but with

neighboring neurons.

Unlike many other types of networks, a Self-Organizing

Map does not need a target output to be specified. Instead,

the area of the lattice where the node weights match the input

vector are selectively optimized to more closely resemble the

data for the class of the input vector. From an initial

distribution of random weights, and over many iterations, the

SOM eventually settles into a map of stable zones. Each

zone is effectively a feature classifier, so you can think of the

graphical output as a feature map of the input space. Any

new, previously unseen input vectors presented to the

network will stimulate nodes in the zone with similar weight

vectors.

Several variations of the Kohonen algorithm exist [7].

The algorithm used for the SOMs in this research is as

follows:

1. Initialize each node's weights.

2. Choose a vector at random from the set of

training data and present it to the lattice.

3. Examine every node and determine which

one's weights are most like the input vector.

The winning node is commonly known as the

Best Matching Unit (BMU).

4. Calculate the radius of the neighborhood of the

BMU. This is a value that starts large,

typically set to the 'radius' of the lattice, but

diminishes each time-step. Any nodes found

within this radius are deemed to be inside the

BMU's neighborhood.

5. Adjust the weights of each neighboring node

to make them more like the input vector. The

closer a node is to the BMU, the more its

weights get altered.

6. Repeat step 2 for N iterations.

One method to determine the best matching unit is to

iterate through all the nodes and calculate the Euclidean

distance between each node's weight vector, Wi, and the

current input vector, Vi. The node with a weight vector

closest to the input vector is tagged as the BMU. The

Euclidean distance is given as:

369

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

A unique feature of the Kohonen learning algorithm is the

area of the neighborhood shrinks over time. This is

accomplished by making the radius of the neighborhood

shrink over time. To do this, we use the exponential decay

function:

where σ0, stands for the width of the lattice at time t0, λ

denotes a time constant, and t is the current time-step

(iteration of the loop). Over time the neighborhood will

shrink to the size of just one node – the BMU. After fixing

the radius, we iterate through all the nodes in the lattice to

decide if they lie within the radius and adjust the weights

accordingly. Every node within the BMU's neighborhood

(including the BMU) has its weight vector adjusted

according to the following equation:

where t represents the time-step and L is a small variable

called the learning rate, which decreases with time. The

decay of the learning rate is calculated each iteration using

the following equation:

The learning rate at the start of training is set to some

constant and then gradually decays over time so during the

last few iterations it is close to zero. The effect of the

learning should decrease proportionally according to the

distance of the node from the BMU. In fact, the edges of the

BMU’s neighborhood should have barely any effect at all.

Ideally, the learning should fade over distance according to

the Gaussian decay shown in Figure 2.

Figure 2: Gaussian Decay Around BMU

To achieve this, all it takes is a slight adjustment to the

equation above.

where θ, represents the influence a node's distance from the

BMU has on its learning. θ(t) is given by

where dist is the distance a node is from the BMU and σ, is

the width of the neighborhood function. Note that θ also

decays over time. Geometrically speaking, the weight

vectors of the adapted units are moved a bit towards the

input pattern. The amount of weight vector movement is

guided by a learning rate decreasing in time. The number of

units that are affected by adaptation is determined by a so-

called neighborhood function. This number of units also

decreases in time. This movement has as a consequence. The

Euclidean distance between those vectors decreases and thus,

the weight vectors become more similar to the input pattern.

The respective unit is more likely to win at future

presentations of this input pattern. The consequence of

adapting not only the winner alone but also a number of units

in the neighborhood of the winner leads to a spatial

clustering of similar input patterns in neighboring parts of

the self-organizing map. Thus, similarities between input

patterns that are present in the multi-dimensional input space

are mirrored within the two- dimensional output space of the

self-organizing map.

The training process of the self-organizing map describes

a topology-preserving mapping from a high-dimensional

input space onto a two-dimensional output space where

patterns that are similar in terms of the input space are

mapped to geographically close locations in the output

space.

III. EXERIMENTAL SETUP

When setting up the initial training vector of the self-

organizing map, we decided that the only information

available to the bidder is the layout of his hand and the

current bidding history. Therefore, the input vector is a

series of discrete values to show the distribution of cards in

each suit and quality of the cards. Generally, Bridge players

value cards according to rank with ace = 4 points, king = 3

points, queen = 2 points and jack = 1 point. Although some

players also add or subtract points based on length or

shortness in a particular suit, we will ignore that factor

because it will be captured in the card distribution.

As with other attempts at using machine learning for

Bridge bidding [8], the first step is to produce training

examples. We generate a set of training instances that

represent card distribution by suit and the total number of

high card points (HCP) as described above. Each

distribution is then mapped to an appropriate bid according

to the guidelines published by the American Contract Bridge

League [9]. Generally a Bridge contract can be determined

in four phases: the opening bid, the responder’s response to

the opening bid, the opener’s response and, finally, the

responder’s final placement of the contract. Although some

card distributions benefit from additional communication, we

will limit the bidding history to these four phases.

370

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

The bidding history is necessary to interpret previous bids.

We have determined only 6 SOMs are required for an

accurate bidding scheme: opening bids, no trump responses,

primary responses, overcalls, re-bids by opener, and re-bids

by responder. The first SOM, the opening bid SOM (Figure

3), does not require any information on any previous bidding

history because these are based solely on the construction of

the hand under consideration. Opening bids fall into three

general categories: no-trump, major suit (hearts and spades)

and minor suits (clubs and diamonds). The remaining SOMs

are constructed to respond successively to the opening bid.

Figure 3: Opening Bids

To test the effectiveness of this bidding mechanism, we

will separate the auction from the play and stage a small

tournament between four teams at two tables. One table will

have two players sitting East-West bidding with our system,

designated as BridgeSOM, and North-South bidding with

Jack. The other table will have North-South bidding with

BridgeSOM and East-West bidding with Jack. The two

tables will play the same set of 24 boards. Once the bidding

is complete, Jack will play the cards for all four players.

A. No Trump Hands

Although BridgeSOM is able to bid on all randomly

distributed Bridge hands, we will simplify this initial

evaluation by using a special type of bridge hand that can be

played using very well defined rules. A No-trump hand has

15-17 High Card Points and is balanced. High Card Points

are simply the sum of the accumulated card ranks. Consider

the following hand:

♠KT ♥AKQ3 ♦J63 ♣K864

It has a total of 16 HCP spread among the four suits (3 in

spades + 9 in hearts + 1 in diamonds + 3 in clubs). In

addition, this hand is balanced which means that it has all

four suits distributed in a 3-3-3-4 configuration or with only

one card changed from that (ie, 2-3-3-5 or 4-2-3-4).

A computational scheme such as a self-organizing map is

ideal for Bridge because of the fuzzy boundaries between

sets. Note the Gaussian decay around each BMU in the

SOM, Figure 4. This means that adjacent nodes will match

both patterns to some degree, but the node will be labeled

with the pattern that matches best. If you ask any Bridge

player about a particular hand, they may be able to describe

two or more possible responses. These are the hands that fall

on these boundaries.

Mathematicians love to play Bridge because there are

some very logical guidelines for bidding and play. For

example, guidance suggests that a partnership needs a total

of 25 points for a game in no trump (3NT), 26 points for a

game in either hearts or spades (4♥or 4♠) and 29 points for

a game in diamonds and clubs (5♦ and 5♣).

Figure 4: Neighboring Neurons

If the first bidder sees a balanced hand with 15-17 points,

they should open the auction with 1 NT. Recall that a total

of 25 points is needed for a game in no trump. Therefore,

the responder (opener’s partner) should respond according to

the following rules:

1. With 0-7 points: Pass

2. With 8-9 points: bid 2NT (opener will go to

game, 3NT, with 17 points for a total of 25

points or pass and stay at 2NT for the contract.

3. With 10-15 points: bid 4NT, which asks the

partner to pass with 15 points, bid 5NT with 16,

bid 6NT with 17.

These rules are not programmed as a set of conditionals.

Instead, we create a set of training vectors that reflect these

possible configurations and label them with the appropriate

responses. The input vector consists of 5 values: the number

of cards in each suit and the total number of high card points.

For this evaluation, we will use the initial opening bid

SOM and the no trump response SOM, Figure 5. If there are

any opening bids other than the expected 1 NT bid, they will

be handled with the appropriate SOMs until a contract is

reached. The SOMs are created using representative training

sets well before the tournament. Getting a bid is almost

instantaneous, as we are simply finding the node that is the

best match to the current player’s card distribution, HCPs

and bidding history.

371

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

Figure 5: No Trump Responses

B. No Trump Results

 We tested the performance of BridgeSOM against Jack in

a match of 24 boards. Although the match was performed

and scored the same way as an official bridge match, all the

boards were configured for an initial 1NT bid, with the same

dealer each hand and no vulnerability designated for either

side. We turned off all special bidding features for Jack.

Neither Jack nor BridgeSOM made all bids as expected.

 Table 1 indicates the initial bid, the resulting final

contract, and final result for both Jack and BridgeSOM when

opening the bidding with identical hands.

Table 1

Jack vs BridgeSOM

Board Jack BridgeSOM

1 1NT/2NT/2NT 1NT/2NT/2NT

2 1NT/4NT/4NT 1NT/3NT/4NT

3 1NT/2NT/2NT 1C/2NT/2NT

4 1NT/3NT/3NT 1NT/4NT/3NT

5 1NT/3NT/3NT 1NT/3NT/3NT

6 1C/2H/2H 1NT/2NT/2NT

7 1NT/3NT/3NT 1NT/3NT/3NT

8 1NT/2NT/3NT 1NT/2NT/3NT

9 1NT/2NT/2NT 1H/2H/2NT

10 1NT/3NT/3NT 1NT/4NT/3NT

11 1NT/2NT/3NT 1NT/3NT/3NT

12 1NT/3NT/3NT 1NT/3NT/3NT

13 1H/3H/3H 1NT/3NT/2NT

14 1NT/3NT/2NT 1NT/3NT/2NT

15 1NT/2NT/3NT 1NT/3NT/3NT

16 1NT/3NT/2NT 1NT/2NT/2NT

17 1NT/3NT/4NT 1NT/3NT/4NT

18 1NT/3NT/3NT 1S/3S/3S

19 1NT/3NT/3NT 1NT/3NT/3NT

20 1NT/4NT/4NT 1NT/4NT/4NT

21 1NT/3NT/3NT 1NT/3NT/3NT

22 1NT/2NT/2NT 1NT/1NT/2NT

23 1NT/3NT/5NT 1NT/3NT/5NT

24 1NT/2NT/2NT 1NT/2NT/2NT

Points were awarded for the differences between final board

scores according to table 2.

Table 2

 IMP Table

Source: Duplicate Bridge, wikipedia.com

Jack won the tournament with 22 IMPs to BridgeSOM’s

17 IMPs. There were only 6 boards that presented

significant differences between the two systems: Boards 10,

11, 13, 15, 16, and 18. Of these, board 10 was the most

important. If the bidding had been different on this one

board, BridgeSOM could have won the tournament. The

bidding began the same with both systems. Jack however,

ended up with a 3NT game contract while BridgeSOM

ended up a level higher at 4NT. Because of the unlucky

distribution of the cards, the results were, in fact, just 3NT.

When we later examined the actual node that caused the

4NT bid rather than the alternative 3NT bid, it was on the

boundary between the two. The distribution and card values

for this hand, therefore, could have supported either a 3NT

or 4NT bid. If the cards had been distributed differently in

the opponents’ hands, we could both have both made 4NT.

This would have ended the tournament at 11 to 17, in our

favor.

IV. CONCLUSION

Self-organizing maps and other computational intelligence

methods are ideal for games with incomplete information.

They are tolerant of imprecision, uncertainty and partial

information. Neural networks allow a degree of imprecision

in the data used to train the nets without a great impact on

the learning. Our Self-Organizing Map was trained with a

minimal subset of the training data, yet is quite capable of

operating with immense data variability because perfect

discrimination between bidding options is not required.

We have shown that a combination of two self-organizing

maps can be used to find an optimal strategy for no trump

Bridge hands. Although this uses only assertion, one of the

four semantic and pragmatic elements of a bidding

conversation, we can use similar techniques to model denial,

asking questions, and interrupting.

372

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

REFERENCES

[1] N. Sturtevant, “A.Comparison of Algorithms for Multi-Player Games,”

Lecture Notes in Computer Science, Springer, Berlin, 2003.

[2] M. Ginsburg, “GIB: Imperfect Information in a Computationally

Challenging Game,” Journal of Artificial Intelligence Research 14,

(303-58), 2001.

[3] I. Frank, D. Basin and A. Bundy, “Combining knowledge and search to

solve Single-suit Bridge,” Proceedings of the Sixteenth National

Conference on Artificial Intelligence (195-200), 2000.

[4] B. Gamback, M. Rayner and B. Pell, “Pragmatic Reasoning in Bridge”,

Technical Report No 299, University of Cambridge, April 1993.

[5] B. Gambäck and M. Rayner. “A Micro-world for Reasoning about

Communicating Agents,”Proceedings of the 9th Annual Workshop

and Meeting of the Swedish Artificial Intelligence Society, (35-39)

Stockholm, Sweden, April 1990.

[6] M. Dittenbach, A. Rauber and D. Merkl, “Uncovering the Hierarchial

Structure in Data Using the Growing Hierarchical Self-Organizing

Map,” Neurocomputing, 58 (4) (199-216) 2002.

[7] T. Kohonen, Self-Organizing Maps and Associative Memory. Berlin:

Springer 1995.

[8] A. Amit and S. Markovitch. “Learning to Bid in Bridge,” Machine

Learning, 63 (287-327) 2006.

[9] A. Grant. Bidding. American Contract Bridge League, Memphis, TN,

1990.

373

Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (CIG 2007)

