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Abstract— In synchronized games the players make their
moves simultaneously and, as a consequence, the concept of
turn does not exist. Synchronized Cutcake is the synchronized
version of Cutcake, a classical two-player combinatorial game.
Even though to determine the solution of Cutcake is trivial,
solving Synchronized Cutcake is challenging because of the
calculation of the game’s value. We present the solution for
small board size and some general results for a board of
arbitrary size.
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I. INTRODUCTION

Cutcake is a classical two-player combinatorial game
introduced in [1], [2]. Every instance of this game is defined
as a set of rectangles of integer side-lengths with edges
parallel to the x- and y- axes. The two players are usually
called Left and Right. A legal move for Left is to divide one
of the rectangles into two rectangles of integer side-length by
means of a single cut parallel to the x-axis and a legal move
for Right is to divide one of the rectangles into two rectangles
of integer side-length by means of a single cut parallel to the
y- axis. Players take turns making legal moves until one of
them cannot move. Then that player leaves the game and the
remaining player is deemed the winner.

We use [L,R] to indicate a L by R rectangle and we
indicate a left move by

[L,R] → [L1, R] + [L2, R]

and a right move by

[L,R] → [L,R1] + [L,R2]

where L1+L2 = L, R1+R2 = R, and L1, L2, R1, R2 > 0.
We recall that in the game of Cutcake the outcome for a

L by R rectangle depends on the dimension of L and R as
shown in Table I. We recall that the floor of a real number
is defined as the largest integer less than or equal to x and
it is also denoted by bxc. It is interesting to observe that:

• if blog
2
Lc > blog

2
Rc then Left has a winning strategy,

• if blog
2
Lc < blog

2
Rc then Right has a winning

strategy, and
• if blog

2
Lc = blog

2
Rc then the game is a zero-game,

i.e., the player that makes the first move is the loser.

For example, in the game [8, 7] Left has a winning strategy
and in the game [3, 4] Right has a winning strategy but [7, 4]
is still a zero-game.

II. SYNCHRONIZED GAMES

The idea of synchronized games has been introduced in [3]
and it has been applied to the game of Tic-Tac-Toe in order
to revive this solved game. Following this, the same idea has
been applied to the game of Hex [4] in order to increase
the interestingness of this game using the concept of late
chance or outcome uncertainty. In synchronized games, both
players play simultaneously, therefore it does not exist any
unfair advantage due to the turn to move. In this work, we
apply the same idea to the game of Cutcake in order to study
the effects of synchronism on a typical combinatorial game.
In the game of Synchronized Cutcake a general instance and
the legal moves for Left and Right are defined exactly in
the same way as defined for the game of Cutcake. There is
only one difference: Left and Right make their legal moves
simultaneously, therefore if they choose to move in the same
rectangle then this rectangle will be divided in four rectangles
because the two cuts are performed simultaneously, i.e.,

[L,R] → [L1, R1] + [L1, R2] + [L2, R1] + [L2, R2].

If Left and Right choose to move in two different rectangles
then each of these rectangles will be divided in two rectangles
as usual.

In combinatorial game theory we can classify all games
into 4 outcome classes, which specify who has the winning
strategy when Left starts and who has the winning strategy
when Right starts. If G is a game then we have:

• G > 0 (positive game) if Left has a winning strategy,
• G < 0 (negative game) if Right has a winning strategy,
• G = 0 (zero game) if the player that makes the second

move has a winning strategy, and
• G ‖ 0 (fuzzy game) if the player that makes the first

move has a winning strategy.
In synchronized games, both players move simultaneously

and there exists the possibility to get a draw, therefore for
each player we have three possible cases:

• the player has a winning strategy (WS) independently
by the opponent’s strategy,

• the player has a drawing strategy (DS), i.e., he/she can
always get a draw in the worst case, and

• the player has a losing strategy (LS), i.e., he/she has
neither a winning nor a drawing strategy.

Table II shows all the possible cases. It is clear that if
one player has a winning strategy then the other one cannot
have either a winning strategy or drawing strategy therefore
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TABLE I

VALUE FOR RECTANGLES IN CUTCAKE

L\R 1 2 3 4 5 6 7 8

1 0 -1 -2 -3 -4 -5 -6 -7

2 1 0 0 -1 -1 -2 -2 -3

3 2 0 0 -1 -1 -2 -2 -3

4 3 1 1 0 0 0 0 -1

5 4 1 1 0 0 0 0 -1

6 5 2 2 0 0 0 0 -1

7 6 2 2 0 0 0 0 -1

8 7 3 3 1 1 1 1 0

TABLE II

OUTCOME CLASSES IN SYNCHRONIZED GAMES

L\R LS DS WS

LS G Q 0 G ≤ 0 G < 0

DS G ≥ 0 G = 0 -

WS G > 0 - -

the cases WS-WS, WS-DS, and DS-WS never happen. As
consequence, if G is a synchronized game then we have 6
possible legal cases:

• G > 0 if Left has a winning strategy,
• G = 0 if both player have a drawing strategy and the

game will always end in a draw under perfect play,
• G < 0 if Right has a winning strategy,
• G ≥ 0 if Left can always get a draw in the worst case

but he/she could be able to win if Right makes a wrong
move,

• G ≤ 0 if Right can always get a draw in the worst case
but he/she could be able to win if Left makes a wrong
move,

• G Q 0 if both players have a losing strategy and the
outcome is unpredictable.

III. SOLVING SYNCHRONIZED CUTCAKE

Table III shows the outcome for a L by R rectangle of
Synchronized Cutcake with L,R < 9. Here, we give some
results for a general L by R rectangle.

Lemma 1: Let G = [L,R] be a general rectangle of
Synchronized Cutcake. If L = R then either G = 0 or
G Q 0.

Proof: Because of the symmetry of the board, we have
three possible cases:

1) both players have a winning strategy,
2) both players have a drawing strategy, or
3) both players have a losing strategy.

According to the Table II, the first case never happens,
therefore either G = 0 or G Q 0.

Lemma 2: Let K be a positive integer and let G be
a general instance of Synchronized Cutcake where every
rectangle or pair of rectangles belongs to one of the following
classes:

1) [L,L],

TABLE III

OUTCOME FOR RECTANGLES IN SYNCHRONIZED CUTCAKE

L\R 1 2 3 4 5 6 7 8

1 = < < < < < < <

2 > = < < < < < <

3 > > = < < < < <

4 > > > = < < < <

5 > > > > = < < <

6 > > > > > = < <

7 > > > > > > = <

8 > > > > > > > =

2) [L + K,L],
3) [L,R] and [R,L],
4) [L,R] and [R + K,L],

where L,R > 0. If there exists at least one rectangle belong-
ing to the second class or a pair of rectangles belonging to
the fourth class then Right has not a strategy either to win
or to draw in the game G under perfect play.

Proof: We have four possible cases:

1) if Right moves in [L,L] then Left can make the
symmetrical move obtaining

[L1, L1] + [L1, L2] + [L2, L1] + [L2, L2],

2) if Right moves in [L + K,L] then we have

[L1, L1] + [L1, L2] + [L2 + K,L1] + [L2 + K,L2],

3) if Right moves in [L,R] then Left can move in [R,L]
obtaining

[L,R1] + [L,R2] + [R1, L] + [R2, L],

4) if Right moves in [L,R] then Left can move in [R +
K,L] obtaining

[L,R1] + [L,R2] + [R1, L] + [R2 + K,L].

We observe that in each of these cases the new rectangles
belong to one of the four classes mentioned in the hypothesis
and at least one rectangle belongs to the second class or a
pair of rectangles belongs to the fourth class therefore by the
inductive hypothesis Right has not a strategy either to win
or to draw in G.

Lemma 3: Let K be a positive integer and let G be
a general instance of Synchronized Cutcake where every
rectangle or pair of rectangles belongs to one of the following
classes:

1) [R,R],
2) [R,R + K],
3) [L,R] and [R,L],
4) [L,R] and [R,L + K],

where L,R > 0. If there exists at least one rectangle belong-
ing to the second class or a pair of rectangles belonging to
the fourth class then Left has not a strategy either to win or
to draw in the game G under perfect play.

Proof: Analogous to the Lemma 2.
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Lemma 4: Let G be a general instance of Synchronized
Cutcake. If for every rectangle [L,R] we have blog

2
Lc ≥

blog
2
Rc and there exists at least one rectangle [A,B] such

that blog
2
Ac > blog

2
Bc then Left has a winning strategy.

Proof: We observe that if Left makes the following
move

[A,B] → [A1, B] + [A2, B]

where A1 = bA/2c and A2 = dA/2e then we have two
possible cases:

1) If Right moves in [A,B] we have

[A,B] → [A1, B1] + [A1, B2] + [A2, B1] + [A2, B2].

Assuming B1 ≥ B2, we have
a) blog

2
A1c ≥ blog

2
B1c,

b) blog
2
A1c > blog

2
B2c,

c) blog
2
A2c ≥ blog

2
B1c,

d) blog
2
A2c > blog

2
B2c.

2) If Right moves in another rectangle

[L,R] → [L,R1] + [L,R2]

then we have, assuming R1 ≥ R2,
a) blog

2
A1c ≥ blog

2
Bc,

b) blog
2
A2c ≥ blog

2
Bc,

c) blog
2
Lc ≥ blog

2
R1c,

d) blog
2
Lc > blog

2
R2c.

Therefore, in both cases and by the inductive hypothesis Left
has a winning strategy.

Lemma 5: Let G be a general instance of Synchronized
Cutcake. If for every rectangle [L,R] we have blog

2
Rc ≥

blog
2
Lc and there exists at least one rectangle [A,B] such

that blog
2
Bc > blog

2
Ac then Right has a winning strategy.

Proof: Analogous to the Lemma 4.
Theorem 1: Let G = [L,R] be a rectangle of Synchro-

nized Cutcake. We can distinguish five different cases:
1) if blog

2
Lc > blog

2
Rc then Left has a winning

strategy,
2) if blog

2
Lc = blog

2
Rc and L > R then Right has not

a strategy either to win or to draw,
3) if L = R then either G = 0 or G Q 0,
4) if blog

2
Lc = blog

2
Rc and L < R then Left has not

a strategy either to win or to draw,
5) if blog

2
Lc < blog

2
Rc then Right has a winning

strategy.
Proof: By the previous lemmas.

Conjecture 1: Let G = [L,R] be a rectangle of Synchro-
nized Cutcake. We can distinguish three different cases:

1) if L = R then G = 0, i.e., the game ends in a draw,
2) if L > R then G > 0, i.e., Left has a winning strategy,
3) if L < R then G < 0, i.e., Right has a winning strategy.
We observe that if we prove 1) then we can easily prove

2) and 3). For example, in the game [L+K,L] with K > 0
if Left applies his/her drawing strategy in the sub-rectangle
[L,L] then he/she will have at least KL moves of advantage
at the end of the game. The conjecture 1 is supported by the
previous theorem and the results for small rectangles shown

in Table III but further efforts are necessary for a formal
proof.

IV. VALUES OF RECTANGLES IN SYNCHRONIZED

CUTCAKE

In order to establish the winning strategy for a general
rectangle and for a general instance of Synchronized Cut-
cake, it is necessary to define a function v which represents
the value of the game, i.e., the advantage of one player, in
terms of moves, with respect to the opponent. We observe
that:

• v([1, 1]) = 0 because the game

is a draw.
• Analogously, the game

ends in a draw therefore v([2, 2]) = 0.
• v([L, 1]) = L − 1 because Left can make L − 1 moves

respect to Right.
• Analogously, v([1, R]) = −R + 1, assuming that the

advantage for Right is negative.

Which is the value of ?

After the first synchronized move, the instance becomes

+ + +

and Left has two moves of advantage therefore v([3, 2]) must
be positive. In the game

+

Right has a winning strategy because we have

+ + +

and successively,

+ + + + +

therefore v([3, 2]) must be less than 1. You can check easily
that in the game

+ +

Right has still a winning strategy therefore v([3, 2]) must be
less than 1

2
. Actually, Right has a winning strategy even if

we add an arbitrary number of [3, 2] rectangles,

+ + + . . . + +

therefore v([3, 2]) is an infinitesimal number because it must
be less than all the positive fractions. We denote it by ε.
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TABLE IV

VALUE FOR RECTANGLES IN SYNCHRONIZED CUTCAKE

2 3 4 5 6 7

2 0 −ε -1 −1 − ε -2 −2 − ε

3 ε 0 −1 + 2ε −1 + ε −2 + 3ε −2 + 2ε

4 1 1 − 2ε 0 −ε3 −ε −3ε

5 1 + ε 1 − ε ε3 0 −ε2 −2ε + ε3

6 2 2 − 3ε ε ε2 0 −ε3

7 2 + ε 2 − 2ε 3ε 2ε − ε3 ε3 0

The game [6, 5] is really amazing because in the game
[2, 3]+[6, 5] Right has a winning strategy, therefore v([6, 5])
must be less than ε. You can check easily that in the game
[2, 3] + [6, 5] + [6, 5] Right has still a winning strategy,
therefore v([6, 5]) must be less than ε

2
. Actually, Right has

a winning strategy even if we add an arbitrary number of
[6, 5] rectangles therefore v([6, 5]) must be smaller than ε

n

for any n and we denote it by ε2. Analogously, we denote
v([5, 4]) by ε3 being infinitesimally smaller than v([6, 5]).
Using the same reasoning we can calculate the values of the
other rectangles as shown in Table IV.

The following theorems hold.
Theorem 2: Let [n, 2] be a rectangle of Synchronized

Cutcake with n ≥ 4. We have

v([n, 2]) =

{

n−2

2
if n is even

n−3

2
+ ε if n is odd

Proof: We can distinguish 4 different cases.

1) n ≡ 0 (mod 4).

v([n, 2]) = v

([

n

2
, 2

])

+ v

([

n

2
, 2

])

+ 1

=
n − 4

4
+

n − 4

4
+ 1

=
n − 2

2

2) n ≡ 1 (mod 4).

v([n, 2]) = v

([

n + 1

2
, 2

])

+ v

([

n − 1

2
, 2

])

+ 1

=
n − 5

4
+ ε +

n − 5

4
+ 1

=
n − 3

2
+ ε

3) n ≡ 2 (mod 4).

v([n, 2]) = v

([

n + 2

2
, 2

])

+ v

([

n − 2

2
, 2

])

+ 1

=
n − 2

4
+

n − 6

4
+ 1

=
n − 2

2

4) n ≡ 3 (mod 4).

v([n, 2]) = v

([

n + 1

2
, 2

])

+ v

([

n − 1

2
, 2

])

+ 1

=
n − 3

4
+

n − 7

4
+ ε + 1

=
n − 3

2
+ ε

In each case the middle equality follows from the inductive
hypothesis.

Theorem 3: Let [n, 3] be a rectangle of Synchronized
Cutcake with n ≥ 4. We have

v([n, 3]) =

{

n−2

2
− n

2
ε if n is even

n−3

2
− n−3

2
ε if n is odd

Proof: We can distinguish 4 different cases.

1) n ≡ 0 (mod 4).

v([n, 3]) = v

([

n

2
, 3

])

+ v

([

n

2
, 3

])

+ 1

=
n − 4

4
−

n

4
ε +

n − 4

4
−

n

4
ε + 1

=
n − 2

2
−

n

2
ε

2) n ≡ 1 (mod 4).

v([n, 3]) = v

([

n + 1

2
, 3

])

+ v

([

n − 1

2
, 3

])

+ 1

=
n − 5

4
−

n − 5

4
ε +

n − 5

4
−

n − 1

4
ε + 1

=
n − 3

2
−

n − 3

2
ε

3) n ≡ 2 (mod 4).

v([n, 3]) = v

([

n + 2

2
, 3

])

+ v

([

n − 2

2
, 3

])

+ 1

=
n − 2

4
−

n + 2

4
ε +

n − 6

4
+

n − 2

4
ε + 1

=
n − 2

2
−

n

2
ε

4) n ≡ 3 (mod 4).

v([n, 3]) = v

([

n + 1

2
, 3

])

+ v

([

n − 1

2
, 3

])

+ 1

=
n − 3

4
−

n + 1

4
ε +

n − 7

4
+

n − 7

4
ε + 1

=
n − 3

2
−

n − 3

2
ε

In each case the middle equality follows from the inductive
hypothesis.

Theorem 4: Let [n, 4] be a rectangle of Synchronized
Cutcake with n ≥ 8. We have

v([n, 4]) =















n−4

4
if n ≡ 0 (mod 4)

n−5

4
+ ε3 if n ≡ 1 (mod 4)

n−6

4
+ ε if n ≡ 2 (mod 4)

n−7

4
+ 3ε if n ≡ 3 (mod 4)

Proof: We can distinguish 8 different cases.
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1) n ≡ 0 (mod 8).

v([n, 4]) = v

([

n

2
, 4

])

+ v

([

n

2
, 4

])

+ 1

=
n − 8

8
+

n − 8

8
+ 1

=
n − 4

4

2) n ≡ 1 (mod 8).

v([n, 4]) = v

([

n + 1

2
, 4

])

+ v

([

n − 1

2
, 4

])

+ 1

=
n − 9

8
+ ε3 +

n − 9

8
+ 1

=
n − 5

4
+ ε3

3) n ≡ 2 (mod 8).

v([n, 4]) = v

([

n + 2

2
, 4

])

+ v

([

n − 2

2
, 4

])

+ 1

=
n − 10

8
+ ε +

n − 10

8
+ 1

=
n − 6

4
+ ε

4) n ≡ 3 (mod 8).

v([n, 4]) = v

([

n + 3

2
, 4

])

+ v

([

n − 3

2
, 4

])

+ 1

=
n − 11

8
+ 3ε +

n − 11

8
+ 1

=
n − 7

4
+ 3ε

5) n ≡ 4 (mod 8).

v([n, 4]) = v

([

n + 4

2
, 4

])

+ v

([

n − 4

2
, 4

])

+ 1

=
n − 4

8
+

n − 12

8
+ 1

=
n − 4

4

6) n ≡ 5 (mod 8).

v([n, 4]) = v

([

n + 3

2
, 4

])

+ v

([

n − 3

2
, 4

])

+ 1

=
n − 5

8
+

n − 13

8
+ ε3 + 1

=
n − 5

4
+ ε3

7) n ≡ 6 (mod 8).

v([n, 4]) = v

([

n + 2

2
, 4

])

+ v

([

n − 2

2
, 4

])

+ 1

=
n − 6

8
+

n − 14

8
+ ε + 1

=
n − 6

4
+ ε

8) n ≡ 7 (mod 8).

v([n, 4]) = v

([

n + 1

2
, 4

])

+ v

([

n − 1

2
, 4

])

+ 1

=
n − 7

8
+

n − 15

8
+ 3ε + 1

=
n − 7

4
+ 3ε

In each case the middle equality follows from the inductive
hypothesis.

Theorem 5: Let [n, 5] be a rectangle of Synchronized
Cutcake with n ≥ 8. We have

v([n, 5]) =















n−4

4
− n

4
ε3 if n ≡ 0 (mod 4)

n−5

4
− n−5

4
ε3 if n ≡ 1 (mod 4)

n−6

4
+ ε2 − n−6

4
ε3 if n ≡ 2 (mod 4)

n−7

4
+ 2ε − n−3

4
ε3 if n ≡ 3 (mod 4)

Proof: We can distinguish 8 different cases.

1) n ≡ 0 (mod 8).

v([n, 5]) = v

([

n

2
, 5

])

+ v

([

n

2
, 5

])

+ 1

=
n − 8

8
−

n

8
ε3 +

n − 8

8
−

n

8
ε3 + 1

=
n − 4

4
−

n

4
ε3

2) n ≡ 1 (mod 8).

v([n, 5]) = v

([

n + 1

2
, 5

])

+ v

([

n − 1

2
, 5

])

+ 1

=
n − 9

8
−

n − 9

8
ε3 +

n − 9

8
−

n − 1

8
ε3 + 1

=
n − 5

4
−

n − 5

4
ε3

3) n ≡ 2 (mod 8).

v([n, 5]) = v

([

n + 2

2
, 5

])

+ v

([

n − 2

2
, 5

])

+ 1

=
n − 10

8
+ ε2 −

n − 10

8
ε3 +

n − 10

8
−

n − 2

8
ε3 + 1

=
n − 6

4
+ ε2 −

n − 6

4
ε3

4) n ≡ 3 (mod 8).

v([n, 5]) = v

([

n + 3

2
, 5

])

+ v

([

n − 3

2
, 5

])

+ 1

=
n − 11

8
+ 2ε −

n − 3

8
ε3 +

n − 11

8
−

n − 3

8
ε3 + 1

=
n − 7

4
+ 2ε −

n − 3

4
ε3
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5) n ≡ 4 (mod 8).

v([n, 5]) = v

([

n + 4

2
, 5

])

+ v

([

n − 4

2
, 5

])

+ 1

=
n − 4

8
−

n + 4

8
ε3 +

n − 12

8
−

n − 4

8
ε3 + 1

=
n − 4

4
−

n

4
ε3

6) n ≡ 5 (mod 8).

v([n, 5]) = v

([

n + 3

2
, 5

])

+ v

([

n − 3

2
, 5

])

+ 1

=
n − 5

8
−

n + 3

8
ε3 +

n − 13

8
−

n − 13

8
ε3 + 1

=
n − 5

4
+

n − 5

4
ε3

7) n ≡ 6 (mod 8).

v([n, 5]) = v

([

n + 2

2
, 5

])

+ v

([

n − 2

2
, 5

])

+ 1

=
n − 6

8
−

n + 2

8
ε3 +

n − 14

8
+ ε2 −

n − 14

8
ε3 + 1

=
n − 6

4
+ ε2 −

n − 6

4
ε3

8) n ≡ 7 (mod 8).

v([n, 5]) = v

([

n + 1

2
, 5

])

+ v

([

n − 1

2
, 5

])

+ 1

=
n − 7

8
−

n + 1

8
ε3 +

n − 15

8
+ 2ε −

n − 7

8
ε3 + 1

=
n − 7

4
+ 2ε −

n − 3

4
ε3

In each case the middle equality follows from the inductive
hypothesis.
The following theorems can be proven in the same way.

Theorem 6: Let [n, 6] be a rectangle of Synchronized
Cutcake with n ≥ 8. We have

v([n, 6]) =















n−4

4
− n

4
ε if n ≡ 0 (mod 4)

n−5

4
− n−5

4
ε − ε2 if n ≡ 1 (mod 4)

n−6

4
− n−6

4
ε if n ≡ 2 (mod 4)

n−7

4
− n−7

4
ε − ε3 if n ≡ 3 (mod 4)

Theorem 7: Let [n, 7] be a rectangle of Synchronized
Cutcake with n ≥ 8. We have

v([n, 7]) =















n−4

4
− 3n

4
ε if n ≡ 0 (mod 4)

n−5

4
− 3n−7

4
ε + ε3 if n ≡ 1 (mod 4)

n−6

4
− 3n−18

4
ε − ε3 if n ≡ 2 (mod 4)

n−7

4
− 3n−21

4
ε if n ≡ 3 (mod 4)

V. CONCLUSIONS

In conclusion, introducing synchronism in the game of
Cutcake has two remarkable effects on this game. On the
one hand, there exist no more zero-games, i.e, games where
the winner depends exclusively on the player that makes the
second move; on the other hand, there exists the possibility
to get a draw which is impossible in a typical combinatorial
game. To establish the value of a general L by R rectangle
is much more difficult than Cutcake because of synchronism
and further efforts are necessary to solve completely this
game. Future works concern the resolution of the following
open problems:

• to prove the Conjecture 1,
• to determine the value of an arbitrary L by R rectangle,
• to analyze other games in order to establish a general

mathematical theory about synchronized combinatorial
games.
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