


Abstract— A genetic algorithm with injecting artificial
chromosomes was developed for solving the single machine
scheduling problems with the objective to minimize the total
deviation. Artificial chromosomes are generated according to a
probability matrix which was transformed from the gene
structure of an elite base. A roulette wheel selection method was
applied to generate an artificial chromosome by assigning genes
onto each position according to the probability matrix. The
higher the probability is, the more possible that the gene will
show up in that particular position. By injecting these artificial
chromosomes, the Genetic Algorithm will speed up the
convergence of the evolutionary processes. Intensive
experimental results indicate that the proposed algorithm is very
encouraging and it can improve the solution quality
significantly.
Keywords: Genetic Algorithm; Mining Gene Structure Information,
Artificial Chromosomes

I. INTRODUCTION

More and more sophisticated evolutionary algorithms (EAs)
have been proposed and developed to solve combinatorial
problems in recent years. Some of them were quite successful;
however, it is not always clear why and how an EA works
[1-4]. In this research, we took a close look at the evolutionary
process for a single machine scheduling problem and came out
with the new idea of generating artificial chromosomes to
further improve the solution quality of the genetic algorithm.
This study examined the evolutionary process and tried to
develop a probability matrix to guide the evolutionary
procedure. From the point of view of searching each gene
allocation distribution, a simple gene mutation matrix was
developed. In addition, the proposed approach was also used
to illustrate how insights gained which can be further
converted into our understanding of EA's behaviors and guide
us in developing new and better techniques. The proposed
algorithm will be tested on a single machine scheduling
problems with the objectives to minimize the total deviations.
In addition, the proposed algorithm will be compared with a
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set of dominance properties developed by us in earlier studies
to evaluate the effectiveness of the new algorithm.

II. PROBLEM STATEMENTS

Genetic algorithms (GAs) are powerful search techniques
that are used successfully to solve problems in many different
disciplines. The genetic algorithm relies on genetic operators
for selection, crossover, mutation, and replacement. The
selection operators use the fitness values to select a portion of
the population to be parents for the next generation. Parents
are combined using the crossover and mutation operators to
produce offsprings. This process combines the fittest
chromosomes and passes superior genes to the next generation,
thus providing new points in the solution space. The
replacement operators ensure that the ‘leastfit’ or weakest 
chromosomes of the population are displaced by more fit
chromosomes. However, as observed by most researchers the
GA will be trapped into local optimality in the earlier stages
and cannot be converged into global optimal in most of the
cases. The problems with the steady states GAs having
premature convergence led to the desire to further improve the
convergence of the algorithm. Especially, for most
combinatorial problems such as Traveling Salesman Problems
(TSP), machine scheduling problems, and vehicles routing
problems are very difficult to solve and even for moderate
cases the GA will be converged prematurely.
In this paper, a deterministic single machine scheduling

problem without release dates is investigated and the objective
is to minimize the total sum of earliness and tardiness
penalties. A detailed formulation of the problem is described
as follows: A set of n independent jobs
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be scheduled without preemptions on a single machine that
can handle at most one job at a time. The machine is assumed
to be continuously available from time zero onwards and
unforced machine idle time is not allowed. Job , 1, 2, ,

j
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becomes available for processing at the beginning, requires a
processing time

j
p and should be completed on its due
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completion time of
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J . The objective is then to find a schedule

that minimizes the sum of the earliness and tardiness penalties
of all jobs 1 ( )n
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and tardiness penalties of job
j

J . The inclusion of both

earliness and tardiness costs in the objective function is
compatible with the philosophy of just-in-time production,
which emphasizes producing goods only when they are
needed. The early cost may represent the cost of completing a
product early, the deterioration cost for a perishable goods or
a holding (stock) cost for finished goods. The tardy cost can
represent rush shipping costs, lost sales and loss of goodwill.
It is assumed that no unforced machine idle time is allowed, so
the machine is only idle if no job is currently available for
processing. This assumption reflects a production setting
where the cost of machine idleness is higher than the early cost
incurred by completing any job before its due date, or the
capacity of the machine is limited when compared with its
demand, so that the machine must indeed be kept running.
Some specific examples of production settings with these
characteristics are provided by Ow and Morton[15], Azizoglu,
et al. [4], Wu and Storer and Chang [23], Su and Chang [19]
and Su and Chang[20]. The set of jobs is assumed to be ready
for processing at the beginning which is a characteristic of the
deterministic problem. As a generalization of weighted
tardiness scheduling, the problem is strongly NP-hard in
Lenstra, Rinnooy Kan and Brucker [12]. To the best of our
knowledge, the earlier work in this problem is due to Chang
and Lee [7], Chang and Lee[6], Wu, S.D., Storer, R.H. and
Chang [23], Chang [8]. Belouadah et al. [5] delt with the
similar problem however with a different objective in
minimizing the total weighted completion time and the
problem is the same as discussed in Hariri and Potts[10]. Kim,
Y.-D.and C. A. Yano. [11] discussed some properties of the
optimal solution, and these properties are used to develop both
optimal and heuristic algorithms. Later on, Akturk and
Ozdemir [3][2] developed various dominance rules to solve
the problem. Valente and Alves [21][22] presented a
branch-and-bound algorithm based on a decomposition of the
problem into weighted earliness and weighted tardiness
subproblems. Two lower bound procedures were presented
for each subproblem, and the lower bound for the original
problem is then simply the sum of the lower bounds for the
two subproblems. In Valente and Alves[22], they analyze the
performance of various heuristic procedures, including
dispatch rules, a greedy procedure and a decision theory
search heuristic.

The early/tardy problem with equal release dates and no
idle time, however, has been considered by several authors,
and both exact and heuristic approaches have been proposed.
Among the exact approaches, branch-and-bound algorithms
were presented by Abdul-Razaq and Potts[1], Li[13] and Liaw
[14]. The lower bounding procedure of Abdul-Razaq and
Potts was based on the subgradient optimization approach and
the dynamic programming state-space relaxation technique,
while Li and Liaw used Lagrangean relaxation and the
multiplier adjustment method. Among the heuristics, Ow and
Morton[15] developed several dispatch rules and a filtered

beam search procedure. Valente and Alves[22] presented an
additional dispatch rule and a greedy procedure, and also
considered the use of dominance rules to further improve the
schedule obtained by the heuristics. A neighborhood search
algorithm was also presented by Li [13]

III. METHODOLOGY

As surveyed in the literature, most approaches in solving
the single machine scheduling problems are traditional
optimization methods such as Branch and Bound; Dynamic
programming; Lagrangean relaxation and Heuristics. Instead,
the Genetic Algorithm is proposed in this research to solve the
SME problems. However, to prevent the premature
convergence, artificial chromosomes will be generated to
speed up the convergence and jump out the local optimality to
reach a near global optimal.

The first observation in this research is that during the
evolving process of the GA, all the chromosomes will
converge slowly into certain distribution after the final runs. If
we take a close look at the distribution of each gene in each
assigned position, we will find out that most the genes will be
converged into certain locations which means gene can be
allocated to the position if there is a probabilistic matrix to
guide the assignment of each gene to each position.

Artificial Chromosomes are developed according to this
observation and a dominance matrix will record this gene
distribution information. The dominance matrix is
transformed into a probability matrix to decide the next
assignment of a gene to a position. Consequently, AC is
integrated into the procedure of Genetic Algorithm and it
attends to improve the performance of Genetic Algorithm.
The primary procedure is to collect gene information first and
to use the gene information to generate artificial chromosomes.
Before collecting the gene information, AC collects the
chromosomes whose fitness is better by comparing the fitness
value of each chromosome with average fitness value of
current population. Thus, the average fitness is calculated.
The following is the detail procedure of the AC approach.
MainProcedure
Population: The population used in the Genetic Algorithm
Generations: The number of generations
startingGen: It determines when does the AC works
interval: The frequency to generate artificial chromosomes

1. Initiate Population
2. ConstructInitialPopulation(Population)
3. RemovedIdenticalSolution()
4. counter 0
5. while counter < generations do
6. Evaluate Objectives and Fitness()
7. FindEliteSolutions(i)
8. if counter < startingGen or counter %

interval != 0 do
9. Selection with Elitism Strategy()
10. Crossover()
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11. Mutation()
12. TotalReplacement()
13. else
14. CalculateAverageFitness()
15. CollectGeneInformation()
16. GenerateArtificialChromsomomes()
17.  Replacement()

18. End if
19. counter counter + 1
20. end while

There are two parameters of this algorithm, which are
startingGen and interval. We have done a parameter
configuration experiment by DOE, and shows that there is no
significant difference. So the startingGen and interval are set
to 500 and 50, respectively.
Step 1:To Calculate Average Fitness and to Convert Gene
Information into Dominance Matrix

Instead of collecting all gene information from a population,
the method selects better chromosomes which are compared
with the average fitness of the population in the current
generation. For a better chromosome, if job i exists at position
j, the number of occurrence of ijX is incremented by 1. Take

a five jobs problem for example (see Figure 1), suppose that
there are ten sequences (chromosomes) whose fitness is better
than the average fitness. Then, we accumulate the gene
information from these ten chromosomes into dominance
matrix. For the position 1, there are two job 1, two job 2, 2 two
3, one job 4, and three job 5. Therefore, the dominance matrix
contains the gene information from better chromosomes is
illustrated in Figure 1.

Step 2: Generate Artificial Chromosomes

As soon as we collect gene information into dominance matrix,
we are going to assign jobs onto the positions of each artificial
chromosome. The assignment sequence for every position is
assigned randomly, which is able to diversify the artificial
chromosomes. After we determine the assignment sequence,
we select one job assigned to each position by roulette wheel
selection method based on the probability of each job on this
position. After we assign one job to a position, the job and
position in the dominance matrix are removed. Then, the
method continues to select the next job until all jobs are
assigned. Suppose we will assign the first job at position 3 in
the beginning, which shown in Figure 2. The frequency of
each job at position 3 is [1, 3, 1, 1, 4] from job 1 to job 5.
Because the number of total frequency is 10, the
corresponding probability for job 1 is 1/10, job 2 is 3/10, and
so on. Then, we accumulate the probability from job 1 to 5 and
roulette wheel select is able to apply this accumulated
probability. This information is shown at the last column of
the Figure 2. If there is a random probability 0.6, the job 4 is
assigned to position 3.

Replacement Strategy
After injecting artificial chromosomes into the population, we
use   strategy, which combines previous parent
population and artificial chromosomes. Then, we select better
 chromosomes from the combined population.
Consequently, better solutions are preserved to the next
generation.

3 5 4 1 2

1 2 3 5 4

5 1 2 3 4

2 4 5 3 1

4 1 2 3 5

5 3 1 2 4

2 4 5 1 3

3 4 5 2 1

5 1 2 4 3

1 3 5 4 2

Chrom osom e 2

Chrom osom e 1

Chrom osom e 3

Chrom osom e 4

Chrom osom e 5

Chrom osom e 6

Chrom osom e 7

Chrom osom e 8

Chrom osom e 9

Chrom osom e 10

D om inance M atrix

Position

1 2 3 4 5

1 2 3 1 2 2

2 2 1 3 2 2

3 2 2 1 3 2

4 1 3 1 2 3

5 3 1 4 1 1

Job

Fig. 1. To collect gene information and Converted into a Dominance Matrix
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Pos. 3 Prob.

1 1 1/10

2 3 4/10

3 1 5/10

4 1 6/10

5 4 10/10

Job

1/10

3/10

1/10

1/10

4/10

Accum

Fig. 2. The probability and accumulated probability of each job for position
3

Updated Dominance Matrix

Position

1 2 3 4 5

1 2 3 1 2 2

2 2 1 3 2 2

3 2 2 1 3 2

4 1 3 1 2 3

5 3 1 4 1 1

Job

Fig. 3. The updated dominance matrix after assigning job 4 at position 3

After assigning the job 4 at position 3, suppose the position
2 is the next one to be assigned. It is shown in figure 4. Thus,
in the same procedures, the probability of each job is
calculated as well as the accumulated probability. Then,
roulette wheel selection method will select a job based on
these probability of each job. Consequently, the algorithm
iteratively selects others jobs to a position until all jobs are
assigned.

P os. 2 Prob .

1 3 3/7

2 1 4/7

3 2 6/7

5 1 7/7

Job

3/7

1/7

2/7

1/7

A ccum

Fig. 4. The probability and accumulated probability of each job for position
2

IV. EXPERIMENTAL RESULTS

To test the effectiveness of ACGA, we compared this
algorithm with Dominance Properties, and GA with
Dominance Properties. In addition, in order to make sure that
the proposed algorithm works well, single machine scheduling
problems with the objective to minimize the early-tardy cost
are presented. The testing instances are taken from Sourd [18]
for benchmark tests.

Sourd [18] provided numerous data sets, including 20, 30,
40, 50, 60, and 90. Each job set of 20 jobs to 50 jobs contains
49 combinations while there are 9 instances in the job set of 60
jobs and 90 jobs. We carried out our experiment on these 214
instances and each instance is replicated 30 times. The
stopping criterion is the number of examined solutions, which
is 100,000 solutions. The parameters of GA includes the
crossover rate, mutation rate, and population size are set as 0.8,
0.5, and 100, respectively. The proposed algorithm is
compared with a Simple Genetic algorithm (SGA), a genetic
algorithm with dominance properties (GADP) that was
proposed by our previous work, a GA with injecting AC
(ACGA), and a hybrid algorithm ACGADP. The GADP
applies a heuristic to generate a good initial population in the
beginning and it is able to enhance the exploration ability of
Simple Genetic Algorithm. Finally, an average relative error
is applied as a performance metric that shows each average
objective with respect to its optimal solution. The equation is
calculated by ( ) / *100%avgObj Opt Opt where the avgObj is
the average objective value obtained by each algorithm. These
results are depicted at Table 1 and the completed test results
are available on our website1.

TABLE 1.

The average relative error ratio of the four algorithms (%)

Instance SGA GADP ACGA ACGADP

sks222a 5402 5291 5289 5288.7

sks225a 4174 3959 3958 3958

sks228a 2156 2085 2085 2085

sks252a 4195 3947 3979 3947

sks255a 2489 2372 2380 2372.5

sks258a 1250 1242 1200 1192.7

sks282a 4435 4353 4351 4353.8

sks285a 4643 4452 4452 4452

sks288a 3518 3421 3421 3421

sks322a 12066 11572 11577 11570

sks325a 8152 7703 7587 7587

sks328a 3556 3164 3164 3164

sks352a 8203 7395 7394 7394.2

sks355a 6849 6068 6065 6057.5

sks358a 3283 3074 3073 3072.5

sks382a 11319 11152 11149 11142

sks385a 9212 9148 9148 9148

sks388a 11499 11317 11317 11317

sks422a 26211 25658 25659 25657

sks425a 13592 12604 12606 12601

1

http://ppc.iem.yzu.edu.tw/publication/sourceCodes/InjectionArtificialChro
mosomes/
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sks428a 7741 7129 7129 7129

sks452a 12634 11367 11406 11367

sks455a 7566 6405 6427 6405

sks458a 5587 4303 4321 4300.4

sks482a 20122 19580 19573 19562

sks485a 16023 15309 15338 15350

sks488a 17999 16881 16863 16863

sks522a 4.483 0.044 0.010 0.003

sks525a 2.674 0.012 0.020 0.004

sks528a 11.47 0.213 0.370 0.056

sks552a 8.590 0.000 0.136 0.000

sks555a 20.08 0.550 0.285 0.216

sks558a 39.40 0.545 0.000 0.000

sks582a 4.349 0.637 0.029 0.168

sks585a 4.165 0.008 0.044 0.089

sks588a 6.352 0.008 0.004 0.004

sks622a 4.576 0.000 0.167 0.000

sks625a 5.720 0.095 0.123 0.095

sks628a 8.119 0.059 0.070 0.047

sks652a 7.211 0.000 0.227 0.000

sks655a 18.44 0.000 0.371 0.000

sks658a 32.13 0.001 0.329 0.002

sks682a 2.604 0.584 0.090 0.540

sks685a 4.359 0.032 0.050 0.016

sks688a 6.781 0.307 0.262 0.283

sks922a 5.769 0.861 0.060 0.534

sks925a 6.108 0.010 0.037 0.024

sks928a 23.81 0.494 0.438 0.574

sks952a 12.79 0.056 0.202 0.043

sks955a 32.25 0.268 0.330 0.265

sks958a 53.73 0.135 0.401 0.336

sks982a 3.784 0.434 0.031 0.475

sks985a 8.519 0.186 0.151 0.190

sks988a 11.51 0.011 0.022 0.013

Avg ER 9.971 0.251 0.173 0.109

GADP, ACGA, and ACGADP outperform the SGA in the
average error ratio because the total average ratio of SGA is
9.971% while other three algorithms is less than 0.26%. To
distinguished the performance of the four algorithms, we test
it by ANOVA which shows that there is a significant different
among these method so the Duncan grouping results is applied.
Table 2 shows that there is no much difference between
ACGA and ACGADP. In addition, there is no difference
between ACGADP and GADP. However, ACGA, ACGADP,
and SGA are not in the same group, it means there is

significant difference between each of them. Consequently,
ACGA is the best algorithm, ACGADP and GADP are second
rank, and SGA is the worst.

TABLE 2.
The Duncan grouping result for the four algorithms

Duncan Grouping Mean N Method

A 13982.894 6420 SGA

B 12827.096 6420 GADP

B

C B 12816.471 6420 ACGADP

C

C 12813.276 6420 ACGA

To show the convergence process for these difference
algorithms, i.e., SGA, GADP, ACGA and ACGADP, instance
sks988a is applied as a demonstration. Figure 4 shows that
GADP has the quickest convergence then ACGA and lastly is
SGA. However, after 20 generation ACGA has almost the
same solution quality as GADP.

sks988a

81000

89000

97000

10500

11300

12100

12900

13700

14500

0 20 40 60 80 10
0

12
0
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0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

generation

obj

SGA
GADP
ACGA
ACGADP

Fig. 4. The convergence diagram of the four algorithms in job 90 problem
(sks988a)

V. DISCUSSION AND CONCLUSIONS

This research proposes a Genetic Algorithm with injecting
artificial chromosomes in solving the single machine
scheduling problems with the objective of minimizing the
total deviation. From the experimental results, we find out that
the proposed algorithm is able to obtain a very good solution
quality when compared with SGA and GADP. Without any
complex mathematic calculation and proofing, ACGA can
solve the problem in as good as or a better solution quality
than GADP. The reason is that the dominance matrix can truly
capture the gene information and prohibits jobs that are
assigned to inappropriate positions. Then, jobs are potentially
to be selected when they are dedicated to a position with
higher probability by roulette wheel selection method. AC
will create a much diversified population but with the
probability to reach a global optimal. Consequently, after the
intensive experiments in the single machine scheduling
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problem, the result is very satisfactory and convincing and we
expect to apply the ACGA to other combinatorial problems in
the near future.
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