
Abstract—This study presents a new metaheuristic 
approach that reasonably combines different features of 
several well-know heuristics. The core component of the 
proposed algorithm is a simulated annealing that utilizes 
three types of memories, two short-term memories and one 
long-term memory. The purpose of the two short-term 
memories is to guide the search toward good solutions. While 
the aim of the long term memory is to provide means for the 
search to escape local optima through increasing the 
diversification phase in a logical manner. The long-term 
memory is considered as a population list. In specific 
circumstances, members of the population might be 
employed to generate a new population from which a new 
initial solution for the simulated annealing component is 
generated. Job shop scheduling problem has been used to test 
the performance of the proposed method. 

I. INTRODUCTION

INCE the early 1960s the job shop scheduling problem 

(JSSP) has been benchmark for the quality of newly 

developed optimization techniques. Among the earliest 

and the most popular algorithms that have attracted much 

attention are tabu search [1], simulated annealing [2], and 

genetic algorithms [3]. Tabu search explores exhaustively 

the neighborhood of a solution, which is generated by 

fundamental notion called the move. The move is a 

function that converts a solution into another solution. For 

each solution, a set of applicable moves is determined. 

This set is used to generate a group of solutions called the 

neighborhood. Tabu search starts with a feasible solution. 

The neighborhood of each solution is evaluated to find the 

one with the lowest cost. The move to the best solution is 

performed and the new solution becomes an initial 

solution in the next iteration. In order to prevent cycling, a 

part of the solution space that has been recently visited is 

preserved in a short-term memory called tabu list. Tabu 

search, both in its basic form and in hybrid with other 

heuristics, has been successfully applied to combinatorial 

optimization problems such as timetabling problem [4]-[5] 

vehicle routing [6], and job shop scheduling [7]-[8]. 

Simulated annealing is a stochastic local search technique 

based on principles of physics. In its basic form, the 

algorithm begins to search the solution space by selecting 

a neighbor from the neighborhood of an initial solution. A 
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neighboring solution is generated by a randomized 

perturbation in the current solution. If the cost value of the 

candidate solution is lower than that of the current 

solution, a move from current solution into the candidate 

solution is made. Otherwise, a transition probability 
function will be used to determine whether to accept or to 

reject the candidate solution. If the value of the transition 

probability is greater than a random number (generated 

from a uniform distribution), then the candidate solution, 

despite being worse than the current one, is accepted. If 

the transition to the candidate solution is rejected, another 

solution from the neighborhood of the current solution 

will be selected and evaluated. 

 Genetic algorithms simulate the evolution process of 

species reproduction [2]. While other heuristics such as 

simulated annealing and tabu search work with a single 

solution, genetic algorithms deal with a population of 

solutions. In the conventional GA, each member of the 

population is considered as a chromosome representing a 

solution. GA assigns a value to each individual in the 

population according to a problem-specific objective 

function. Two chromosomes (individuals) will be selected 

randomly or with a probability in favor of improved 

fitness to produce a new generation. The reproduction is 

then carried out through two fundamental mechanisms. 

The first one is crossover, which combines parts of the 

genetic characteristics of two selected parents to produce 

genetic characteristics of a new individual. The second 

one is mutation by which a spontaneous modification of 

genetic make-up occurs. The newly created individual is 

called child or offspring. This new individual is different 

from its parents but shares some common characteristics. 

 In recent years, a number of metaheuristics have been 

developed. Some examples of those algorithms are Greedy 

Randomized Adaptive Search Procedure (GRASP) [9]-

[10], Adaptive Multi Start [11], Ant System [12], and 

Adaptive Memory Programming (AMP) [13]. In this 

study, a new metaheuristic based on several well-known 

heuristics: simulated annealing, tabu search, and genetic 

algorithm is presented. The distinctive feature of the 

proposed method is the use of one long-term and two 

short-term memories. The two short-term memories can be 

characterized as negative (inhibitory) and positive 

(reinforcement) memories. The purpose of these memories 

is to guide the search of the solution space so that the 

chance of finding solutions with better quality could be 

higher. The long-term memory provides means for the 

search to escape local optima. Job shop scheduling is 

considered as an example problem to evaluate the 

performance of the proposed heuristic. 

II. FRAMEWORK OF THE PROPOSED METHOD

Conventional simulated annealing attempts to avoid 
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being trapped in a local optimum by sometimes accepting 

transition corresponding to an increase in cost however; as 

the search progresses and the transition probability 

declines, the possibility that the search gets trapped in 

local optima increases. To alleviate this problem, several 

methods such as multi-start approaches [14] and adaptive 

temperature control mechanism [15]-[16] have been 

suggested in the literature. 

 Another drawback of the simulated annealing approach 

is the lack of memory. Some researchers have used a 

combination of tabu search and simulated annealing to 

overcome this deficiency [17]. The main advantage of 

adding a tabu list to a simulated annealing algorithm is 

that the search would have a memory that provides an 

inhibitory (negative) feedback to the search, but such 

memory may still be considered as insufficient as it does 

not have any positive feedback from the search history. 

El-bouri et al. [18] proposed a framework to combine 

adaptive memory programming and simulated annealing. 

The proposed method benefits from both negative 

(inhibitory) and positive (reinforcement) memories to find 

solutions with better quality. 

To address the above two shortcomings simultaneously, 

this paper proposes a hybrid algorithm based on simulated 

annealing, tabu search, and genetic algorithm. The 

proposed metaheuristic includes five main components: a 

simulated annealing module, three types of memories, and 

a genetic algorithm component. The first two memories 

are short-term that are referred to as the tabu-elite list and 

seed memory list. The third memory is a long-term 

memory and is referred to as population list. The 

mechanism of the search could be described as follows. 

The algorithm begins the search with an initial feasible 

solution. Then a neighboring (candidate) solution is 

generated according to the neighborhood structure of the 

problem.   The candidate solution is evaluated by the 

simulated annealing module. If the solution is rejected, 

another solution will be generated and evaluated. In case 

of acceptance, a condition specific to memories will be 

verified (e.g., if quality of the candidate solution is better 

than that of the current solution). If this ‘memory’ 

condition is met, first, a small part of the solution or the 

variable(s), which has been modified to generate the 

neighboring solution, is temporarily preserved in a tabu-

elite list. Then, the entire candidate solution is added to 

the seed memory list. After updating the memories, the 

search moves to the candidate solution, and then another 

solution from the neighborhood of this current solution is 

generated with respect to the information gathered in the 

tabu-elite list. If the aforementioned memory condition is 

not satisfied, then the search moves to the candidate 

solution without updating or modifying the two memory 

lists. The above steps are repeated until the tabu-elite list 

becomes full. Once the iteration is completed, first the best 

solution from the seed memory list is stored in the 

population list. Then the same solution is considered as 

the initial solution for the next iteration of the search 

(Fig.1). The information stored in both short-term 

memories will be cleared before starting the next iteration. 

The above procedure continues until the population list 

becomes full. 

At this stage, a long iteration is said to be completed. 

Once the population list becomes full, a condition specific 

to GA component is verified (e.g., if there has been no 

improvement during the past iteration). If this condition is 

not met, the search continues by selecting the best solution 

from the memory list. Before starting the new iteration, all 

of the memories including the population list are emptied.  

If the condition of GA involvement is satisfied, first, a 

new population is generated using the solutions stored in 

the population list. If the best member of the new 

population improves the quality of the best solution found 

so far, then it will be selected as an initial solution for the 

next iteration of the algorithm. In case that the best 

offspring could not improve the quality of the solution, a 

random number is generated and is compared to the 

complement (or inverse) of the transition probability
function (CTP function). If this random number is less 

than the probability function, an offspring from the new 

population is selected (e.g., randomly) and is considered 

as an initial solution for the next iteration. Otherwise, the 

search continues by considering the best solution from the 

seed memory list as the initial solution for the next 

iteration. 

III. APPLICATION OF THE NEW METAHEURISTIC TO JSSP

A. Job shop scheduling problem 
The deterministic job shop scheduling problem studied 

in this paper is described as follows. Given a set of jobs 

and a set of machines, each job consists of a sequence of 

operations that has to be executed in a specific order. Each 

operation has to be performed on a given machine without 

interruption. The objective is to find the schedule that has 

the minimum makespan (the duration in which all jobs are 

completed), subject to the following constraints: each 

machine can handle at most one job at a time, and the 

operation precedence is respected for each job. The job 

shop scheduling problem is difficult to solve optimally. 

This problem is not only NP-hard, it is also considered as 

one of the most computationally stubborn combinatorial 

problems. Researchers have employed many techniques to 

tackle the job shop scheduling problem. Among others, 

optimization and approximation techniques are very 

popular. Some instances of the proposed solution 

techniques for JSSP are as follows. Shifting Bottleneck 

procedure [19]-[20], Branch and Bound [21]-[23], 

simulated annealing [24], tabu search [7]-[8], [25], genetic 

algorithms [26]-[28], hybrid methods [29]-[30], and other 

techniques including GRASP [31], GRASP with Path-

Relinking [10], and Ant colony system [12]. For a 

comprehensive review of the job shop scheduling problem 

and its solution techniques, interested readers are referred 

to [32]-[33]. 

In order to apply the proposed algorithm to the job shop 

scheduling problem, the following components are needed 

to be specified. 

1) Encoding Scheme: How to encode a schedule to a 

solution is a primary and key issue in applying an 

optimization technique to any scheduling problem. In case 
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of job shop scheduling, several encoding scheme such as 

operation based, job based, machine based, disjunctive 

graph based, random keys, and binary have been proposed 

in the literature. Some types of encoding schemes such as 

binary and permutation may produce an infeasible solution 

if the solution (generated by these schemes) is subjected to 

a minor or major perturbation. As a result, a repairing 

algorithm is usually required to transfer an infeasible 

solution into a feasible one. 

In this study, an operation-based representation 

proposed by Bierwirth [34] is utilized. This approach uses 

an un-partitioned permutation of m-repetitions of job 

numbers to represent a solution as a string. Each job is a 

set of operations that has to be processed on m machines. 

In this form of representation, each job number occurs m
times in the permutation. Scanning the permutation from 

left to right, the kth occurrence of a job number refers to 

the kth operation in the technological sequence of this job. 

This way, scheduling operations whose technological 

predecessors have not been scheduled is avoided. For 

instance, the following string represents a solution for a 

problem with four jobs and four machines.  

4 2 4 1 1 3 2 4 1 4 1 3 3 2 2 3 

Each job consists of four operations and is repeated four 

times. The fifth element of the string is 1. This number 

refers to the second operation of job 1 because it appears 

for the second time. Similarly, the ninth and the eleventh 

elements of the string respectively refer to the third and 

the fourth operations of job 1. 

2) Simulated Annealing Component: In practice, three 

basic ingredients are needed to apply a simulated 

annealing algorithm: a cooling schedule, a cost function, 

and a neighboring solution. In this study, the simulated 

annealing component embedded in the framework of the 

proposed heuristic uses the following cooling schedule 

proposed by Van Laarhoven et al. [24].  

                                             (1) 

where i is the temperature in iteration i, i is the standard 

deviation of the previously visited solutions and  is an 

empirical distance parameter. 

The cost function is the makespan of the job shop 

scheduling problem and a neighboring solution is 

generated by swapping the position of two non-identical 

jobs on a string. Given the definition of neighboring 

solution, size of the neighborhood can be calculated by the 

following equation: 

              (2) 

where m and n denote the number of machines and jobs, 

respectively.   

3) Genetic Algorithm Component: In the proposed 

heuristic, the genetic algorithm module contains only a 

random selection mechanism and a crossover operator. 

Once the population list is completed and if condition 

applies (i.e., there has been no improvement during the 

past iteration), a new population is generated by 

consecutively applying the crossover operator to the 

randomly selected parents from the current population. 

Given the solution representation discussed earlier, 

permutation with m-repetitions of the job numbers, 

precedence preservative crossover (PPX) proves to be 

very efficient [34]. The advantage of this method is that 

the newly generated individual could be directly decoded 

as a schedule without any modification. Following this 

method, a template vector h with length m×n (m and n
denote the number of machines and jobs, respectively) is 

filled with random elements of set {1,2}. This vector is 

then used to define the order in which elements are drawn 

from parent 1 and parent 2. The selected element from one 

parent is appended to the offspring string and then the 

corresponding element is deleted from the other parent. 

This procedure repeats until both parent strings are 

emptied and the offspring contains all the involved 

elements. 

Fig. 2 shows an illustrative example with four jobs and 

four machines. P1 and P2 are respectively parent 1 and 

parent 2 that have been generated randomly. In this 

example, the first four elements of template vector h are 1. 

Therefore, the first four elements from parent 1 (P1) are 

appended in offspring string and corresponding elements 

in parent 2 which are respectively sixth, first, eleventh and 

third elements are deleted. The second set of the random 

numbers in vector h (fifth to twelfth elements) is 2. 

Consequently, the first seven elements from the remaining 

parts in parent 2 (elements 3 2 2 3 1 1 1) are added to the 

offspring string and then corresponding elements in parent 

1 are deleted. The above procedure is repeated until the 

offspring string contains all the involved elements. 

Fig. 2. An illustrative example of the crossover. 

1 ln(1 )
1

3

i
i

i

i

-1
2

1

neighbourhood size -
n

k
m n k

P1: 4 2 4 1 1 3 2 4 1 4 1 3 3 2 2 3

P2: 2 3 1 2 2 4 3 1 1 1 4 4 3 4 3 2

h: 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 1
Offspring:               

P1: 4 2 4 1 1 3 2 4 1 4 1 3 3 2 2 3

P2: 2 3 1 2 2 4 3 1 1 1 4 4 3 4 3 2

      

Offspring: 4 2 4 1             

P1:     1 3 2 4 1 4 1 3 3 2 2 3

P2:  3  2 2  3 1 1 1  4 3 4 3 2

      

Offspring: 4 2 4 1 3 2 2 3 1 1 1      

P1:        4  4   3  2 3

P2:            4 3 4 3 2

      

Offspring: 4 2 4 1 3 2 2 3 1 1 1 4 4 3 2 3
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B. Proposed meta-heuristic 
The proposed algorithm for the job shop scheduling 

problem can be described as follows. The search begins 

with an initial solution. Then, a neighboring solution is 

generated by swapping the position of two non-identical 

jobs on a string, and is evaluated using the simulated 

annealing component. If the neighboring solution is 

rejected, another solution is selected and evaluated. If a 

move from the current solution to the candidate solution is 

acceptable (memory condition), then those two jobs whose 

positions have been exchanged are added into the tabu-

elite list; and the candidate solution is added onto the seed 

memory list. The above steps are repeated until the tabu-

elite list reaches its predetermined count. Once the tabu-

elite list becomes full, the best solution from the seed 

memory list is stored in the population list. The same 

solution is also utilized as the initial solution for the next 

iteration. At the beginning of the next iteration, both short-

term memories are emptied. The aforementioned steps 

repeated until the population list becomes full (i.e., a 

longer iteration is completed). It is worthwhile to mention 

that the size of all three memories is considered to be 

equal so that they can be controlled by only one parameter 

that from now on is simply called the memory size.

Once the population list is completed, the quality of the 

best solution found so far is compared with that found at 

the end of the previous (long) iteration (i.e., the best 

solution found last time population list reaches the 

memory size). If the quality of the best solution has been 

improved, then the best solution from the seed memory is 

selected and is considered as the initial solution for the 

next iteration. Then, all of three memories including 

population list are emptied.  

 If there has been no improvement during the previous 

iteration, the condition for GA module is satisfied. Using 

the current population list and the crossover operator, first, 

a new population is generated. Then the best member of 

the new population is selected and evaluated. If the best 

member of the new population improves the quality of the 

best solution found so far, then it is considered as the 

initial solution for the next iteration. In case that the 

quality of the solution has not been improved by the new 

population, a random number between zero and one is 

generated and compared with the complement of the 

transition probability function (CTP function). If the 

random number is less than the CTP function, then the 

new population is scanned and the first member whose 

cost is different than the cost of the (last) iteration’s best 

solution is selected and it is considered as the initial 

solution for the next iteration. Following, the temperature 

is reset at high level. Otherwise, the search moves to the 

last iteration’s best solution (selected from the current 

seed memory list) without modifying the temperature. In 

either case, all memories are emptied before starting the 

new iteration.  

Solutions in the new population generally inherit 

elements from iteration best solutions visited previously. 

Starting the search from one of these solutions not only 

guides the search away from local optima, it also increases 

the chance of improving the best solution in a short period 

of time. However, because of the structural similarity 

between these solutions and the best solution found so far, 

there is also a chance that the search will end up with the 

same best solution. To reduce the chance of revisiting the 

same (best) solution, temperature is set to high level at the 

beginning of the new iteration.  

Increasing the level of the temperature (transition 

probability function) may encourage the search to extend 

the area of the exploration (diversification). While a low 

level of the CTP function will prevent the reallocation of 

the initial solution prematurely (intensification). 

According to the cooling schedule utilized in this study, 

the temperature declines from the high of 0.95 with 

respect to the standard deviation of the previously visited 

solutions. For this cooling schedule, the CTP function 

could be defined as: 

CTP function = 1 – i   (3) 

where i is the temperature in iteration i. According to the 

above equation, setting the temperature at high level any 

time during the search will automatically retune the CTP
function to its lowest level. By the same token, as the 

search continues and the temperature declines, the 

magnitude of the CTP function increases.  A higher value 

of CTP function enhances the possibility of success in 

situations that a decision has to made regarding changing 

the direction of the search by utilizing a new initial 

solution (e.g., getting taped in a local minima). 

IV. COMPUTATIONAL RESULTS

To evaluate the performance of the proposed heuristic, 

the algorithm has been coded in Visual Basic and tested 

using 37 well known classical job shop scheduling 

problems selected from the literature. The experiments 

were run on a X86 based PC with 697 MHz CPU. The 

memory size for small problems (ten jobs and five 

machines, fifteen jobs and five machines, and twenty jobs 

and five machines) is set to 10, and for the remaining 

problems (medium and large) is set to 20. The algorithm 

has been run several times (five runs for small problems 

and 20 runs for the rest of the problems) from randomly 

generated initial solutions.  

Table I shows the computational results for benchmark 

problems. The results presented in this table correspond to 

the best makespan obtained over several runs and its 

associated computing time for each problem. Among the 

37 instances, the proposed heuristic finds the optimal 

solution in 29 cases (78.4%) in fairly low computational 

times. For the other eight instances, a near optimal 

solution was found (with maximum 0.05 percent deviation 

from the best known solution in problems ABZ7 and 

LA29). The algorithm has been run for a fixed 

computational times ranging from five seconds to seven 

minutes (420 seconds) depending on the size and 

complexity of the problem. 

In table I, the performance of the proposed 

metaheuristic is also compared with those of seven well-

known algorithms selected from the literature. Tabu 

search algorithm proposed by Nowicki and Smutnicki [7] 

is still considered as one of the most efficient techniques 

for job shop scheduling problem. The other selected 

methods are two hybrids algorithms proposed by 

Gonçalves et al. [30] and Wang and Zheng [29], simulated  
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TABLE I 

COMPUTATIONAL RESULTS AND COMPARISON WITH OTHER ALGORITHMS 

Problem 
Size 

 (n × m)
Optimal/BKS New Heuristic 

Gonçalves et al. 

2005 [28] 

Aiex et al. 

2003 [8] 

Binato et al. 

2002 [29] 

Wang and 

Zheng 2001 

[27]

Nowicki and 

Smutnicki 1996

[5] 

Croce et al. 

1995 [26] 

Van Laarhoven 

et al. 1992 

[22] 

MT10 10 × 10 930 930* (168) 930 (292) 930 (10125) 938 930 (44) 930 946 (628) 930 (57772) 

MT20 20 × 5 1165 1173 (240) 1165 (204) 1165 (209160) 1169 1165 (90) 1165 1178 (675) 1165 (62759) 

ABZ5 10 × 10 1234 1234* (91) - 1234 (2530) 1238 - 1234 - - 

ABZ6 10 × 10 943 943* (38) - 943 (678) 947 - 943 - - 

ABZ7 20 × 15 656 690 (373) - 692 (583000) 723 - - - - 

ABZ8 20 × 15 627-670 695 (249) - 705 (497800) 729 - - - - 

LA01 10 × 5 666 666* (2) 666 (37) 666 (<1) 666 666 (6) 666 666 (282) 666 (20) 

LA02 10 × 5 655 655* (3) 655 (51) 655 (10.9) 655 - 655 - 655 (24) 

LA03 10 × 5 597 597* (13) 597 (39) 597 (29.5) 604 - 597 - 606 (129) 

LA04 10 × 5 590 590* (1) 590 (42) 590 (15.7) 590 - 590 - 590 (121) 

LA05 10 × 5 593 593* (<1) 593 (32) 593 (<1) 593 - 593 - 593 (5) 

LA06 15 × 5 926 926* (<1) 926 (99) 926 (<1) 926 926 (12) 926 926 (473) 926 (16) 

LA07 15 × 5 890 890* (1) 890 (86) 890 (<1) 890 - 890 - 890 (66) 

LA08 15 × 5 863 863* (<1) 863 (99) 863 (1.6) 863 - 863 - 863 (16) 

LA09 15 × 5 951 951* (<1) 951 (94) 951 (<1) 951 - 951 - 951 (13) 

LA10 15 × 5 958 958* (<1) 958 (91) 958 (1.15) 958 - 958 - 958 (14) 

LA11 20 × 5 1222 1222* (1) 1222 (197) 1222 (<1) 1222 1222 (26) 1222 1222 (717) 1222 (32) 

LA12 20 × 5 1039 1039* (<1) 1039 (201) 1039 (<1) 1039 - 1039 - 1039 (34) 

LA13 20 × 5 1150 1150* (<1) 1150 (189) 1150 (<1) 1150 - 1150 - 1150 (32) 

LA14 20 × 5 1292 1292* (<1) 1292 (187) 1292 (<1) 1292 - 1292 - 1292 (27) 

LA15 20 × 5 1207 1207* (3) 1207 (187) 1207 (24.5) 1207 - 1207 - 1207 (34) 

LA16 10 × 10 945 945* (68) 945 (232) 945 (2951) 946 945 (29) 945 979 (637) 956 (686) 

LA17 10 × 10 784 784* (30) 784 (216) 784 (65.8) 784 - 784 - 784 (112) 

LA18 10 × 10 848 848* (84) 848 (219) 848 (453.5) 848 - 848 - 861 (112) 

LA19 10 × 10 842 842* (36) 842 (235) 842 (302.8) 842 - 842 - 848 (830) 

LA20 10 × 10 902 909 (289) 907 (235) 902 (27710) 907 - 902 - 902 (667) 

LA21 15 × 10 1040-1053 1055 (264) 1046 (602) 1057 (351000) 1091 1058 (184) 1047 1097 (1062) 1063 (1991) 

LA22 15 × 10 927 937 (149) 935 (594) 927 (89700) 960 - 927 - 938 (2163) 

LA23 15 × 10 1032 1032* (92) 1032 (598) 1032 (393.9) 1032 - 1032 - 1032 (275) 

LA25 15 × 10 977 985 (399) 986 (609) 984 (105280) 1028 - 977 - 992 (2133) 

LA26 20 × 10 1218 1218* (125) 1218 (1388) 1218 (22225) 1271 1218 (418) 1218 1231 (1545) 1218 (4342) 

LA29 20 × 10 1120-1195 1219 (259) 1196 (1350) 1203 (308500) 1293 - 1160 - 1218 (4408) 

LA30 20 × 10 1355 1355* (91) 1355 (1260) 1355 (22830) 1368 - 1355 - 1355 (3956) 

LA31 30 × 10 1784 1784*(37) 1784 (3745) 1784 (2676) 1784 1784 (546) 1784 1784 (2762) 1784 (1517) 

LA33 30 × 10 1719 1719*(25) 1719 (3637) 1719 (875.3) 1719 - 1719 - 1719 (1880) 

LA34 30 × 10 1721 1721* (128) 1721 (3615) 1721 (4016.5) 1753 - 1721 - 1721 (1886) 

LA35 30 × 10 1888 1888* (42) 1888 (3716) 1888 (3483.2) 1888 - 1888 - 1888 (434) 

BKS: Best Known Solution; *: Optimal solution 
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annealing [24], genetic algorithm [28], GRASP [31], and 

GRASP with path-relinking [10]. 

In Table I, numbers in parentheses represent the time 

(sec.) at which the best solution has been found. The 

results presented in this table clearly indicate that the 

proposed heuristic outperforms other algorithms in terms 

of solution quality and/or computational time except for 

the state-of-the-art tabu search algorithm proposed by 

Nowicki and Smutnicki [7].  For instance, a comparison of 

the results obtained by our algorithm with those provided 

by Gonçalves et al. [30] indicates that for 27 (out of 33) 

test problems both algorithms have obtained the same 

results. However, the proposed heuristic without any 

exceptions, significantly outperforms the other algorithm 

in terms of computational times.   

Furthermore, the convergence behavior of the method is 

studied and compared with conventional simulated 

annealing and genetic algorithm. All three algorithms use 

the same encoding scheme, neighborhood structure, and 

cost function. In GA algorithm, the size of the population 

is set to 100 and the probability of crossover and mutation 

are respectively set at 0.85 and 0.1. The performance of 

the methods on the test problems MT10, LA21, LA26, and 

LA34 is depicted in Fig. 3(a)-(d). 

The simulated annealing algorithm and the new 

heuristic have been run from the same initial solutions in 

four test problems. The cost values of the initial solutions 

are 1326, 1923, 2221, and 3190, respectively. Initial 

populations for the genetic algorithm have been generated 

randomly. The cost values of the best member of the 

populations for each problem are 1436, 1654, 2035, and 

2852, respectively. 

V. CONCLUSION

This paper presents a new and efficient heuristic by 

reasonably combining different features of several 

heuristics: simulated annealing, genetic algorithm, and 

tabu search. In contrast with other hybrid algorithms, the 

core component of the proposed heuristic is a simulated 

annealing that benefits from two short-term memories. 

information about the past iteration-best solutions is 

preserved in a long term memory called population list. A 

genetic crossover operator is used to produce new 

population using the solutions stored in the third memory 

in due course. If condition applies, one of the newly 

produced offspring might be used as an initial solution for 

the subsequent iteration. 

 The performance of the proposed hybrid algorithm has 

been tested using 37 well known classical job shop 

scheduling problems. The algorithm finds the optimal 

solution for 29 instances (78.4%). For the remaining 

problems, a near optimal solution was obtained. The 

performance of the algorithm is also evaluated in 

comparison with the results obtained by seven other 

algorithms including exact methods, general techniques 

and hybrid algorithms. Comparison of the results clearly 

indicates that our algorithm can find better solutions in 

some cases (e.g., [29], [26], and [22]) and it is 

computationally  more   efficient   than   other   algorithms 

(a) Test problem MT10. 

(b) Test problem LA21. 

(c) Test problem LA34. 

(d) Test problem LA26. 

Fig. 3. Convergence comparison of the proposed heuristic 

with conventional simulated annealing and genetic 

algorithm. 
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except for the tabu search algorithm proposed by Nowicki 

and Smutnicki [5]. 

The proposed algorithm, due to its generality, can be 

easily applied to other optimization problems. For the case 

of job shop scheduling, the quality of the solutions and the 

computational efficiency of the algorithm can be further 

improved by using problem-specific neighborhood 

structure and more efficient operators. 
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