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Abstract-Optimization in sports is a field of increasing 
interest. The traveling tournament problem abstracts certain 
characteristics of sports scheduling problems. We propose a new 
method for determining a lower bound to this problem. The new 
bound improves upon the previously best known lower bound. 
Numerical results on benchmark instances showed reductions as 
large as 38.6% in the gaps between lower and upper bounds. 

Optimization in sports is a field of increasing interest. Some 
applications have been reviewed by Ribeiro and Urrutia [I]. 
Combinatorial optimization techniques have been applied e.g. 
to game scheduling [2], playoff eliminationlqualification [3] 
and referee assignment [4]. We also refer to [5], [6] for recent 
surveys on the sports scheduling literature. 

The traveling tournament problem proposed by Easton et al. 
[7] abstracts certain characteristics of sports scheduling prob- 
lems and has been tackled by several authors, see e.g. [S], [9], 
[ I  01. We propose in this paper a new method for determining a 
better lower bound for the traveling tournament problem than 
those previously known. 

The paper is organized as follows. The traveling tournament 
problem and its mirrored version are introduced in Section 2. 
The independent lower bound proposed in [7] is described 
in Section 3 and we show that it can be tightened. An 
algorithm to improve the independent lower bound is proposed 
in Section 4. Numerical results illustrating the quality of the 
new lower bound are presented in Section 5.  The last section 
closes the paper with some concluding remarks. 

11. TRAVELING TOURNAMENT PROBLEM 

All teams face each other twice in a double round robin 
tournament, once at home and the other away. We say that a 
tournament is compact if every team plays exactly one game 
every round. We assume that every team is at its home city 
in the beginning of the tournament. A team returns to its 
home city whenever it plays its last game away. Furthermore, 
whenever a team plays two consecutive games away, it goes 
from the home city of the first opponent directly to that of the 

Manuscript received December 16, 2006. 
Sebastijn Urrutia is now with the Department of Computer Science, Uni- 

versidade Federal de Minas Gerais, Av. AntBnio Carlos 6627, Belo Horizonte, 
MG 31270-010, Brazil (e-mail: surrutia@dcc.ufmg.br). 

Celso C. Ribeiro is now with the Department of Computer Science, 
Universidade Federal Fluminense, Rua Passo da Pjtria 156, Niteroi, RJ 24210- 
240, Brazil (e-mail: celso@inf.puc-rio.br). Work of this author was sponsored 
by FAPERJ and CNPq grants. 

Rafael A. Melo is now with the Department of Computer Science, Univer- 
sidade Federal Fluminense, Rua Passo da Pitria 156, Niterbi, RJ 24210-240, 
Brazil (e-mail: melo@ic.uff.br). Work of this author was funded by a CAPES 
postgraduate scholarship. 

second, without making a stop at its home city. We count a 
trip every time a team travels from one city to another. 

The Traveling Tournament Problem (TTP) is defined as 
follows [7]. Given an even number n of teams and an 
n x n distance matrix D = {d- .) j=l ..... n 

v i=l, .... n representing the 
distances between the home cities of each pair of teams, 
the problem consists in building the schedule of games for 
a compact double round robin tournament, such that each 
team plays at most three consecutive home games and at 
most three consecutive away games, no repeaters (two games 
between the same pair of teams in consecutive rounds) are 
allowed, and the sum of the distances traveled by each team 
is minimized. Schedules for a Mirrored Trnveling Tournament 
Problem (mTTP) satisfy an additional constraint: the games 
played in round k = 1,. . . , n - 1 are exactly the same played 
in round k + (n - I), but with reversed venues. Repeaters do 
not occur in mirrored schedules. 

NL instances of the TTP were defined in [7] for subsets of 
teams playing in the National League of the Major League 
Baseball. CIRCLE instances [7] are those in which the teams 
correspond to vertices of a circle graph with unit distances 
between neighbor vertices. The distance between every pair 
of teams is equal to the shortest path between them in the 
graph. Later, Urrutia and Ribeiro [l 11 defined the CONSTANT 
instances, in which the distance between every pair of teams 
is equal to one. Only small NL and CIRCLE instances with 
n 5 8 teams can be exactly solved to date [9]. CONSTANT 
instances with up to 16 teams for the TTP and with up to 18 
teams for the mTTP were already solved exactly [ l l ] ,  [12], 
[131. 

The TTP has been tackled by integer programming [7], 
[9], constraint programming [7], [14], and local search meta- 
heuristics [S], [lo]. Benchmark instances and their best known 
feasible solutions and lower bounds are available in [15]. The 
best known solutions have been updated several times since 
2001 and this trend seems to be strengthening. As an example, 
the best known solution for instance NL12 was updated 12 
times. Contrarily, the lower bounds were never updated for 
the large majority of the instances. Finding improved lower 
bounds for the traveling tournament problem to reduce the 
gaps between lower and upper bounds is one of the challenges 
to be faced in the development of exact algorithms for this 
problem. 

111. INDEPENDENT LOWER BOUND 

A very simple lower bound to the TTP can be obtained by 
determining the minimum distance every team has to travel 
to visit all others, independently of any other constraints [7]. 
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This can be done by solving the capacitated vehicle routing 
problem CVRP (1) to (4) formulated below for each team 
t = I , . .  . , n :  

n n 

dis t ( t )  = min x di, x ,  (1) 

subject to: 

In this formulation, x,, = 1 if team t goes directly from the 
home city of i  to the home city of j ,  x,, = 0 otherwise. The 
clients for capacitated vehicle routing problem correspond to 
the teams to be visited by team t. The demand of each client 
(i.e., each team to be visited) is equal to one, while the capacity 
of the vehicle (i.e., team t )  is equal to three, since no team can 
play more than three consecutive away games. The minimum 
value dist( t )  of the objective function in equation (1) gives the 
minimum distance traveled by team t. Constraints (2) express 
that team t must enter and leave the home city of each of its 
opponents. Finally, constraints (3) enforce that the number of 
teams visited in a single tour cannot exceed three. Since there 
are exponentially many constraints of this type, they should 
be entered into the model gradually when they are violated. 
The independent lower bound is then given by the sum of all 
individual team bounds, i.e. ILB = C;=, dist( t ) .  

We show that ILB is not a tight bound by considering 
the CONSTANT instances. Since in CONSTANT instances 
the distance between every pair of teams is equal to one, the 
objective function value of every feasible solution is equal 
to the number of trips that the teams perform in this solution. 
The minimization of the traveled distance for the CONSTANT 
instances gives the minimum number of trips to be performed 
by all teams in a feasible solution. Furthermore, the number of 
trips performed by all teams in a feasible solution of the TTP 
on any kind of instance cannot be smaller than the optimal 
value of the corresponding CONSTANT instance [ l l ] .  We 
illustrate below by an example that in the computation of the 
independent lower bound teams may perform less trips than 
this minimum, showing that ILB is not tight. 

We consider the four team instance in Figures 1 and 2, in 
which the circles represent teams and the squared circles cor- 
respond to the team visiting all other teams in each diagram. 
Solving CVRP for each team yields four trips: each team is 
able to visit all other teams in a single tour, since the number 
of opponents is not greater than three. Adding up the number 
of trips of all teams gives a total of 16 trips, as showed in 
Figure I .  

However, Rasmussen and Trick [13] have shown that the 
optimal value of the CONSTANT instance with four teams is 

17. Therefore, it is possible to enforce that one of the four 
teams should perform an extra trip without eliminating any 
feasible solution. In Figure 2 team d performs one additional 
trip, making the total number of trips equal to the lower bound 
17. 

Since ILB considers the minimum number of trips for each 
team without imposing constraints on the total number of trips 
of all teams. It may be smaller than the total minimum of trips 
in a feasible TTP solution. Therefore, the lower bound ILB 
may be improved. 

Fig. 1.  Solution o f  CVRP for each team and the lower bound I L B  

Fig. 2. Teams performing a total o f  17 trips. 

IV. MINIMUM NUMBER OF TRIPS LOWER BOUND 

The minimum number of trips lower bound MNT is 
computed considering the difference between the value of the 
optimal solution (or the best known lower bound) of the related 
CONSTANT instance and the sum of the individual minimum 
number of trips. Algorithm 1 shows the pseudo-code of the 
algorithm to compute this lower bound. 

The first step in the evaluation of the new lower bound 
MNT for a given instance consists in computing in lines 1 to 
5 the minimum number of trips a single team must perform. A 
team must travel k + 1 times to visit k teams in a single road 
trip and to return to its home city, with k < 3 for the TTP. 
Every team must visit the other n - 1 teams. Therefore, the 
minimum number of trips performed by each team is mnt = 

4 ( n  - 1) /3  if ( n  - 1) mod 3 = 0, or mnt = 4L(n - 1) /3]  + 
(n - 1) mod 3 + 1 if (n - 1) mod 3 > 0. 

Variable ExtraTrips is set in line 6 as the difference 
between the optimal solution value OPT (or a lower bound, 
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in case the optimal is not known) of the corresponding 
CONSTANT instance and n times the minimum number of 
trips mnt a single team must perform. The independent lower 
bound is computed in line 7. If ExtraTrips is equal to zero 
(line 8), then the minimum number of trips lower bound is 
equal to the independent lower bound. In this case, there are 
feasible solutions in which every team performs exactly the 
minimum number of trips considered in the computation of 
the independent lower bound. 

Otherwise, the extra distance matrix E = {et,)%~~::'::~ 
is computed. Matrix E has one row for each team (n) and 
as many columns (p) as the minimum between ExtraTrips 
and the difference between the maximum (2(n  - I)) and the 
minimum (mnt)  number of trips every team may perform. 
Each element etj is equal to the additional distance team t 
must travel if it is forced to perform at least j trips more than 
the minimum number of trips it may perform. The number 
p of columns of matrix E is computed in line 11. The loop 
in lines 12 to 18 scans all teams t = 1, . . . , n.  The individual 
lower bound dist(t) for each team is computed in line 13. The 
loop in lines 14 to 17 scans all columns. To compute the extra 
distance matrix for team t and j additional trips, we first solve 
in line 15 the capacitated vehicle routing problem (1) to (4) 
with the following additional constraint xi+ , xij > mnt + j, 
which states that the total number of trips must be greater than 

Input: TTP instance 
Output: Lower bound M N T  

1 i f  ( n  - 1) mod 3 = 0 then 
2 I mnt c 4(n  - 1)/3;  
3 else 
4 1 mnt c 41(n - 1)/3J + ( n  - 1) mod 3 + 1 
5 end 
6 ExtraTrips t OPT - mnt . n ;  
7 Compute the independent lower bound I L B ;  
s if ExtraTrips = 0 then 
Y 1 M N T t  ILB;  

l o  else 

or equal to mnt  + j. The value of etj is computed in line 16. 
In the last step, we solve in line 19 problem (5) to (8) to 

minimize the additional distance the teams must travel to reach 
the minimum total number of trips: 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

A = min C C etjyt j  (5) 

p t min{ExtraTrips, 2(n - 1) - mnt ) ;  
f o r t = l ,  ..., n d o  

Compute dist(t) by solving CVRP for team t ;  
for j = I , . .  . , p  do 

Compute dist(t, j) by solving CVRP for 
team t with the additional constraint 
Cif  xt3 > mnt + j; 
etj + dist(t, j )  - dist(t); 

end 
end 
Solve problem ( 5 )  to (8) to minimize the 
additional distance the teams must travel to reach 
the minimum total number of trips; 
M N T  + I L B  + A; 

end 

subject to: 
P 

Algorithm 1: Algorithm for computing the minimum 
number of trips lower bound 

2 j ytj = ExtraTrips (7) 

In the above model, ytj = 1 if team t performs exactly j 
extra trips, ytj = 0 otherwise. Constraints (6) express that each 
team may perform just a given number of extra trips, which 
can be at most equal to p. Constraint (7) enforces that the total 
number of additional trips is equal to ExtraTrips. Finally, 
the minimum number of trips lower bound is computed in line 
20. 

The integer program ( 5 )  to (8) is relatively small for real- 
life instances and can be easily solved by standard integer 
programming solvers. 

V. NUMERICAL RESULTS 

Numerical results illustrating the quality of the new mini- 
mum number of trips lower bound for the traveling tournament 
problem are presented in Table I. Results for the mirrored 
traveling tournament problem are presented in Table 11. For 
each instance, we report the value of the best known feasible 
solution (BKS),  the best lower bound to date (BLB), the 
independent lower bound (ILB), and the new minimum 
number of trips lower bound ( M N T ) .  

The new M N T  lower bounds that improved the corre- 
sponding independent lower bound (ILB) are underlined. 
M N T  lower bounds that improved the best previously known 
lower bound are outlined in boldface. The M N T  lower 
bound improved the independent lower bound for ten out of 
20 traveling tournament problem instances. For the mirrored 
version of the problem, the new bound was better than I L B  for 
13 out of 20 instances. Overall, the new lower bound improved 
the previously best known lower bound (or was the first lower 
bound ever to be computed) for 19 out of the 40 instances 
considered. 

VI. CONCLUSIONS 

We introduced a new lower bound to the traveling tourna- 
ment problem, improving the previously known lower bounds 
for many of the benchmark CIRC, NL, and NFL instances. The 
M N T  lower bound is the first lower bound to be proposed 
to improve the independent lower bound, which is known 
since the TTP was formulated in the literature. We believe 
this is a first step in finding good bounds for the traveling 
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TABLE I 

RESULTS FOR THE TTP 

Instance B K S  B L B  I L B  M N T  
circ4 20 20 16 - 18 
circh 64 64 60 60 
circ8 132 128 128 128 
circl0 242 220 220 228 
circl2 408 384 384 384 
circl4 654 588 588 588 
circl6 928 832 832 846 
circ I8 1304 1188 1188 1188 

NL8 
NLlO 
NL12 
NL14 
NL16 
NFL16 
NFL 18 
NFL20 
NFL22 412812 - a378692 378813 
a never computed before this work. 

TABLE I1 

RESULTS FOR T H E  M I R R O R E D  TTP 

Instance B K S  B L B  I L B  M N T  
circ4 20 20 I6 - 18 
circ6 72 72 60 60 
circ8 140 128 128 128 
circl0 272 240 220 - 240 
circl2 432 384 384 384 
circl4 696 590 588 - 590 
circl6 968 832 832 876 
circl8 1306 1188 1188 1188 

NL6 
NL8 
NLlO 
NL12 
NL14 
NL16 
NFL16 
NFLlX 
NFL20 
NFL22 418086 - a378692 378813 
a never computed before this work. 

tournament problem, for which most of the previous work was 
concentrated in the search of feasible good solutions. 

The optimal solutions for the CONSTANT instances [ l l ]  
were used in the computation of the new lower bound for 
general distance instances, illustrating the contribution of these 
artificially created instances to the research on the traveling 
tournament problem. 

Rasmussen and Trick [6] stressed the usefulness of efficient 
strategies for the computation of improved lower bounds to 
the TTP, reducing the current gap between lower and upper 
bounds. The new lower bound proposed in this paper is a 
contribution in this direction, since it was able to reduce the 
gap between lower and upper bounds for several benchmark 
instances and for as much as 38.6%, e.g. for the circlO 
instance. 
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