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Abstract: The Travelling Tournament Problem is a 
challenging sports timetabling problem which is widely
believed to be NP-Hard. The objective is to establish a feasible 
double round robin tournament schedule, with minimum travel
distances. This paper investigates the application of an ant
based hyper-heuristic algorithm for this problem. Ant 
algorithms, a well known meta-heuristic, have been successfully
applied to various problems. Whilst hyper-heuristics are an 
emerging technology, which operate at a higher level of
abstraction than meta-heuristics. This paper presents a
framework which employs ant algorithms as a hyper-heuristic.
We show that this approach produces good quality solutions 
for the traveling tournament problem when compared with
results from the literature.

I. INTRODUCTION

Across the world sports leagues receive significant

income from television and radio. For example, the UK 
based football team, Manchester United, has a market value
of over 400 million pounds, largely due to its TV exposure. 
In the United States, television networks pay over 400
million dollars annually for nationally televised baseball 
games and that much again for local presentations [1]. 

An attractive sports schedule can generate large incomes,
whilst poor schedules can decrease revenue. Furthermore,
there are many smaller leagues that would benefit from
better schedules so as to increase their revenue. 

There have been various studies of sports schedules such 
as those for Minor League Baseball [2] and college
basketball [3]. This paper tackles the Travelling Tournament
Problem (TTP), which is an abstract instance of Major 
League Baseball (MLB). There have been many approaches 
to tackling the TTP (see table I). 

In this paper we propose a new approach; an ant based 
hyper-heuristic. The novelty of this approach is that we can
tackle all problem instances using the same algorithm, and
using the same parameters.
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By studying table I, it is apparent that different
approaches are able to produce the best known solutions on
just some of the problems. Whilst we are not aiming to be 
the best on any one instance, we aim to show that our 
approach is able to produce good quality solutions across a 
range of problem instances.

This paper is organised as follows. In section II, we
describe the TTP in more detail and also introduce hyper-
heuristics and ant algorithms. Section III provides a
description of our proposed algorithm. Results and 
conclusions are presented in sections IV and V. 

II. THE TRAVELLING TOURNAMENT PROBLEM

The formal definition of the TTP is as follows:
Input: n teams (n is even). 

D, an nxn symmetric integer distance matrix.
Output: a schedule for a double round-robin tournament

with n teams
The aim is to minimise the total travel distance, whilst

satisfying the following constraints.
The schedule must represent a valid double round-robin
tournament. That is, each team i plays one home game
and one away game with every other team, j (i j).
Repeaters (team i at team j, followed immediately by
team j at team i) are not allowed. 
No team is allowed to play more than three consecutive 
home games or three consecutive away games.
These definitions refer to the rules described by [1,4,5].
A double round robin tournament has exactly 2n-2

rounds and n/2 games are played in every round. For 
example, a tournament of six teams has ten rounds and in
each round three games are held.

As stated above, the main objective is to minimise the
total travel distance. The total travel distance is defined as
the sum of the travel distance of all teams. Each team starts 
at home, travels to the match venues according to the
schedule and returns back home at the end of the schedule.
For example (refer to figure 1), team ATL plays against 
teams FLA (home), NYM (home), PIT (home), PHI (away),
MON (away), PIT (away), PHI (home), MON (home),
NYM (away) and FLA (away). The distance matrix, D,
figure 2, allows us to calculate.
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dATL,PHI + dPHI,MON + dMON,PIT + dPIT,ATL + dATL,NYM + dNYM,FLA
+ dFLA,ATL

= 665+380+408+521+745+1090+605 = 4414 

where dxxx,yyy, is the distance between xxx and yyy.

Slo
t

ATL NYM PHI MON FLA PIT

0 FLA @PIT @MON PHI @ATL NYM
1 NYM @ATL FLA @PIT @PHI MON
2 PIT @FLA MON @PHI NYM @ATL
3 @PHI MON ATL @NYM PIT @FLA 
4 @MON FLA @PIT ATL @NYM PHI 
5 @PIT @PHI NYM FLA @MON ATL
6 PHI @MON @ATL NYM @PIT FLA 
7 MON PIT @FLA @ATL PHI @NYM
8 @NYM ATL PIT @FLA MON @PHI 
9 @FLA PHI @NYM PIT ATL @MON
Figure 1. An example TTP schedule. @ represents a team playing away 

ATL NYM PHI MON FLA PIT

ATL 0 745 665 929 605 521

NYM 745 0 80 337 1090 315

PHI 665 80 0 380 1020 257

MON 929 337 380 0 1380 408

FLA 605 1090 1020 1380 0 1010

PIT 521 315 257 408 1010 0

Figure 2. Distance matrix for a 6x6 TTP 

Summing all the distances for each team, leads to the 
total distance for a given schedule.  

Many different algorithmic techniques have been applied 
to the Travelling Tournament Problem. Easton et al. [1,4] 
introduced the description and the benchmarks of the TTP 
and presented the first solution approaches; Integer and 
Constraint Programming. They did not present results for all 
the instances. One remarkable fact is that their approach 
necessitated approximately 4 days computation for the NL8 
instance (the instances provided by [1,4] are described by 
NLn, where NL means National League and n indicates how 
many teams are involved) using parallel programming on 20 
CPU processors compared with a few minutes computation 
time for NL6.  

Benoist et al. [6] used a combination of Constraint 
Programming and Lagrange relaxation to reach optimal 
solutions for NL4 and NL6. They also obtained feasible 
solutions for the larger instances, but did not beat the 
previous solution for NL16. 

Cardemil [7] also achieves good results for NL4 to 
NL16, employing tabu search with the results being 
significantly better than [1,4,6]. 

Lim et al. [8] combined simulated annealing and hill-
climbing. They divide the solution space into two sub-
spaces; a timetable space and a team assignment space. 
Simulated annealing is used to search the feasible timetable 

space, while hill-climbing generates and improves team 
assignment for the given timetable in the team assignment 
space.

Crauwels and Oudheusden [9] investigate ant colony 
optimisation for the TTP. Compared with other studies, the 
results make no significant improvement, but the authors 
emphasise that their aim was to investigate an 
implementation of an ACO algorithm which might be used 
to solve other hard combinatorial optimisation problems.  

Shen and Zhang [10] present a meta-heuristic named 
“greedy big step” which combines local search, branch-and-
bound and constraint satisfaction. Compared with previous 
studies, their results are satisfactory. 

Langford’s [11] results are shown on Michael Trick’s 
web site (http://www.tsp.gatech.edu/). The result for NL10 
(59436) is the best known solution for NL10. Zhang [12] 
also presents his results on the TTP website. The results are 
competitive for the larger instances. 

Gaspero and Schaerf [13] propose a family of tabu 
search algorithms. Their results show that the new method is 
competitive with those already in the literature. 

In existing studies, the best approach to date is a 
simulated annealing method, proposed in [5]. They have 
recently presented the best results for many of the instances.   

A summary of methods, and best results, are shown in 
table I. This table represents the best results as at 15th

August 2006.   

A. Hyper-heuristics 
Hyper-heuristic approaches “broadly describe the process of 
using meta-heuristics to choose meta-heuristics to solve the 
problem in hand” [14]. A hyper-heuristic does not operate 
on the problem directly. Instead it utilises low level (meta-
)heuristics and, as such, does not have domain knowledge of 
the problem over which it operates. The broad aim of hyper-
heuristics is to raise the level of generality at which search 
algorithms can operate. That is, they aim to be applicable to 
a wide range of problem instances; and even problem 
domains. 

Ross [16] says, “The broad aim (of hyper-heuristics) is 
to discover some algorithm for solving a whole range of 
problems that is fast, reasonably comprehensible, trustable 
in terms of quality and repeatability and with good worst-
case behaviour across that range of problems.”

Hyper-heuristics have been applied to a variety of 
problems, using a variety of solution methodologies. Burke 
et al. [17] used a tabu search based algorithm as a hyper-
heuristic and it was shown to operate well across three 
different problem domains. Ross et al. [18] used a learning 
classifier system (XCS) in order to solve a large set of one-
dimensional bin packing problems. They show that 
individual heuristics are not able to find optimal solutions to 
any of the problems, but using a hyper-heuristic, to combine 
heuristics, they were able to find optimal solutions for 78% 
of the cases. Other hyper-heuristic examples can be found in 
[19], [20,21] (timetabling), [22] (determining shipper sizes), 
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[23] (presentation scheduling), [24] (shelf space layout), 
[25,26] (channel assignment) and [27] (component
placement).

Introductions to hyper-heuristics can be found in [16,28].

B. Ant Algorithms
Ant Colony Optimisation algorithms (ACOs) were 

inspired by the observation of real ant colony behaviour.
Dorigo et al. [29] proposed the first ACO algorithm, Ant
System (AS), which has a set of artificial ants which
exchange information using a pheromone trail. There are 
differences between artificial ants and natural ants. Artificial 
ants are not completely blind. As well as using a pheromone
trail, they also use heuristic information to look ahead.
Artificial ants can also recall complete routes they have
previously taken. They also move in discrete time steps
[29].

AS algorithms have been applied to the Travelling
Salesman Problem and have generally achieved good
results, giving a good solution, for example, to a 75–city
problem [29]. To improve the performance of the AS 
algorithm, Dorigo and Gambardella [30] introduced the Ant
Colony System (ACS) and compared it to other meta-
heuristic methods such as genetic algorithms, evolutionary
programming, and simulated annealing. They achieved
impressive results for a 100-city problem. In addition, new 
improved versions of ACO algorithms are continually being
proposed, for example: Max-Min Ant System, MMAS [31],
Approximate Nondeterministic Tree-Search [32] and The 
Rank-based Version of Ant System, ASrank [33] etc.

Apart from the Travelling Salesman Problem, ant 
algorithms have been applied to many other combinatorial
optimisation problems such as the Job-Shop Scheduling
Problem [34], the Quadratic Assignment Problem
[32,35,36], Vehicle Routing [37,38], Vehicle Routing with
time windows [39], Graph Coloring [40] and Sequential
Ordering [41].

III. PROPOSED ALGORITHM

One of the basic premises of an ant algorithm is to model
the problem as a (normally) fully connected graph. The ants 
use the amount of pheromone on the edges to decide which
vertex they should visit from the current vertex. The vertices
represent some aspect of the problem. In the TSP, for
example, each edge is a city. In our representation, each 
vertex represents a heuristic to be applied to the current
solution and return a new solution.

A previous ant-algorithm-hyper-heuristic [42] uses a 
similar idea. There is a network in which every vertex
represents a low-level heuristic. A number of ants, each of
which represents a hyper-heuristic agent, are located 
uniformly among the vertices of the network and carry
initial solutions. Each ant traverse particular edges and reach 
the next vertex. Once an ant arrives at a new vertex it applies
the low-level heuristic at that node. 

Unlike the TSP, when solved by ant algorithms, the ants
in our representation are allowed to visit the same vertex
many times. Indeed, they can cycle back to the same vertex; 
so that the same heuristic is repeatedly applied to the current
solution. This is unlike the TSP, where each vertex can only 
be visited once, in any one tour, due to the constraints that
must be respected for that problem.

In addition to the pheromone trails, the TSP ant
algorithm provides ants with additional information.
Visibility (as it is known) provides the ants with information
as to how far each unvisited city is away from its current 
destination. By combining the pheromone information
(which indicates how many ants have used that route
before), with the visibility (the distance to the potential next
cities), the ants probabilistically choose which city to visit 
next.

In the proposed algorithm, we still use the idea of
pheromone trails. Visibility is also used, but this represents
how quickly the heuristic at a potential vertex takes to
compute. This is on the assumption that short, good quality
heuristics are to be preferred to good quality heuristics that
take a long time to compute (or even computationally
expensive, yet poor, heuristics).

More formally, we can say that an ant k, located at vertex
i, applies the low-level heuristic i to its own solution. The
next destination, j, will be probabilistically selected using
visibility, j, and the level of pheromone, ij. j is 
information about heuristic j that indicates how well the
heuristic performs. The pheromone value ij is a probability
proportional to the intensity of the pheromone trail laid on
the edge from vertex i to vertex j (see figure 3). 

Figure 3. Design outline of proposed ant algorithm hyper-heuristic [23] 

After visiting vertex j and implementing the low-level
heuristic at that vertex, the ant uses the evaluation 
(objective) function to calculate the level of improvement
(positive or negative) and deposits an amount of pheromone,
which is proportional to the change in the evaluation. Like
the TSP, the pheromone must not grow unbounded and there
is a need for an evaporation function so that pheromone
levels decay over time.

However, it is notable that since ants immediately judge
the degree of improvement of their solution implemented by
low-level heuristics, this judgement always leads to more
successful low-level heuristics being rewarded with higher
levels of pheromone than less successful heuristics.

i

Visibility j

Pheromone trail ij

Edge i to j
j
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Therefore, no ants will visit these less-successful heuristics, 
which could decrease the quality of the final solution. At 
first sight this might seem reasonable but poorly performing 
low-level heuristics may enable escape from local optima, 
and allow the good heuristics to find even better solutions. 
This is why [42] suggests that ants should not make 
judgements immediately after each move, but only after a 
complete journey has been completed. For example, an ant 
with a journey length of 4 will visit four vertices (four low-
level heuristics) then judge the quality of its journey. It is 
more important that the overall sequence of steps consisting 
of “good” and “bad” moves generates an appreciable 
improvement than to find individually “good” moves. 
Indeed, this is the idea behind being able to combine a 
number of heuristics in order to find a good set of heuristics 
[18]. As regards to the length of the journey, Burke et al. 
[42] experimented with various journey lengths. Results for 
experiments with a length equal to the number of vertices 
(or low-level heuristics) are generally good, so we adopt the 
same for our experiments.     

A. Low Level Heuristics 
As stated above, each vertex in the fully connected graph 
represents a heuristic. In this work we have 10 heuristics 
(H01 – H10). In the descriptions below, we refer to a team 
(a single team in a TTP) and a round (a slot when all teams 
are playing). 

For the low-level heuristics H01 to H05, the choice of 
team or round is randomly selected. For H06 to H10, the 
behaviour is the same as for H01 to H05, but these heuristics 
explore all possible neighbourhood moves and selects the 
one which minimizes the objective function. Hence, H06 to 
H10 are computationally more expensive. 
H1: Partial Swap Rounds: This low-level heuristic is a 
partial swap function which swaps any two random rounds 
for a random team. This heuristic carries out a repair chain 
in order to maintain the feasibility of the schedule. 
H2: Swap Teams: This low-level heuristic swaps any two 
random teams 
H3: Swap Home-Away: This low-level heuristic swaps the 
home/away matches of teams i and j. If team i plays a home 
game against team j in round k (and plays an away game at 
round l), rounds k and l will be exchanged. Team j’s match 
will also change to correspond to the change in team i’s
match. 
H4: Swap Rounds: The following heuristic simply swaps 
rounds i and j and there is no repair chain.  
H5: Shift Move: Randomly choose rounds j and k (j < k ; j

k), remove round j and insert it in the position of round k,
the intermediate rounds are shifted one slot forward. 

The low-level heuristics described above are inspired by 
[5] and [9]. As Anagnostopoulos et al. [5] points out, H02 
(Swap Teams), H03 (Swap Home-Away) and H04 (Swap 
Rounds) are “not sufficient for exploring the entire search 
space and, as a consequence, they lead to suboptimal 
solutions for large instances”. Therefore, to improve these 

results they consider two methods: Partial-Swap Rounds and 
Partial-Swap Teams, which significantly expands the 
neighbourhood, creating a more densely linked search space. 
The advantage of this is that although these two moves are 
not as global as the macro moves H02 to H05, they may 
accomplish a better trade-off between feasibility and 
optimality by improving feasibility in one part of the TTP 
schedule, while not undermining feasibility in another. They 
are also more global than the micro-moves [5]. H05 (Shift-
Move) is taken from [9], which can also be considered a 
kind of micro-move.  

B. The Algorithm 
Below we present the algorithm and, following, some 
explanations 

t = 0 // t is a counter  
l =0 // l is the counter of the journey length  
Sb = null // best solution  
Sk = null // each ant’s solution
For each vertex j: set j =1
For each edge(i, j): set ij =1 

// Provide each ant with an initial solution 
For each ant k: Sk = RandomInitSolution() 

Put m ants uniformly on the n vertices.
For each ant k: apply low-level heuristic from ant k’s current 

location to Sk.

While (NOT Stopping-condition())
While (k =1 to m)
 //Choose next vertex based on pheromone and visibility 

Ant k chooses the next vertex j
Move ant k to vertex j
Apply heuristic j to Sk to produce new solution S'

k
if (eval(S'

k) < eval(Sb)) Sb = S'
k

End while 
t = t + 1 
l = l + 1 

Update Visibility : 
While ( j =1 to n ) do 

Update j

End while 

Update Pheromone : 
if (l = = n) then // we have completed a journey  

l = 0
Update ij (t)
if (any new best solution found in this journey) then 

For all ants : Sk = Sb
End if 

End if 

Escape Local Optimal: 
if(no new best solution found for x iterations ) then 
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Adjust-Objective-Function()
End if

End while

We used a random initial solution generator from [5] to
generate a double round robin schedule. They state that “this
procedure is very simple and can be improved considerably,
but it appears sufficient to find schedules satisfying the hard 
constraints reasonably fast”.

Each ant has to choose its next heuristic (vertex). This
transition probability uses the same formula as the original 
ant system formulation [29].

As stated in the algorithm, the objective function is 
adaptive (see the end of this section for more discussion on
this point) and is defined as follows:

 total-travel-distance( ) if  S is feasible timetable

( ) total-travel-distance( )  penaltyFunction(S)  if S is infeasible timetable

( ) = ( ) * ( )

S

Objective S S

penaltyFunction S pv S numv S

Infeasible solutions are penalised according to how many
times they violate constraints. numv(x) denotes the number
of violations. pv(x) is the penalty value, which is a fixed
number depending on the number of teams. For example, if
the NL8 instance violates the NoRepeat constraint twice and 
“Greater Than Three Consecutive Home/Aways” five times,
the penalty value is 7 * pv(8). pv(x) was found empirically
and is just the best known solution (see table I) divided by
100.

The visibility updating formula is given by: 

( )
( ) * ( 1)

( )  * ( , )

m Ikj t

kjk
ij t ij t

T t num i j

is a constant between 0 and 1 to provide decay. Ikj(t) is 
the improvement of the kth’s ant current solution, Sk. This 
value could be negative (heuristic j decreases the quality of
the solution) so we provide a monotonic conversion  (  is a 
static number; 1.0001) to convert the negative value to a
small positive value and so still give poorly performing
heuristics some probability of being selected. Tkj(t) is the
amount of time heuristic j uses for the kth’s ant current 
solution at time t. num(i, j) is the number of edges the ants
have used from the start until now. This stops the ants from
depending on a particular edge. Burke et al. (2003b) 
suggested, that visibility should be defined as 1 divided by 
the amount of CPU time taken to implement heuristic j.
However, after experimentation we found that the above 
formula leads to better results.

Pheromone updates are carried out according to the
following formulae (in fact they closely mimic the original 
ant algorithm formulation):

m

ij ij
k=1

(t) = (t-n)  + k

ij

Where =0.5 is an evaporation parameter and 
k

ij is

the quantity of pheromone associated with edge(i, j) to be 
laid by ant k during this journey and is given by.

Otherwise

If

0

0k

k

K
k

ij

Q
I
L

I

Where Q is a constant which increases pheromone value 
by resisting evaporation. Lk is the length of ant k’s journey.
Ik is the improvement contributed by the low-level heuristics
(vertices) that ant k used (visited) during this journey, and 
only if improvement occurs is edge(i, j) rewarded with 
pheromone.

Anagnostopoulos et al. [5] demonstrated the importance
of balance in exploring both feasible and unfeasible areas. 
They use a Strategic Oscillation strategy to search both areas
equally and achieved good results. For our experiments, we 
also use this idea of searching both feasible and infeasible
regions. An early experiment showed that when the
objective function was used without a penalty function, the
majority of solutions found were unfeasible. By contrast,
only poor feasible solutions were found when the objective
function used a high penalty value. The penalty value is
adjusted according to the progress of the solution search. If 
no new best solution is found within a certain number of 
iterations, the search may be trapped in a local optima; so,
the penalty value, pv(x), of the objective function is reduced 
by half at each iteration until a new best solution is found, 
the penalty value then returns to its normal level.

IV. RESULTS

All algorithms were run on a laptop Intel(R) Pentium(R) M
processor 1.73 GHz with 512M RAM running under
Microsoft Windows XP Home Edition version 2002 service 
Pack 2.

Table I shows the comparison of existing literature
results, compared to our best results (see last row). The 
hyper-heuristic reached the optimal solution for NL4 (8276)
in every run (these results report the best result from 30
runs). For NL6, which we also find the optimal solution,
only Zhang [12] fails to find the optimal solution. Our result
produced the optimal solution in about 45 seconds. NL8 is
quite challenging. The best result (39721) was found by
Anagnostopoulos et al. [5]. Lim et al. [8] also found the
same result. Although our result cannot beat this, we still 
obtain a good quality solution (the difference between the 
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best and ours is about 16%) and we also beat some previous 
work such as [1,4,6,7,9]. One notable performance is that 
finding this solution using a hyper-heuristic only took about 
481 seconds (250 iterations). It is quite fast in comparison 
with result of Easton et al. [1,4] which spent approximately 
4 days and used 20 processors. For the even larger instances 
(NL10 to NL16) our approach does not beat the best known 
results. However it still produces good quality solutions and 
also beats some existing studies (e.g. NL12: [1,4,6,7,9]. 

There is another notable comparison that we can make. 
We have used an ant colony algorithm, and when compared 
against the only other method using this approach [9], we 
observe that all our results are superior. 

V. CONCLUSIONS AND DISCUSSION

This paper has developed an ant algorithm based hyper-
heuristic that used the Travelling Tournament Problem as an 
experimental testbed. The results show that the hyper-
heuristic can find optimal solutions for small instances and 
is able to produce good quality solutions for larger instances. 
The hyper-heuristic approach is able to beat some of the 
results reported in the literature [1,4,7,9].  

Although the proposed approach cannot beat the best 
results from the literature, it is the first time that a hyper-
heuristic has been tested on this problem. 

The hyper-heuristic does not use complex low-level 
(meta-)heuristics, but utilises five simple, straightforward 
neighbouhood algorithms in order to obtain high quality, 
feasible solutions. Similar to previous studies of hyper-
heuristics, this paper has demonstrated that hyper-heuristics 
can easily be applied to new problems utilising a flexible 
framework: simple low-level heuristics, an objective 
function and a high level manager which intelligently 
manages low-level heuristics to search the solution space.

An encouraging faeture is that our ant based approach is 
able to beat the results of the only other ant algorithm 
reported for the TTP [9].  

There are still many other research directions that can be 
followed in the future. It would be nice to extend this work 
so that we are more competitive with other results for 
instances NL8-NL16. We would also like to test the 
proposed method on some larger instances which have 
recently been introduced.

We would also like to investigate other hyper-heuristic 
approaches on this problem; from the many that now appear 
in the literature. 

This has been a challenging investigation. We have 
introduced a new hyper-heuristic and tested it on a 
challenging sports scheduling problem. The results are very 
encouraging and we hope it motivates other researchers to 
continue to investigate this area. 
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TABLE I
TTP SOLUTION METHODS. THE BEST RESULTS ARE IN BOLD

Author(s) Method NL4 NL6 NL8 NL10 NL12 NL14 NL16 

Easton et al. [1,4] Linear Programming 
(LP) 8276 23916 41113 312623

Benoist et al. [6] 

A combination of 
constraint 
programming and 
lagrange relaxation 

8276 23916 42517 68691 143655 301113 437273

Cardemil [7] Tabu search 8276 23916 40416 66037 125803 205894 308413

Zhang [12] Unknown (data from 
TTP Website) 8276 24073 39947 61608 119012 207075 293175

Shen and Zhang 
[10] 

“Greedy big step” 
Meta-Heuristic 39776 61679 117888 206274 281660

Lim et al. [8] Simulated Annealing 
and Hill-climbing 8276 23916 39721 59821 115089 196363 274673

Langford [11] Unknown (data from 
TTP Website) 59436 112298 190056 272902

Crauwels and 
Oudheusden [9] 

Ant Colony 
Optimization with 
Local Improvement  

8276 23916 40797 67640 128909 238507 346530

Anagnostopoulos 
et al. [5] Simulated Annealing 8276 23916 39721 59583 111248 188728 263772

Gaspero and 
Schaerf [13] 

Composite-
Neighbourhood Tabu 
Search Approach 

59583 111483 190174 270063

This Paper 
Ant Algorithm 
Hyper-heuristic 8276 23916 40361 65168 123752 225169 321037
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