
An Ant Based Hyper-heuristic for the Travelling Tournament
Problem

Pai-Chun Chen, Graham Kendall and Greet Vanden Berghe

Abstract: The Travelling Tournament Problem is a
challenging sports timetabling problem which is widely
believed to be NP-Hard. The objective is to establish a feasible
double round robin tournament schedule, with minimum travel
distances. This paper investigates the application of an ant
based hyper-heuristic algorithm for this problem. Ant
algorithms, a well known meta-heuristic, have been successfully
applied to various problems. Whilst hyper-heuristics are an
emerging technology, which operate at a higher level of
abstraction than meta-heuristics. This paper presents a
framework which employs ant algorithms as a hyper-heuristic.
We show that this approach produces good quality solutions
for the traveling tournament problem when compared with
results from the literature.

I. INTRODUCTION

Across the world sports leagues receive significant

income from television and radio. For example, the UK
based football team, Manchester United, has a market value
of over 400 million pounds, largely due to its TV exposure.
In the United States, television networks pay over 400
million dollars annually for nationally televised baseball
games and that much again for local presentations [1].

An attractive sports schedule can generate large incomes,
whilst poor schedules can decrease revenue. Furthermore,
there are many smaller leagues that would benefit from
better schedules so as to increase their revenue.

There have been various studies of sports schedules such
as those for Minor League Baseball [2] and college
basketball [3]. This paper tackles the Travelling Tournament
Problem (TTP), which is an abstract instance of Major
League Baseball (MLB). There have been many approaches
to tackling the TTP (see table I).

In this paper we propose a new approach; an ant based
hyper-heuristic. The novelty of this approach is that we can
tackle all problem instances using the same algorithm, and
using the same parameters.

Manuscript received January 30, 2007.
Pai-Chun. Chen is with the School of Computer Science at the

University of Nottingham, UK. (e-mail: pzc@cs.nott.ac.uk)
Graham Kendall is with the School of Computer Science at the

University of Nottingham, UK. (+44 115 846 6514, e-mail:
gxk@cs.nott.ac.uk)

Greet Vanden Berghe is with KaHo Sint-Lieven, Belgium (e-mail:
greetvb@kahosl.be)

By studying table I, it is apparent that different
approaches are able to produce the best known solutions on
just some of the problems. Whilst we are not aiming to be
the best on any one instance, we aim to show that our
approach is able to produce good quality solutions across a
range of problem instances.

This paper is organised as follows. In section II, we
describe the TTP in more detail and also introduce hyper-
heuristics and ant algorithms. Section III provides a
description of our proposed algorithm. Results and
conclusions are presented in sections IV and V.

II. THE TRAVELLING TOURNAMENT PROBLEM

The formal definition of the TTP is as follows:
Input: n teams (n is even).

D, an nxn symmetric integer distance matrix.
Output: a schedule for a double round-robin tournament

with n teams
The aim is to minimise the total travel distance, whilst

satisfying the following constraints.
The schedule must represent a valid double round-robin
tournament. That is, each team i plays one home game
and one away game with every other team, j (i j).
Repeaters (team i at team j, followed immediately by
team j at team i) are not allowed.
No team is allowed to play more than three consecutive
home games or three consecutive away games.
These definitions refer to the rules described by [1,4,5].
A double round robin tournament has exactly 2n-2

rounds and n/2 games are played in every round. For
example, a tournament of six teams has ten rounds and in
each round three games are held.

As stated above, the main objective is to minimise the
total travel distance. The total travel distance is defined as
the sum of the travel distance of all teams. Each team starts
at home, travels to the match venues according to the
schedule and returns back home at the end of the schedule.
For example (refer to figure 1), team ATL plays against
teams FLA (home), NYM (home), PIT (home), PHI (away),
MON (away), PIT (away), PHI (home), MON (home),
NYM (away) and FLA (away). The distance matrix, D,
figure 2, allows us to calculate.

19

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

dATL,PHI + dPHI,MON + dMON,PIT + dPIT,ATL + dATL,NYM + dNYM,FLA
+ dFLA,ATL

= 665+380+408+521+745+1090+605 = 4414

where dxxx,yyy, is the distance between xxx and yyy.

Slo
t

ATL NYM PHI MON FLA PIT

0 FLA @PIT @MON PHI @ATL NYM
1 NYM @ATL FLA @PIT @PHI MON
2 PIT @FLA MON @PHI NYM @ATL
3 @PHI MON ATL @NYM PIT @FLA
4 @MON FLA @PIT ATL @NYM PHI
5 @PIT @PHI NYM FLA @MON ATL
6 PHI @MON @ATL NYM @PIT FLA
7 MON PIT @FLA @ATL PHI @NYM
8 @NYM ATL PIT @FLA MON @PHI
9 @FLA PHI @NYM PIT ATL @MON
Figure 1. An example TTP schedule. @ represents a team playing away

ATL NYM PHI MON FLA PIT

ATL 0 745 665 929 605 521

NYM 745 0 80 337 1090 315

PHI 665 80 0 380 1020 257

MON 929 337 380 0 1380 408

FLA 605 1090 1020 1380 0 1010

PIT 521 315 257 408 1010 0

Figure 2. Distance matrix for a 6x6 TTP

Summing all the distances for each team, leads to the
total distance for a given schedule.

Many different algorithmic techniques have been applied
to the Travelling Tournament Problem. Easton et al. [1,4]
introduced the description and the benchmarks of the TTP
and presented the first solution approaches; Integer and
Constraint Programming. They did not present results for all
the instances. One remarkable fact is that their approach
necessitated approximately 4 days computation for the NL8
instance (the instances provided by [1,4] are described by
NLn, where NL means National League and n indicates how
many teams are involved) using parallel programming on 20
CPU processors compared with a few minutes computation
time for NL6.

Benoist et al. [6] used a combination of Constraint
Programming and Lagrange relaxation to reach optimal
solutions for NL4 and NL6. They also obtained feasible
solutions for the larger instances, but did not beat the
previous solution for NL16.

Cardemil [7] also achieves good results for NL4 to
NL16, employing tabu search with the results being
significantly better than [1,4,6].

Lim et al. [8] combined simulated annealing and hill-
climbing. They divide the solution space into two sub-
spaces; a timetable space and a team assignment space.
Simulated annealing is used to search the feasible timetable

space, while hill-climbing generates and improves team
assignment for the given timetable in the team assignment
space.

Crauwels and Oudheusden [9] investigate ant colony
optimisation for the TTP. Compared with other studies, the
results make no significant improvement, but the authors
emphasise that their aim was to investigate an
implementation of an ACO algorithm which might be used
to solve other hard combinatorial optimisation problems.

Shen and Zhang [10] present a meta-heuristic named
“greedy big step” which combines local search, branch-and-
bound and constraint satisfaction. Compared with previous
studies, their results are satisfactory.

Langford’s [11] results are shown on Michael Trick’s
web site (http://www.tsp.gatech.edu/). The result for NL10
(59436) is the best known solution for NL10. Zhang [12]
also presents his results on the TTP website. The results are
competitive for the larger instances.

Gaspero and Schaerf [13] propose a family of tabu
search algorithms. Their results show that the new method is
competitive with those already in the literature.

In existing studies, the best approach to date is a
simulated annealing method, proposed in [5]. They have
recently presented the best results for many of the instances.

A summary of methods, and best results, are shown in
table I. This table represents the best results as at 15th

August 2006.

A. Hyper-heuristics
Hyper-heuristic approaches “broadly describe the process of
using meta-heuristics to choose meta-heuristics to solve the
problem in hand” [14]. A hyper-heuristic does not operate
on the problem directly. Instead it utilises low level (meta-
)heuristics and, as such, does not have domain knowledge of
the problem over which it operates. The broad aim of hyper-
heuristics is to raise the level of generality at which search
algorithms can operate. That is, they aim to be applicable to
a wide range of problem instances; and even problem
domains.

Ross [16] says, “The broad aim (of hyper-heuristics) is
to discover some algorithm for solving a whole range of
problems that is fast, reasonably comprehensible, trustable
in terms of quality and repeatability and with good worst-
case behaviour across that range of problems.”

Hyper-heuristics have been applied to a variety of
problems, using a variety of solution methodologies. Burke
et al. [17] used a tabu search based algorithm as a hyper-
heuristic and it was shown to operate well across three
different problem domains. Ross et al. [18] used a learning
classifier system (XCS) in order to solve a large set of one-
dimensional bin packing problems. They show that
individual heuristics are not able to find optimal solutions to
any of the problems, but using a hyper-heuristic, to combine
heuristics, they were able to find optimal solutions for 78%
of the cases. Other hyper-heuristic examples can be found in
[19], [20,21] (timetabling), [22] (determining shipper sizes),

20

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

[23] (presentation scheduling), [24] (shelf space layout),
[25,26] (channel assignment) and [27] (component
placement).

Introductions to hyper-heuristics can be found in [16,28].

B. Ant Algorithms
Ant Colony Optimisation algorithms (ACOs) were

inspired by the observation of real ant colony behaviour.
Dorigo et al. [29] proposed the first ACO algorithm, Ant
System (AS), which has a set of artificial ants which
exchange information using a pheromone trail. There are
differences between artificial ants and natural ants. Artificial
ants are not completely blind. As well as using a pheromone
trail, they also use heuristic information to look ahead.
Artificial ants can also recall complete routes they have
previously taken. They also move in discrete time steps
[29].

AS algorithms have been applied to the Travelling
Salesman Problem and have generally achieved good
results, giving a good solution, for example, to a 75–city
problem [29]. To improve the performance of the AS
algorithm, Dorigo and Gambardella [30] introduced the Ant
Colony System (ACS) and compared it to other meta-
heuristic methods such as genetic algorithms, evolutionary
programming, and simulated annealing. They achieved
impressive results for a 100-city problem. In addition, new
improved versions of ACO algorithms are continually being
proposed, for example: Max-Min Ant System, MMAS [31],
Approximate Nondeterministic Tree-Search [32] and The
Rank-based Version of Ant System, ASrank [33] etc.

Apart from the Travelling Salesman Problem, ant
algorithms have been applied to many other combinatorial
optimisation problems such as the Job-Shop Scheduling
Problem [34], the Quadratic Assignment Problem
[32,35,36], Vehicle Routing [37,38], Vehicle Routing with
time windows [39], Graph Coloring [40] and Sequential
Ordering [41].

III. PROPOSED ALGORITHM

One of the basic premises of an ant algorithm is to model
the problem as a (normally) fully connected graph. The ants
use the amount of pheromone on the edges to decide which
vertex they should visit from the current vertex. The vertices
represent some aspect of the problem. In the TSP, for
example, each edge is a city. In our representation, each
vertex represents a heuristic to be applied to the current
solution and return a new solution.

A previous ant-algorithm-hyper-heuristic [42] uses a
similar idea. There is a network in which every vertex
represents a low-level heuristic. A number of ants, each of
which represents a hyper-heuristic agent, are located
uniformly among the vertices of the network and carry
initial solutions. Each ant traverse particular edges and reach
the next vertex. Once an ant arrives at a new vertex it applies
the low-level heuristic at that node.

Unlike the TSP, when solved by ant algorithms, the ants
in our representation are allowed to visit the same vertex
many times. Indeed, they can cycle back to the same vertex;
so that the same heuristic is repeatedly applied to the current
solution. This is unlike the TSP, where each vertex can only
be visited once, in any one tour, due to the constraints that
must be respected for that problem.

In addition to the pheromone trails, the TSP ant
algorithm provides ants with additional information.
Visibility (as it is known) provides the ants with information
as to how far each unvisited city is away from its current
destination. By combining the pheromone information
(which indicates how many ants have used that route
before), with the visibility (the distance to the potential next
cities), the ants probabilistically choose which city to visit
next.

In the proposed algorithm, we still use the idea of
pheromone trails. Visibility is also used, but this represents
how quickly the heuristic at a potential vertex takes to
compute. This is on the assumption that short, good quality
heuristics are to be preferred to good quality heuristics that
take a long time to compute (or even computationally
expensive, yet poor, heuristics).

More formally, we can say that an ant k, located at vertex
i, applies the low-level heuristic i to its own solution. The
next destination, j, will be probabilistically selected using
visibility, j, and the level of pheromone, ij. j is
information about heuristic j that indicates how well the
heuristic performs. The pheromone value ij is a probability
proportional to the intensity of the pheromone trail laid on
the edge from vertex i to vertex j (see figure 3).

Figure 3. Design outline of proposed ant algorithm hyper-heuristic [23]

After visiting vertex j and implementing the low-level
heuristic at that vertex, the ant uses the evaluation
(objective) function to calculate the level of improvement
(positive or negative) and deposits an amount of pheromone,
which is proportional to the change in the evaluation. Like
the TSP, the pheromone must not grow unbounded and there
is a need for an evaporation function so that pheromone
levels decay over time.

However, it is notable that since ants immediately judge
the degree of improvement of their solution implemented by
low-level heuristics, this judgement always leads to more
successful low-level heuristics being rewarded with higher
levels of pheromone than less successful heuristics.

i

Visibility j

Pheromone trail ij

Edge i to j
j

21

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

Therefore, no ants will visit these less-successful heuristics,
which could decrease the quality of the final solution. At
first sight this might seem reasonable but poorly performing
low-level heuristics may enable escape from local optima,
and allow the good heuristics to find even better solutions.
This is why [42] suggests that ants should not make
judgements immediately after each move, but only after a
complete journey has been completed. For example, an ant
with a journey length of 4 will visit four vertices (four low-
level heuristics) then judge the quality of its journey. It is
more important that the overall sequence of steps consisting
of “good” and “bad” moves generates an appreciable
improvement than to find individually “good” moves.
Indeed, this is the idea behind being able to combine a
number of heuristics in order to find a good set of heuristics
[18]. As regards to the length of the journey, Burke et al.
[42] experimented with various journey lengths. Results for
experiments with a length equal to the number of vertices
(or low-level heuristics) are generally good, so we adopt the
same for our experiments.

A. Low Level Heuristics
As stated above, each vertex in the fully connected graph
represents a heuristic. In this work we have 10 heuristics
(H01 – H10). In the descriptions below, we refer to a team
(a single team in a TTP) and a round (a slot when all teams
are playing).

For the low-level heuristics H01 to H05, the choice of
team or round is randomly selected. For H06 to H10, the
behaviour is the same as for H01 to H05, but these heuristics
explore all possible neighbourhood moves and selects the
one which minimizes the objective function. Hence, H06 to
H10 are computationally more expensive.
H1: Partial Swap Rounds: This low-level heuristic is a
partial swap function which swaps any two random rounds
for a random team. This heuristic carries out a repair chain
in order to maintain the feasibility of the schedule.
H2: Swap Teams: This low-level heuristic swaps any two
random teams
H3: Swap Home-Away: This low-level heuristic swaps the
home/away matches of teams i and j. If team i plays a home
game against team j in round k (and plays an away game at
round l), rounds k and l will be exchanged. Team j’s match
will also change to correspond to the change in team i’s
match.
H4: Swap Rounds: The following heuristic simply swaps
rounds i and j and there is no repair chain.
H5: Shift Move: Randomly choose rounds j and k (j < k ; j

k), remove round j and insert it in the position of round k,
the intermediate rounds are shifted one slot forward.

The low-level heuristics described above are inspired by
[5] and [9]. As Anagnostopoulos et al. [5] points out, H02
(Swap Teams), H03 (Swap Home-Away) and H04 (Swap
Rounds) are “not sufficient for exploring the entire search
space and, as a consequence, they lead to suboptimal
solutions for large instances”. Therefore, to improve these

results they consider two methods: Partial-Swap Rounds and
Partial-Swap Teams, which significantly expands the
neighbourhood, creating a more densely linked search space.
The advantage of this is that although these two moves are
not as global as the macro moves H02 to H05, they may
accomplish a better trade-off between feasibility and
optimality by improving feasibility in one part of the TTP
schedule, while not undermining feasibility in another. They
are also more global than the micro-moves [5]. H05 (Shift-
Move) is taken from [9], which can also be considered a
kind of micro-move.

B. The Algorithm
Below we present the algorithm and, following, some
explanations

t = 0 // t is a counter
l =0 // l is the counter of the journey length
Sb = null // best solution
Sk = null // each ant’s solution
For each vertex j: set j =1
For each edge(i, j): set ij =1

// Provide each ant with an initial solution
For each ant k: Sk = RandomInitSolution()

Put m ants uniformly on the n vertices.
For each ant k: apply low-level heuristic from ant k’s current

location to Sk.

While (NOT Stopping-condition())
While (k =1 to m)
 //Choose next vertex based on pheromone and visibility

Ant k chooses the next vertex j
Move ant k to vertex j
Apply heuristic j to Sk to produce new solution S'

k
if (eval(S'

k) < eval(Sb)) Sb = S'
k

End while
t = t + 1
l = l + 1

Update Visibility :
While (j =1 to n) do

Update j

End while

Update Pheromone :
if (l = = n) then // we have completed a journey

l = 0
Update ij (t)
if (any new best solution found in this journey) then

For all ants : Sk = Sb
End if

End if

Escape Local Optimal:
if(no new best solution found for x iterations) then

22

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

Adjust-Objective-Function()
End if

End while

We used a random initial solution generator from [5] to
generate a double round robin schedule. They state that “this
procedure is very simple and can be improved considerably,
but it appears sufficient to find schedules satisfying the hard
constraints reasonably fast”.

Each ant has to choose its next heuristic (vertex). This
transition probability uses the same formula as the original
ant system formulation [29].

As stated in the algorithm, the objective function is
adaptive (see the end of this section for more discussion on
this point) and is defined as follows:

 total-travel-distance() if S is feasible timetable

() total-travel-distance() penaltyFunction(S) if S is infeasible timetable

() = () * ()

S

Objective S S

penaltyFunction S pv S numv S

Infeasible solutions are penalised according to how many
times they violate constraints. numv(x) denotes the number
of violations. pv(x) is the penalty value, which is a fixed
number depending on the number of teams. For example, if
the NL8 instance violates the NoRepeat constraint twice and
“Greater Than Three Consecutive Home/Aways” five times,
the penalty value is 7 * pv(8). pv(x) was found empirically
and is just the best known solution (see table I) divided by
100.

The visibility updating formula is given by:

()
() * (1)

() * (,)

m Ikj t

kjk
ij t ij t

T t num i j

is a constant between 0 and 1 to provide decay. Ikj(t) is
the improvement of the kth’s ant current solution, Sk. This
value could be negative (heuristic j decreases the quality of
the solution) so we provide a monotonic conversion (is a
static number; 1.0001) to convert the negative value to a
small positive value and so still give poorly performing
heuristics some probability of being selected. Tkj(t) is the
amount of time heuristic j uses for the kth’s ant current
solution at time t. num(i, j) is the number of edges the ants
have used from the start until now. This stops the ants from
depending on a particular edge. Burke et al. (2003b)
suggested, that visibility should be defined as 1 divided by
the amount of CPU time taken to implement heuristic j.
However, after experimentation we found that the above
formula leads to better results.

Pheromone updates are carried out according to the
following formulae (in fact they closely mimic the original
ant algorithm formulation):

m

ij ij
k=1

(t) = (t-n) + k

ij

Where =0.5 is an evaporation parameter and
k

ij is

the quantity of pheromone associated with edge(i, j) to be
laid by ant k during this journey and is given by.

Otherwise

If

0

0k

k

K
k

ij

Q
I
L

I

Where Q is a constant which increases pheromone value
by resisting evaporation. Lk is the length of ant k’s journey.
Ik is the improvement contributed by the low-level heuristics
(vertices) that ant k used (visited) during this journey, and
only if improvement occurs is edge(i, j) rewarded with
pheromone.

Anagnostopoulos et al. [5] demonstrated the importance
of balance in exploring both feasible and unfeasible areas.
They use a Strategic Oscillation strategy to search both areas
equally and achieved good results. For our experiments, we
also use this idea of searching both feasible and infeasible
regions. An early experiment showed that when the
objective function was used without a penalty function, the
majority of solutions found were unfeasible. By contrast,
only poor feasible solutions were found when the objective
function used a high penalty value. The penalty value is
adjusted according to the progress of the solution search. If
no new best solution is found within a certain number of
iterations, the search may be trapped in a local optima; so,
the penalty value, pv(x), of the objective function is reduced
by half at each iteration until a new best solution is found,
the penalty value then returns to its normal level.

IV. RESULTS

All algorithms were run on a laptop Intel(R) Pentium(R) M
processor 1.73 GHz with 512M RAM running under
Microsoft Windows XP Home Edition version 2002 service
Pack 2.

Table I shows the comparison of existing literature
results, compared to our best results (see last row). The
hyper-heuristic reached the optimal solution for NL4 (8276)
in every run (these results report the best result from 30
runs). For NL6, which we also find the optimal solution,
only Zhang [12] fails to find the optimal solution. Our result
produced the optimal solution in about 45 seconds. NL8 is
quite challenging. The best result (39721) was found by
Anagnostopoulos et al. [5]. Lim et al. [8] also found the
same result. Although our result cannot beat this, we still
obtain a good quality solution (the difference between the

23

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

best and ours is about 16%) and we also beat some previous
work such as [1,4,6,7,9]. One notable performance is that
finding this solution using a hyper-heuristic only took about
481 seconds (250 iterations). It is quite fast in comparison
with result of Easton et al. [1,4] which spent approximately
4 days and used 20 processors. For the even larger instances
(NL10 to NL16) our approach does not beat the best known
results. However it still produces good quality solutions and
also beats some existing studies (e.g. NL12: [1,4,6,7,9].

There is another notable comparison that we can make.
We have used an ant colony algorithm, and when compared
against the only other method using this approach [9], we
observe that all our results are superior.

V. CONCLUSIONS AND DISCUSSION

This paper has developed an ant algorithm based hyper-
heuristic that used the Travelling Tournament Problem as an
experimental testbed. The results show that the hyper-
heuristic can find optimal solutions for small instances and
is able to produce good quality solutions for larger instances.
The hyper-heuristic approach is able to beat some of the
results reported in the literature [1,4,7,9].

Although the proposed approach cannot beat the best
results from the literature, it is the first time that a hyper-
heuristic has been tested on this problem.

The hyper-heuristic does not use complex low-level
(meta-)heuristics, but utilises five simple, straightforward
neighbouhood algorithms in order to obtain high quality,
feasible solutions. Similar to previous studies of hyper-
heuristics, this paper has demonstrated that hyper-heuristics
can easily be applied to new problems utilising a flexible
framework: simple low-level heuristics, an objective
function and a high level manager which intelligently
manages low-level heuristics to search the solution space.

An encouraging faeture is that our ant based approach is
able to beat the results of the only other ant algorithm
reported for the TTP [9].

There are still many other research directions that can be
followed in the future. It would be nice to extend this work
so that we are more competitive with other results for
instances NL8-NL16. We would also like to test the
proposed method on some larger instances which have
recently been introduced.

We would also like to investigate other hyper-heuristic
approaches on this problem; from the many that now appear
in the literature.

This has been a challenging investigation. We have
introduced a new hyper-heuristic and tested it on a
challenging sports scheduling problem. The results are very
encouraging and we hope it motivates other researchers to
continue to investigate this area.

REFERENCES

[1] Easton, K., G.L. Nemhauser, and M.A. Trick (2001). The travelling
tournament problem: description and benchmarks. Principles and

Practice of Constraint Programming CP 2001, Springer, LNCS 2239,
pp. 580-585

[2] Russell, R.A. and Leung, (1994). Devising a cost effective schedule
for a baseball league. Operations Research 42 (4), pp. 614-625

[3] Nemhauser, G. and Trick, M. A. (1998). Scheduling a major college
basketball. Conference George Operations Research, 46(1) , pp. 1-8

[4] Easton, K., G.L. Nemhauser, and M.A. Trick (2002). Solving the
travelling tournament problem: a combined integer programming and
constraint programming approach Proceedings of the 4th
international conference on the Practice and Theory of Automated
Timetabling, Gent, Belgium, pp. 319-330

[5] Anagnostopoulos, A., Michel, L., Hentenryck, P., Vergados, Y.
(2006). A simulated annealing approach to the travelling tournament
problem. Journal of Scheduling, 9(2), pp. 177-193

[6] Benoist, T., Laburthe, F. and Rottembourg, B. (2001).
LagrangeRelaxation and Constraint Programming Collaborative
Schemes for Travelling Tournament Problems. In CP-AI-
OR’2001,Wye College (Imperial College), Ashford, Kent UK

[7] Cardemil, A. (2002). Optimizacion de fixtures deportivos: Estado del
arte y un algoritmo tabu search para el travelling tournament
problem. tesis de Licenciatura, Departamento de ComputaciÓn
Facultad de Ciencias Exactas y Naturales Universidad de Buenos
Aires avaliable at
:http://www.dc.uba.ar/people/profesores/willy/tesistas.html

[8] Lim A., Rodrigues B. and Zhang X. (2006). A simulated annealing
and hill-climbing algorithm for the traveling tournament problem,
EJOR 174:3, pp 1459-1478

[9] Crauwels, H., Oudheusden, D.V. (2003). Ant colony optimization
and local improvement. The Third Workshop on Real-Life
Applications of Metaheuristics, Antwerp

[10] Shen, H., Zhang, H. (2004). Greedy big steps as a meta-heuristic for
combinatorial search. The University of Iowa AR Reading Group,
Spring 2004 Readings. http://Goedl.cs.uiowa.edu/classes/AR-
group/04spring.html

[11] Langford (2004). In Challenging Travelling Tournament Instances
http://mat.gsia.cmu.edu/TOURN/ [Accessed 15/08/06]

[12] Zhang (2002). In Challenging Travelling Tournament Instances
http://mat.gsia.cmu.edu/TOURN/ [Accessed 15/08/06]

[13] Gaspero, L. D. and Schaerf, A. (2006). A composite-neighborhood
tabu search approach to the travelling tournament problem. Journal of
Heuristics, to appear

 [14] Burke, E. K., Hart, E., Kendall, G., Newall, J., Ross, P. and
Schulenburg, S. (2003a). Hyper-heuristics: An emerging direction in
modern searchtechnology. In: Handbook of Meta-Heuristics, F.
Glover and G. Kochenberger (Eds.), Kluwer, pp. 457–474

[16] Ross, P. (2005). Hyper-heuristic search methodologies. In: Burke,
Edmund K.; Kendall, Graham (Eds.) Introductory Tutorials in
Optimization and Decision Support Techniques, Springer, pp.529-
556 (chapter 17)

[17] Burke E.K., Kendall G. and Soubeiga E. (2003). A Tabu-Search
Hyper-Heuristic for Timetabling and Rostering. Journal of Heuristics,
9(6), 451-470, 200

[18] Ross P., Marín-Blázquez J. G., Schulenburg S. and Hart E. (2003).
Learning a Procedure That Can Solve Hard Bin-Packing Problems: A
New GA-Based Approach to Hyper-heuristics. LNCS 2724, pp 1295-
1306 (Proceedings of GECCO 2003)

[19] Burke E.K., McCollum B., Meisels A., Petrovic S. and Qu R. (2007).
A Graph-Based Hyper-Heuristic for Timetabling Problems, EJOR
176:1, 177-192

[20] Kendall G. and Hussin M. (2005). A Tabu Search Hyper-heuristic
Approach to the Examination Timetabling Problem at the MARA
University of Technology. In Revised Selected Papers of the 5th
International Conference of Practice and Theory of Automated
Timetabling V (PATAT 2004), Burke E. and Trick T. (eds), LNCS
3616, pp 270-293, 2005a

[21] Kendall G. and Mohd Hussin N. (2005). An Investigation of a Tabu-
Search-Based Hyper-heuristic for Examination Timetabling,
Multidisciplinary Scheduling; Theory and Applications. Kendall G.,
Burke E., Petrovic S. and Gendreau M (eds), Springer, 309-328,
(selected volume from the conference)

24

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

[22] Dowsland K., Soubeiga E. and Burke E.K. (2006). A Simulated
Annealing Hyper-heuristic for Determining Shipper Sizes, EJOR,
accepted

[23] Burke E.K., Kendall G., Landa Silva D., O'Brien R. and Soubeiga.
(2005). An Ant Algorithm Hyperheuristic for the Project Presentation
Scheduling Problem. In Proceedings of 2005 IEEE Congress on
Evolutionary Computation (CEC'05), 2-5 September, Edinburgh,
Scotland, pp 2263-2270

[24] Bai, R. and Kendall, G. (2005). An Investigation of Automated
Planograms Using a Simulated Annealing Based Hyper-heuristics. In:
Ibaraki, T., Nonobe, K., and Yagiura, M. (Eds.), Metaheuristics:
Progress as Real Problem Solvers - (Operations Research/Computer
Science Interfaces Series, Vol. 32), Berlin, Heidelberg, New York,
Springer, pp. 87-108, ISBN: 0-387-25382-3

[25] Kendall G. and Mohamad M. (2004). Channel Assignment
Optimisation Using a Hyper-heuristic. Proceedings of the 2004 IEEE
Conference on Cybernetic and Intelligent Systems (CIS2004), pp.
790-795

[26] Kendall G. and Mohamad M. (2005). Channel Assignment in
Cellular Communication Using a Great Deluge Hyper-heuristic. In
proceedings of the 2004 12th IEEE International conference on
networks (ICON 2004), pp 769-773

[27] Ayob, M. and Kendall, G. (2003). A Monte Carlo Hyper-Heuristic to
Optimise Component Placement Sequencing For Multi Head
Placement Machine. In Proceedings of the International Conference
on Intelligent Technologies, InTech'03, pp 132-141, Chiang Mai,
Thailand, Dec 17-19, pp 132-141

[28] Burke E., Hart E., Kendall G., Newall J., Ross P. and Schulenburg S.
(2003). Hyper-Heuristics: An Emerging Direction in Modern Search
Technology. Handbook of Meta-Heuristics (Glover F., ed), pp 457 –
474, Kluwer

[29] Dorigo M., Maniezzo, V. and Colorni, A. (1996). Ant system:
optimisation by a colony of cooperating agents. IEEE Transactions
on Systems, Man, and Cybernetics-Part B, 26:1, pp. 29-41

[30] Dorigo, M., Gambardella, L.M. (1997). Ant colony system: a
cooperative learning approach to the travelling salesman problem.
IEEE Transactions on Evolutionary Computation,1:1, 53-66

[31] Stützle, T. and Hoos, H. (1997). Improvements on the ant system:
introducing max–min ant system. In Proceedings of the International

Conference on Artificial Neural Networks and Genetic Algorithms,
Springer Verlag, pp. 245–249

[32] Maniezzo, V. (1998). Exact and approximate nondeterministic tree-
search procedures for the quadratic assignment problem. Technical
Report CSR 98-1, C. L. In Scienzedell’Informazione, Universit´a di
Bologna, sede di Cesena, Italy

[33] Bullnheimer, B., Hartl, R. F. and Strauss, C. (1997). A new rank-
based version of the ant system: a computational study. Technical
Report POM-03/97, Institute of Management Science, University of
Vienna

[34] Colorni, A., Dorigo, M., Maniezzo, V. and Trubian, M. (1994). Ant
system for job-shop scheduling. Belgian Journal of Operations
Research Statistics and Computer Science (JORBEL), 34, pp.39–53

[35] Maniezzo, V., Colorni, A. and Dorigo., M. (1994). The ant system
applied to the quadratic assignment problem. Technical Report
IRIDIA/94-28, Universit´e Libre de Bruxelles, Belgium

[36] Gambardella, L. M., Taillard, E. and Dorigo, M. (1997). Ant colonies
for the QAP. Technical Report 4-97, IDSIA, Lugano

[37] Bullnheimer, B., Hartl, R. F. and Strauss, C. (1997). An improved ant
system algorithm for the vehicle routing problem. Technical Report
POM-10/97, Institute of Management Science, University of Vienna,
1997

[38] Bullnheimer, B., Hartl, R. F. and Strauss, C. (1998). Applying the ant
system to the vehicle routing problem. In I. H. Osman S. Voss, S.
Martello and C. Roucairol(Eds.) Meta-Heuristics: Advances and
Trends in Local Search Paradigms for Optimization, Kluwer
Academics, pp. 109–120

[39] Gambardella, L. M., Taillard, E. and Agazzi., G. (1999). Ant colonies
for vehicle routing problems. In: Corne, D., Dorigo, M. and Glover,
F. (Eds), New Ideas in Optimization. McGraw-Hill

[40] Costa, D. and Hertz, A. (1997). Ants can colour graphs. Journal of
the Operational Research Society, 48, pp. 295–305

[41] Gambardella, L. M. and Dorigo, M. (1997). HAS-SOP: An hybrid ant
system for the sequential ordering problem. Technical Report 11-97,
IDSIA, Lugano

[42] Burke, E. K. Kendall, G., O’Brien, R. F. J., Redrup, D., Soubeiga, E.
(2003b). An ant algorithm hyper-heuristic. In Proceedings of The
Fifth Meta-heuristics International Conference (MIC2003)

25

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

TABLE I
TTP SOLUTION METHODS. THE BEST RESULTS ARE IN BOLD

Author(s) Method NL4 NL6 NL8 NL10 NL12 NL14 NL16

Easton et al. [1,4] Linear Programming
(LP) 8276 23916 41113 312623

Benoist et al. [6]

A combination of
constraint
programming and
lagrange relaxation

8276 23916 42517 68691 143655 301113 437273

Cardemil [7] Tabu search 8276 23916 40416 66037 125803 205894 308413

Zhang [12] Unknown (data from
TTP Website) 8276 24073 39947 61608 119012 207075 293175

Shen and Zhang
[10]

“Greedy big step”
Meta-Heuristic 39776 61679 117888 206274 281660

Lim et al. [8] Simulated Annealing
and Hill-climbing 8276 23916 39721 59821 115089 196363 274673

Langford [11] Unknown (data from
TTP Website) 59436 112298 190056 272902

Crauwels and
Oudheusden [9]

Ant Colony
Optimization with
Local Improvement

8276 23916 40797 67640 128909 238507 346530

Anagnostopoulos
et al. [5] Simulated Annealing 8276 23916 39721 59583 111248 188728 263772

Gaspero and
Schaerf [13]

Composite-
Neighbourhood Tabu
Search Approach

59583 111483 190174 270063

This Paper
Ant Algorithm
Hyper-heuristic 8276 23916 40361 65168 123752 225169 321037

26

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

