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Abstract— Super 14 Rugby is not only a popular game,
but also a hugely profitable business. However, determining
a schedule for games in the competition is very difficult,
as a number of different, often conflicting, factors must be
considered. We propose the use of a multi-objective evolutionary
algorithm for deciding such a schedule. We detail the technical
details needed to apply a multi-objective evolutionary algorithm
to this problem and report on experiments that show the
effectiveness of this approach. We compare solutions found by
our approach with recent fixtures employed by the organising
authority; our results showing significant improvements over
the existing solutions.
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I. INTRODUCTION

Rugby Union is a team sport in which two teams compete
to score the most number of points. An individual game pits
two teams of 15 players against each other in a competition
lasting 80 minutes. The game is somewhat similar to Amer-
ican Football, although it is much quicker, with far fewer
interruptions to the flow of the game. The game is renowned
for its skill and physicality; the game is “full-contact”, with
players allowed to physically impede opponent players by
tackling them using their arms and torso. Players wear little
to no protection, so the risk of injury is relatively high.

Super 14 is the largest Rugby Union competition in the
southern hemisphere [1]. The competition consists of 14
teams from three countries: Australia, New Zealand, and
South Africa; four from Australia and five from the other
two countries. Games are played in batches called rounds,
played over a weekend. Teams are only required to play one
game per round.

Super 14 follows a single round-robin format, meaning
each team must play every other team once. The competition
lasts 14 rounds; each round consisting of either 6 or 7 games.
In the case of 6 games, two teams do not play in the round
and instead are said to have a bye. Each team has only one
bye. Byes provide teams with an opportunity to rest, recover
from injuries, and make preparations for travel. In order to
minimise the effects of long-distance travel, Australian and
New Zealand teams will typically play several rounds in
South Africa (and vice versa) without returning home. A
schedule for all games is known as the fixture.

Due to the fierce rivalry and involvement of the world’s
best players, Super 14 is very popular, not only in the three
competing countries, but also across the entire world. Indeed,

the managing director and CEO of Australian Rugby Union
believes “the quality and intensity of competition between
the New Zealand, South African and Australian Super 14
teams is without peer in the world” [2]. Like most popular
team-based sports, Super 14 is also big business. As stated on
the official Australian Rugby Union website, the organising
authority for the game (SANZAR) have recently announced
a new media deal worth US$323 million over five years [3]
that will see Super 14 broadcast “live into 41 countries and
more than 10 million homes” [4].

Like most team sports, the location at which the game is
played can significantly affect the outcome of the game. The
home team (the team who hosts the game), typically has the
advantage because they are most familiar with the venue,
and have more fans supporting them. The away team is at
a disadvantage — they must contend with increased travel,
time zone changes, unfamiliarity with the venue, and a hostile
fan base. Indeed, this so called home ground advantage can
be significant, so balancing the number of games a team
plays at home and away is important to ensure fairness.

In Super 14, each team must play either 6 or 7 home games
and 7 or 6 away games (notionally, some teams “play” their
bye game at home while some “play” their bye game away).
For any given game, the choice of which team plays at home
and when into the competition they play can significantly
affect the outcome of the game. Additionally, the placement
of when teams have their bye can also affect team morale
and preparedness; in order to minimise the effects of travel,
teams prefer to have their bye either at the beginning or
at the end of a sequence of games that see them cross the
Indian Ocean. In order to ensure fairness, fixture designers
must consider these effects when determining the schedule
of games in the competition.

Scheduling games for Super 14 is indeed difficult, as
the organising authority needs to balance a number of
different, often conflicting, considerations. Besides compe-
tition fairness, factors like revenue expectations, political
considerations, and availability of venues can also affect the
fixture. For example, scheduling games against traditional
rivals in the largest venues may increase revenue (more fans
will be able to attend), but this may reduce the fairness
of the competition, especially if it requires teams to travel
incessantly. The placement of byes in the fixture also adds
an extra complicating factor.

Further, balancing the number of games in each country
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is crucial to ensure maximal revenue for the Super 14
competition through sale of their broadcasting rights. With
the competition spread across three countries (and five time-
zones), ensuring an “even” spread of games across the differ-
ent playing regions allows broadcasters to schedule games in
each region’s television “prime-time” viewing, yielding max-
imum advertising income. More revenue for the broadcasters
translates to more money for the competition (broadcasting
rights earn significantly more than gate receipts), but may
mean other factors (like competition fairness) are sacrificed.
Trade-offs result — changing the fixture to improve one
objective may result in worsening other objective. This is the
realm of multi-objective optimisation — finding a suitably
good set of solutions that vary the trade-offs in the different
objectives by differing amounts in order to produce a range
of alternative solutions.

Evolutionary-based multi-objective optimisation has been
used on a variety of different problems including schedul-
ing [5], but little, if any, has been done in sports fixture
scheduling. In this paper, we describe a study which uses a
multi-objective evolutionary algorithm to determine a fixture
for Super 14 rugby, subject to a number of constraints and
objectives desired by the organising authority for the game.

The rest of this paper is structured as follows. Section II
presents a summary of related work on using optimisation-
based approaches for sports fixture scheduling. Section III
gives an overview of multi-objective optimisation, including
the terminology used in this paper. Section IV describes our
multi-objective approach, providing the technical details used
to solve this problem. Section V presents results of experi-
ments that demonstrate the effectiveness of our approach. In
particular, we show that the multi-objective approach is able
to produce solutions significantly superior to recent fixtures
employed by the organising authority. Finally, Section VI
concludes the paper.

II. PREVIOUS APPROACHES FOR SPORTS FIXTURE

SCHEDULING

Many approaches have been proposed for solving sports
scheduling problems. These problems are especially difficult
to solve because each sports league has its own idiosyncratic
requirements, constraints, and preferences. Perhaps for this
reason, many previous approaches simply seek any solution
that satisfies all the problem constraints — that is, the
problem is often cast as a satisfaction problem rather than
an optimisation problem.

For example, a special case is the Sports League Schedul-
ing Problem (Prob026 of CSPLib [6]), as posed by McAloon
et al. [7]. In this problem:

• there are T teams, where T is even, and each team plays
the other once;

• there are T − 1 rounds;
• each team plays one game per round;
• there are T

2 periods in a round, with one game per
period; and

• no team plays more than once in a given period.

This has been solved by Hamiez and Hao [8] in linear
time for the case where (T − 1) mod 3 6= 0 using an
exhaustive repair method, improving on earlier results using
Tabu search [9] and various earlier approaches including
integer linear programming, constraint programming, and
randomised complete searches with and without heuristics.

Another special case is the Travelling Tournament Prob-
lem, which is concerned with minimising the total distance
travelled in a double round robin tournament. Easton et
al. [10] present a combined integer programming and con-
straint programming approach to this problem for a group of
8 teams. This is a much simpler problem than the scheduling
problem investigated in this work, but the authors note that
solving even this simplified problem for even small numbers
of teams has proven to be extremely difficult. A third exam-
ple is the break minimization problem (see e.g. [11]), which
deals with finding a round-robin schedule that minimizes the
number of consecutive home or away games for the teams.

There has been less success on more “realistic” problems.
Carefully formulated methods that rely on the regularity
of the problem are all too readily rendered useless when
additional constraints or preferences are added. This makes
evolutionary algorithms an attractive option, as they can
deal with complex objective functions, and there are good
techniques available to handle constraints and preferences.

Although evolutionary algorithms have been much used
for timetabling and scheduling problems (see e.g. [12]), there
are only a few examples of evolutionary algorithms being
used for sports scheduling. Some examples are: Schönberger
et al. [13] used a genetic algorithm to schedule the rounds
of a table-tennis competition; Yang et al. [14] used an evolu-
tion strategy algorithm to solve sports scheduling problems;
Schönberger et al. [15] describes the use of a memetic
algorithm for sports league scheduling; Costa [16] used a
hybrid evolutionary Tabu search to schedule hockey leagues;
and Yang et al. [14] used a genetic algorithm to schedule
games for a baseball league. All these studies report good
results compared to previously employed methods.

However, there appears to be little to no previous work
in applying multi-objective evolutionary algorithms to sports
scheduling. In previous work [17], we applied a multi-
objective evolutionary algorithm to the fixture scheduling for
Australian Rules Football. Results showed that the multi-
objective approach was able to produce solutions superior
to the existing fixture while still maintaining important
constraints imposed by the organising authority, yielding
significant improvements in a number of metrics. This works
focuses on applying the same techniques to Super 14 Rugby.

III. MULTI-OBJECTIVE OPTIMISATION

Multi-objective optimisation is the task of finding ap-
propriately “good” solutions to a problem in which can-
didate solutions are judged according to multiple criteria
that conflict with each other to some degree. With multiple
conflicting criteria, a good solution can be improved on one
criterion only by accepting worse performance in at least
one other criterion. The aim in multi-objective optimisation

36

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Scheduling (CI-Sched 2007)



is to generate a set of solutions that compromise the different
criteria to varying degrees — the solution to be used in any
given situation can be selected according to the particular
needs of that situation.

Without loss of generality, consider a multi-objective op-
timisation problem defined in terms of a search space of
allowed values consisting of parameters and a vector of
objective functions mapping parameter vectors into fitness
space. Given two vectors ~a and ~b, ~a is said to dominate ~b
iff ~a is at least as good as ~b in all objectives and better in
at least one. A vector ~a is non-dominated with respect to a
set X iff there is no vector in X that dominates ~a. A set X
is a non-dominated set iff all vectors from X are mutually
non-dominating. The set of corresponding objective vectors
is called the non-dominated front.

A vector ~a is Pareto optimal iff ~a is non-dominated with
respect to the set of all possible vectors. Such a vector
is characterised by the fact that improvement in any one
objective necessarily means a worsening in at least one
other objective. The Pareto optimal set is the set of all
possible Pareto optimal vectors. The goal of multi-objective
optimisation is hence to find this Pareto optimal set, although
for continuous problems a representative subset suffices.

Since evolutionary algorithms are population based, the
partial order imposed on the search space necessitates the
need for an appropriate ranking scheme. Two schemes are
commonly employed. Both schemes employ the concept of
domination to assign a Pareto rank to individuals — a lower
rank implies a superior candidate. In Goldberg’s [18] ranking
procedure, non-dominated vectors are assigned a rank of 0
while any dominated vector ~a in the population X is assigned
a rank equal to one plus that of the highest-ranked vector
from X that dominates ~a. In contrast, Fonseca and Fleming
propose a scheme [19] in which a dominated vector ~a in
the population X is assigned a rank equal to the number
of vectors in X that dominate ~a. It is this Pareto rank,
rather than some (weighted) combination of the objectives,
that is used as the basis for selection in a multi-objective
evolutionary algorithm.

IV. OUR MULTI-OBJECTIVE APPROACH

In this section, we describe the technical details needed to
equip a multi-objective evolutionary algorithm to address the
problem of fixture determination in the Super 14 competition.
The multi-objective evolutionary algorithm we use in this
work is a form of a (n + n) evolutionary strategy.

A. Representation

Recall that the Super 14 competition follows a single
round-robin format [20], meaning every team must play each
other team precisely once. Each team has one bye, so the
competition consists of 14 rounds with 6 or 7 games each.

At first thought, representing fixtures for a round-robin
tournament can be achieved by simply enumerating the teams
who play each other in every round of the competition
(i.e. instantiating a “round matrix” that lists the round
that each team plays each other). However, if we choose

this representation, exploration of alternative solutions is
extremely difficult as most modifications of the round matrix
are likely to generate fixtures that violate the round-robin
constraint. When this occurs, the search flounders in the
large infeasible regions of the search space. Instead, we chose
an alternative representation that still allows the exploration
of different solutions, but which better maintains the round-
robin constraint imposed by the competition structure.

A round-robin tournament for an even number of
teams can be constructed using the polygon construction
method [20], or via instantiating a schedule from a known
valid design (after all, the polygon method simply generates
a valid design). In this work, we take the latter approach and
use an existing fixture as a template from which candidate
solutions in our evolving population use to generate their
corresponding schedule of games. As described below, can-
didate solutions are allowed to vary: which teams will play
at home for any given game pairing, which order the rounds
of the template fixture are played, and which “actual” teams
correspond to which “logical” teams in the template fixture,
hence allowing the exploration of different alternative fixtures
of interest. Candidate solutions capture these variations to the
template fixture, and then using the template, are converted to
a “real” fixture that is assessed by the evolutionary algorithm.

To determine home teams, we use a 14×7 Boolean home
team matrix that indicates which team for each game pairing
in a round plays at home. Each row represents one round
in the competition (recall, there are 14 rounds), and each
column represents one of the games in the round (there are
7 games in each round, noting that some may represent byes).
Evolutionary selection pressure will then drive the algorithm
to locate solutions with good home-and-away sequences.

To avoid bias in the search, instead of using the actual
team names and round numbers in the fixture template, we
use logical team names and round numbers, and then convert
these logical values to actual values via two maps: a logical-
to-actual team map for converting team names, and a logical-
to-actual round map for round numbers. This allows the
evolutionary algorithm to test different scenarios in which
the rounds and teams making up the template fixture are
permuted, offering more exploration of the search space in
order to find better solutions.

As described in Section IV-B, since there is no difference
in teams from the same “region” of the competition, the
actual team names used in the logical-to-actual team map
are further placeholders for the real team names from the
Super 14 competition. These placeholders must distinguish
teams from different regions, but need not distinguish teams
from within the same region (e.g. Eastern Australia Team
1). When finally required, these regional placeholders can be
randomly instantiated with real team names from the Super
14 competition.

It is these three matrices (the home team matrix, the
logical-to-actual team map, and the logical-to-actual round
map) that form the genotype of a candidate solution in our
evolving population and are what are optimised by the multi-
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objective evolutionary algorithm.

B. Objectives

We assess each candidate Super 14 according to three
objectives. For consistency, we cast each objective in terms
of a minimisation problem.

1) Home Games: As indicated previously, the location
of where a game is played can have a significant impact
on the outcome of the game. To ensure equity (fairness
of the competition), a fixture should try and balance, as
far as possible, the number of home games each team
has. However, unlike other team based sports, continuous
sequences of home (or away) games are allowed in Super 14
(even though they have some negative psychological impacts)
in order to minimise the amount of foreign travel required
(Australasian teams much prefer having a sequence of away
games in South Africa instead of constantly having to make
long journeys across the Indian Ocean, and vice versa).

Our first objective captures this equity measure:

Equity =
∑
t∈T

max(0, 6−Ht,Ht − 7)

where T is the set of all teams, and Ht is the number of
games played at home by team t.

The structure of this expression captures the fact that the
desired number of home games for any team is 6 or 7 (recall,
some teams “play” their bye game at home, while some
“play” their bye game away). Should a team play less than
6 or more than 7 home games, one of the terms 6 −Ht or
Ht−7 for that team will be positive, and hence the expression
max(0, 6 − Ht,Ht − 7) will be positive. Summing for all
teams, equity is optimal when all teams play either 6 of 7
home games, resulting in a final equity score of zero.

The organising authority of the Super 14 competition
deems this measure to be very important. Analysis shows that
the organising authority always attempts to use fixtures in
which all teams play, as far as possible, the same number of
home games, effectively viewing this objective as a constraint
that must be true in order for a fixture to be accepted.

In this work, we still choose to include this measure as
a separate objective in our evolutionary algorithm for two
reasons. Firstly, using this measure as an objective creates
a gradient for which the evolutionary algorithm is able to
make regular progress in the search (without a gradient,
the search would be punctuated — many fixture variations
would be rejected because they do not satisfy the constraint).
Additionally, interesting solutions in other objectives may be
possible via transitioning through solutions that violate the
constraint. This is especially desirable in the earlier parts
of the search (when selection pressure will not immediately
remove these non-zero equity solutions), as we wish the
evolutionary algorithm to explore (diversify) the entire search
space of potential solutions in order to find better alternative
solutions to the seed fixture.

2) Travel: As described previously, teams in the Super 14
competition are located in three countries: Australia, New
Zealand, and South Africa; countries that are spread across

half of the southern hemisphere. Travel is hence unavoidable,
and coupled with significant changes in time-zones, is gener-
ally considered detrimental to team performance. This effect
is also believed to increase when travelling for sequential
weeks. To produce a fair competition, we desire to reduce
the effects of such travel.

Teams in Australia are located on the two coasts of the
continent. As Australia is a large country (approximately the
same size as continental U.S.), travel between these locations
is also quite significant. To capture a measure of travel, we
first classify each team as belonging to a particular region:
New Zealand, South Africa, Eastern Australia, and Western
Australia. As the journey between Australasian (Australia
and New Zealand) and South Africa is particularly long
(requiring teams to cross the Indian Ocean), we weight these
journeys significantly more than other journeys.

Travel between the other regions (e.g. Australia to New
Zealand, Eastern Australia to Western Australia, etc) have
less of an impact than the Indian Ocean crossings, but
due to time-zone changes, can still adversely affect team
performance. We hence weight these journeys less than those
of crossing the Indian Ocean. Note that while the journey
from Western Australia to New Zealand is significantly
longer than from Eastern Australia to New Zealand, we
weight these trips equally as both involve time-zone changes,
immigration concerns, and similar psychological effects on
the players. We consider travel within a region as relatively
insignificant, as flights are not very long and do not involve
changes in time-zones. We hence ignore these journeys in
our calculation of the travel objective.

Recall that the location of a bye within a fixture can
significantly affect the performance of a team. In order to
minimise the effects of long journeys, teams prefer to have
their bye either at the beginning or at the end of a sequence
of games that takes them across the Indian Ocean. Assuming
resting for one round is sufficient to recover from travelling,
we ignore any travel which immediately proceeds or follows
a bye. Similarly, travel before the start of the competition (i.e.
travel involved to get to the location of a game for the first
round) and travel after the competition has ended (i.e. travel
to return home after the last round) are ignored as teams
can obtain sufficient time to prepare or recover for/from the
game.

For some given fixture, a measure of the travel undertaken
is captured as:

Travel = 100L +
∑
t∈T

St

where T is the set of all teams, L is the maximum number of
long journeys (crossing the Indian Ocean) by any team in the
competition not immediately proceeding or following a bye,
or the start or end of the competition, and St is the number
of other inter-regional journeys undertaken by team t.

The travel objective consists of two distinct sub-
components: one capturing long journeys across the Indian
Ocean, and the other capturing the number of other regional
crossings. We use the sum of all short journeys in order to
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minimise the total number of flights across regions. For long
journeys, we use the maximum number of trips made by any
team, thus simultaneously creating selection pressure to both
minimise and equalise the number of crossings of the Indian
Ocean. Note that if we simply used the sum of the number
of long journeys, the distribution of long journeys may not
be equalised. Similarly, if we used the difference between
the maximum and minimum numbers of long journeys, the
total number of these journeys may not be minimised.

The weighting of 100 for long journeys effectively places
an ordering on the two sub-components of the travel objec-
tive — long journeys are more important than short journeys.
We could use two separate objectives to capture these sub-
measures, but this increases the difficulty of the search for
little to no benefit. Experience shows that the organising
authority regards the number of Indian Ocean crossings
much more highly, and thus recasting this measure into two
different objectives allows for the creation of “undesirable”
(even if they are Pareto optimal) solutions. In essence, the
two sub-measures are not equally important, and hence a
linear combination is best in this case.

3) Game Distribution: The Super 14 competition consists
of 14 teams based in 4 regions, distributed as follows: 3 in
Eastern Australia, 1 in Western Australia, 5 in New Zealand,
and 5 in South Africa. Distributing the games equally, as
far as possible, across the three countries is important for a
number of reasons, including political reasons (e.g. contrac-
tual obligations), promoting interest (fans prefer a regular
distribution of games), venue availability, and maintenance
concerns (venues can be over-used, degrading the quality
of the playing surface). But of more importance, revenue
is maximised by equalising the distribution of games.

With an “even” spread of games across the different
countries, broadcasters are able to schedule games in each
country’s “prime-time” viewing, thus maximising revenue
from advertising income. More revenue for the broadcasters
translates to more money for the competition (broadcast-
ing rights earn significantly more than gate receipts), thus
maximising the profitability of the competition as a whole.
Contributing another effect, equalising the distribution of
games ensures regular interest from fans, not only ensuring
maximal gate receipts, but also interest in the television
broadcasts (via television ratings).

Recall, each round of the Super 14 competition contains
6 or 7 games. Therefore, a distribution in which at least two
games are played in each country each round is desirable.
Indeed, experience shows that the organising authority for
the competition prefers this distribution where possible.

We capture the distribution of games by:

Distribution =
R∑

r=1

∑
c∈C

max(0, 2−Gc,r)

where R is total number of rounds, C is the set of countries
in the competition, and Gc,r is the number of games played
in country c in round r.

This expression is minimal when all rounds contain at least
two games in each country (the term 2−Gc,r will be positive
if a country contains less than two games, resulting in the
expression max(0, 2 − Gc,r) being positive). By summing
over all countries in all rounds, the total variation from
“optimal” is captured, allowing the evolutionary algorithm
a means of minimising the mis-match.

C. Mutation

As we indicated in Section IV-A, we represent candidate
solutions in our evolving population by three matrices (the
home team matrix, the logical-to-actual team map, and the
logical-to-actual round map) that control how to interpret
entries in the template fixture. In order to explore the search
space but retain constraint-preserving solutions (fixtures that
preserve the round-robin structure), we require a constraint-
preserving mutation operator that modifies these matrices.

When a candidate solution is mutated, one of the three
matrices is selected uniformly randomly; the mutation oper-
ator modifying the contents of the selected matrix. Mutation
of the home team matrix is achieved by randomly selecting
between one and four games inclusive and reversing the
home team for these games. Mutation of the logical-to-actual
maps occurs by simply swapping two co-domain entries.

Note that under this scheme, mutation may yield different
genotypes that produce the same phenotype and hence have
the same net performance. This occurs when the mutation
operator switches two teams from the same region in the
logical-to-actual team map; the re-ordering not affecting the
performance of the mutated fixture as no objective differen-
tiates between different teams from the same region. When
this occurs, the mutation is rejected and another mutation is
generated as its replacement.

D. Selection

As is the case in most multi-objective evolutionary algo-
rithms, determination of which candidate solutions survive
and reproduce in our multi-objective evolutionary algorithm
is primarily based on Pareto rank. We use the Pareto ranking
scheme proposed by Fonseca and Fleming [19].

Inevitably though, at some stage in the algorithm, the
evolutionary algorithm will be forced to select between
candidate solutions with the same rank (i.e., choose a subset
of all candidate solutions with the same rank). When this
occurs, a scheme for resolving ties is needed. In this work,
we choose between equally Pareto ranked solutions based
on performance of the equity objective. Recall that the
equity objective assesses the fairness of the competition
by ensuring all teams play, as far as possible, an equal
number of home games. By using this metric as the means
of resolving ties, evolutionary selection pressure will drive
the population to find solutions with a minimum equity
score. As this objective captures a constraint imposed by
the organising authority, this is indeed desirable, forcing
unwanted constraint-violating solutions from the population.
Any subsequent ties are resolved by random choice of the
remaining “equal” solutions.
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V. EXPERIMENTAL RESULTS

The multi-objective evolutionary algorithm we use in this
work is a form of a (n+n) evolutionary strategy. Selection is
determined using the ranking scheme detailed in Section IV-
D. We use an elitism rate of 50%, thus meaning we preserve
the best 50% of the population from one generation to
generation. Initial experiments demonstrate that a population
of 300 yields good results in a reasonable amount of time.
All experiments were run for 1000 generations.

In the experiments below, the starting populations were
initialised to mutated versions of either the 2006 or 2007
Super 14 fixture. The corresponding fixture was used as the
template fixture (see Section IV-A) in the generation of a
phenotype for a candidate solution.

A. Pareto Front Evolution

Fig. 1 plots the Pareto front at different stages (genera-
tions) during a single run of our multi-objective evolutionary
algorithm. Noting that the equity objective acts more as a
constraint (the organising authority strongly prefers “fair”
fixtures) than a varying objective, we only plot the non-
dominated solutions with an equity measure of zero.
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Fig. 1. Pareto front evolution for a run of our multi-objective evolutionary
algorithm. Only non-dominated solutions with equity = 0 are plotted.

Fig. 1 shows that our multi-objective evolutionary algo-
rithm is able to simultaneously optimise both the travel and
distribution objectives at the same time, while maintaining
the constraint captured by the equity objective. Fig. 1 also
shows that the evolutionary algorithm is able to generate
a good range of different solutions, each trading-off the
different objectives by varying amounts. During the course
of the run we see good coverage across both objectives,
highlighting the evolutionary algorithm’s ability to explore
different parts of the search space. Indeed, by the end of the
run, solutions with a wide variety of distribution scores have
been discovered. The narrowing of the Pareto front towards
the end of run highlights that the algorithm is able to locate
a few solutions good in both objectives.

B. Hypervolume

The hypervolume metric for non-dominated front com-
parison [21], [22] measures the ratio of the hypervolume
dominated by a front to the hypervolume dominated by
the idealised minimum. It provides a numerical measure

that rewards both closeness to the Pareto optimal front and
the extent of the obtained non-dominated front. Importantly,
the hypervolume metric is more robust than other unary
numerical metrics [23].

Fig. 2 plots the hypervolume of the Pareto front (including
solutions that violate the equal-home-games constraint) at
different stages (generations) during a single run of our
multi-objective evolutionary algorithm. Fig. 2 also plots the
hypervolume contributed by just the fixtures that observe
this constraint (i.e. those with equity = 0). After dividing
the travel objective by 100, the reference point for the
hypervolume calculations was (20,20,20).
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Fig. 2. Progression of the hypervolume of the Pareto front for a run of
our multi-objective evolutionary algorithm

Fig. 2 shows the benefits of using an objective to capture
the equal-home-games “constraint” desired by the organising
authority. We observe that initially, much of the Pareto front
consists of non-preferred solutions that have an “unequal”
number of home games. Over time, we see an increase in the
proportion of the hypervolume contributed by preferred solu-
tions (solutions with equity = 0), suggesting an emergence
of these solutions in the population. This gives us the effect
we seek — some exploration of non-preferred solutions early
in the run, with a general convergence to preferred solutions
towards the end of the run.

Fig. 2 also confirms that our algorithm is able to maintain
a good rate of progression during the entire run — we
observe a general increase in the hypervolume of the Pareto
front over time. Occasional drops in the hypervolume of
the whole population (including a significant drop around
generation 650) correspond to generations where solutions
with equity = 0 are selected over other solutions. This leads
to a loss in the spread of the front and consequently a drop
in hypervolume. However this is the preferred outcome late
in the evolution, as only solutions with equity = 0 would be
considered viable fixtures anyway.

C. Comparison with Existing Super 14 Fixtures

Also marked on Fig. 1 are the fixtures employed by the
Super 14 organising authority for the 2006 and 2007 sea-
sons. Examination of this figure shows that our evolutionary
algorithm is quickly able to produce solutions that dominate
both of these fixtures.

Table I compares the final Pareto optimal solutions found
from twenty runs of our multi-objective algorithm, listing the
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performance of each solution using the different objectives
described in Section IV-B.

Objective
Solution Equity Distribution Travel

Fixture A 0 0 326
Fixture B 0 1 321
Fixture C 0 2 231
Fixture D 0 3 224
Fixture E 0 4 222
Fixture F 0 5 221
Fixture G 0 7 220
Fixture H 0 10 219
Fixture I 0 12 218

2006 Super 14 Fixture 0 11 239
2007 Super 14 Fixture 0 12 242

TABLE I

PERFORMANCE OF THE PARETO OPTIMAL SOLUTIONS TAKEN FROM

TWENTY RUNS OF OUR MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM

We see from Table I that our multi-objective evolutionary
algorithm is able to produce a good range of solutions
that trade-off the different objectives by varying amounts,
while still maintaining the equal-home-games constraint (i.e.
a equity score of zero). We also see from Table I that most of
the evolved Pareto solutions strictly dominate both the 2006
and 2007 Super 14 fixtures.

Table II lists the details of the different Pareto optimal
solutions listed in Table I. For each different solution, the
break-down in travel for each team is listed using the format
X-Y , where X represents the number of long journeys
(crossings of the Indian Ocean) without significant rest
(proceeding or following a bye, or at the start or end of
the season) and Y the number of other inter-regional trips
made without significant rest.

Table II shows that both of the recent fixtures used by
the Super 14 competition have a maximum of two long
journeys for any single team in the competition without
significant rest. The 2006 fixture has 9 teams with two long
journeys, while the 2007 fixture has 7 teams with two long
journeys. Note however that the 2007 fixture is somewhat
more inequitable — one team (Eastern Australia Team 3)
has zero long journeys compared to 7 teams with two!

We see from Tables I and II that the optimisation of the
distribution objective has a significant negative impact on
the travel objective. Table II shows that the best distribution
solution (Fixture A) represents a fixture in which four teams
cross the Indian Ocean three times without significant rest.
Fixture B, which represents a solution with distribution = 1
contains a better total number of short journeys (21 versus
the 26 of Fixture A), but has 7 teams crossing the Indian
Ocean three times without significant rest. This large number
of long journeys means Fixture B is unlikely to be a solution
that the Super 14 organising authority would employ.

However, Fixture A, with far fewer short journeys than
either of the 2006 and 2007 fixtures, and a perfect distribution
of games (contrast Fixture A’s distribution score of zero
with the distribution scores of 11 and 12 for the 2006
and 2007 fixtures) makes an interesting viable alternative

for the Super 14 organising authority to consider. With a
distribution score of zero, Fixture A promises a better
distribution of games across the season, allowing for in-
creased revenue (through better broadcasting opportunities).
This improvement comes at the cost of two teams who
now have to complete one additional long journey. Note
that the Western Australian team is somewhat harshly done
by in this fixture, needing to travel seven times in total
without significant rest — the cost of achieving much better
performance in the distribution objective.

Fixtures G through I minimise the total travel required
by the teams in the competition, sacrificing performance on
the distribution objective to achieve the better travel perfor-
mance. While these solutions have comparable distribution
scores to the 2006 and 2007 fixtures, their performance
relative to Fixtures C and D probably mean the lost revenue
associated with the uneven distributions does not justify
employing them over either Fixture C or D. However, they do
make interesting alternatives that might be considered should
external forces significantly change the trade-off between
travel and distribution (e.g. should travel become restrictively
more difficult). This is one advantage of the multi-objective
approach over a single-objective approach — the multi-
objective approach is able to present a range of solutions
that trade-off the different objectives by varying amounts,
leaving the choice of which solution to use to the expert
decision maker who can consider external variables/factors
impossible to capture in the model.

Fixtures C and D (with distribution scores of 2 and 3
respectively) offer strong alternatives to the recent fixtures
employed by the Super 14 organising authority. Their far
better performance in both the distribution and travel objec-
tives relative to the 2006 and 2007 fixtures mean significant
improvements over these existing solutions. These solutions
are able to achieve better performance in the travel objective
by positioning the timing of byes in the fixture to ensure
teams have sufficient time to recover from travelling.

Note that the more equitable distribution of travel in
Fixture D relative to Fixture C may give this fixture the edge,
offering a more palatable solution for the organising authority
to “sell” to the teams in the competition (the organising
authority does not want to be seen to be playing favourites).
Note that both Fixtures C and D arguably have a more
equitable travel distribution than both of the 2006 and 2007
fixtures. It is also interesting that these similarly performing
solutions were derived from different seedings of the initial
population, further showing the robustness of this approach.

Solutions E and F offer further trade-offs between the
travel and distribution objectives that may be of interest to the
organising authority. In summary, comparison of the different
fixtures shows that the evolutionary algorithm is able to
“tweak” general solutions in order to optimise performance
in any single objective. The good spread of resultant solutions
offers significantly different solutions that the organising
authority may consider as alternatives to the recent fixtures
they have used.
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2006 2007 Fix. A Fix. B Fix. C Fix. D Fix. E Fix. F Fix. G Fix. H Fix. I
Eastern Australia Team 1 2-3 2-4 2-4 2-1 2-2 2-1 2-1 2-1 2-2 2-2 2-2
Eastern Australia Team 2 1-4 1-7 2-0 2-0 2-3 1-2 1-2 1-2 1-2 1-2 1-2
Eastern Australia Team 3 2-5 0-3 2-2 3-1 2-1 2-4 2-4 2-4 2-4 1-4 1-4

Western Australia Team 1 1-5 2-5 3-4 2-2 2-2 2-3 2-2 2-2 2-3 1-1 2-0
New Zealand Team 1 2-4 2-2 1-1 1-2 2-3 2-1 2-1 2-1 2-1 2-3 2-3
New Zealand Team 2 1-2 1-4 3-2 2-2 1-3 1-4 1-4 1-4 1-0 2-2 2-2
New Zealand Team 3 2-3 1-4 2-1 3-1 1-5 2-1 2-1 2-1 2-0 2-1 2-1
New Zealand Team 4 2-1 2-2 2-0 2-2 2-2 1-1 1-1 1-1 1-1 2-3 2-2
New Zealand Team 5 2-3 2-2 2-3 3-3 1-5 2-2 2-2 2-2 2-2 2-0 2-0
South Africa Team 1 2-2 1-1 3-1 3-1 2-0 2-0 2-0 2-0 2-0 2-0 2-0
South Africa Team 2 1-2 2-2 3-2 3-2 1-3 2-1 2-0 2-0 2-0 1-0 1-0
South Africa Team 3 2-1 1-2 2-3 3-1 2-1 1-1 1-1 1-1 1-2 2-1 2-2
South Africa Team 4 2-2 2-2 2-2 2-2 2-1 2-1 2-1 2-1 2-1 2-0 2-0
South Africa Team 5 1-2 1-2 2-1 3-1 1-0 1-2 1-2 1-1 1-2 1-0 1-0

Maximum Indian Ocean journeys 2 2 3 3 2 2 2 2 2 2 2
Sum of other inter-regional journeys 39 42 26 21 31 24 22 21 20 19 18

Seed fixture - - 2006 2006 2006 2007 2007 2007 2007 2006 2006

TABLE II

THE DIFFERENT PARETO OPTIMAL SOLUTIONS FROM TABLE I

VI. CONCLUSIONS

In this paper, we have presented a multi-objective evo-
lutionary algorithm for fixture determination for the Super
14 Rugby competition. Like many team sports that involve
teams spread over significant distances, fixture designers
for the Super 14 competition face the difficult problem of
balancing a number of different, often conflicting, factors
like competition fairness, amount of travel, availability and
distribution of games, and of course revenue.

Our multi-objective approach to this problem produces a
range of different fixtures, each varying the trade-offs in the
objectives by differing amounts. This provides the organising
authority the ability to explore different options, allowing
them to choose the option that best suits the requirements
of the day. Our experiments show that this multi-objective
approach is able to evolve solutions that strictly dominate
recently employed fixtures, promising better returns in every
measure of success.
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