
Abstract— Efficient tool management is very important for 
the productivity in flexible manufacturing systems.  This paper 
proposes an Ant Colony Approach to minimize the number of 
tool switching instants in flexible manufacturing systems for 
the first time.  The proposed approach is compared to optimal 
results from the literature, and very promising results are 
reported.   

I. INTRODUCTION

N flexible manufacturing systems (FMS), parts are 
processed on the Computer Numerical Control (CNC) 

machines with tool magazines on which the required tools 
are loaded.  In case the total number of tools required by all 
part types is larger than the tool magazine capacity, tool 
loading or switching between the processing of the part 
types become inevitable.  Tool loading or switching usually 
consumes time and therefore may delay the planned 
production.  Hence, a successful tool management is very 
important for high productivity in FMS.  The importance of 
the tool switching problem has been recognized in the 
automated manufacturing literature over the last two 
decades.  The relevant research has considered two 
objectives: minimizing the number of tool switches and 
minimizing the number of tool switching instants.   

Minimizing the number of tool switches is relevant to the 
case where the tool switching time is significant compared 
to the processing times.  Crama et al. [1] showed that 
minimizing the number of tool switches problem is strongly 
NP-hard.  Tang and Denardo [2] showed that the problem is 
polynomially solvable when the part type sequence is given.  
Several procedures for solving this problem were proposed 
in the literature [3], [4], [5]. 

Minimizing the number of tool switching instants is 
appropriate when the automatic tool interchanging device 
can switch a number of tools simultaneously or when the 
tool switch time is independent of the number of the tool 
switches.  The problem is particularly important when the 
tool loading times are long; therefore, the efficient loading 
of the tool magazines becomes crucial in minimizing the 
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number of tool switching instants.  Tang and Denardo [6] 
and Denizel [7] studied the minimum number of the tool 
switching instants problem.  Tang and Denardo [6] showed 
that the problem generalizes the classical bin packing 
problem; therefore, it is NP-hard.  They also showed that the 
problem can be formulated as a part type grouping problem 
and proposed a branch and bound procedure to find the 
optimal grouping.  Denizel [7] proposed a Lagrangean 
decomposition based lower bounding procedure and uses the 
lower bound in a branch and bound algorithm.  However, 
this approach is limited to the problems up to 30 part types. 

In this paper, we consider the minimum number of tool 
switching instants problem (MTSIP) and developed an Ant 
Colony Optimization (ACO) approach to solve large sized 
problems with practical importance.  An ACO approach has 
not been previously applied to MTSIP.  The Integer 
Programming (IP) formulation of MTSIP is given as 
follows: 
Decision Variables and Parameters

1 part type  is scheduled at instant ,
0 otherwise.ij
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1 if tool  is assigned to instant ,
0 otherwise.il
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0 otherwise.i
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Constraint (C1) ensures that each part type j is assigned to 
exactly one instant.  Given sl is the set of parts requiring tool 
type l, constraint (C2) states that part type j can be scheduled 
in instant i only if all its required tools are on the tool 
magazine.  The tool magazine capacity constraint is given in 
(C3).

MTSIP is a special version of the bin packing problem 
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with sharing, i.e., parts may require common tools.  If the 
part types do not share any common tool, then the problem 
reduces to the bin packing problem where the objective is to 
minimize the number of the bins.  It should be noted that 
although ACO has previously been applied to the bin 
packing problem [8] and [9], our approach is different due to 
this tool sharing property of the problem. 

II. ANT COLONY OPTIMIZATION

ACO was first proposed by Dorigo et al. [10, 11] as a new 
approach to the traveling sales-person problem (TSP) and 
inspired by the behavior of real ants while searching for 
food.  Initially, real ants randomly wander to search for 
food.  When an ant finds food, she will leave a chemical 
message called pheromone on the way to her nest so that 
other ants are invited to follow this chemical trail instead of 
wandering randomly.  Over the time, however, the 
pheromone trail will loose its attraction as it constantly 
evaporates.  Therefore, a shorter route from the food source 
to the nest is likely to retain a higher level of pheromone 
than a longer route does, in turn attracting more ants to 
follow.  Additionally, ants following a pheromone trail will 
reinforce it by laying their pheromone trails as well.  Over 
the time, a shorter route to the food source will attract more 
ants than a longer route.  However, some other ants keep 
wandering randomly and may discover shorter routes to the 
food source, establishing a new stronger pheromone trail.   

Dorigo and Gambardella [11] proposed a new search 
algorithm to solve the TSP inspired by the way ants search 
for food.  Similar to Genetic Algorithms (GA), ACO 
operates on a set of solutions (population) in parallel.  The 
population mimics a real ant colony, and each member ant 
represents a solution.  In ACO, new solutions are randomly 
constructed from scratch at each cycle unlike Simulated 
Annealing (SA), Tabu Search (TS), and GA where new 
solutions are generated from existing ones using local and 
global search operators.  Dorigo and Gambardella [11] 
defined an artificial pheromone ( , )i j  for each city pair i

and j.  The value of ( , )i j  represents the relative 
desirability that city j succeeds city i in a feasible TSP tour.  
Each ant constructs a solution by starting from a random city 
and randomly traversing one city after another until all cities 
are visited.  The probability that an ant currently in city i
visits unvisited city j next in the tour is given as a function 
of the pheromone as follows: 

( , ) ( , ) if 
( , ) ( , )( , )

0 otherwise
k V

i j i j
j V

i k i kp i j  (1) 

where V is the set of the cities that have not yet been visited 
by the ant, ( , )i j  is a problem specific information ( i.e., 
the distance between cities i and j in this case),  and  are 
parameters to set the relative importance of the pheromone 

trail information and the problem specific information.  
After all ants in the population have constructed their 

solutions, the pheromone trail is updated as follows: 
( , , )( , ) ( , )

( )k P

i j k
i j i j

z k
 (2) 

where z(k) is the total distance of the tour created by the kth

ant, and ( , , )i j k =1 if city j succeeds city i in solution k,
otherwise ( , , )i j k =0.  The first part of (2) represents the 
pheromone evaporation where is the evaporation 
parameter between 0 and 1.  The second part represents 
pheromone deposition by the ants.  Thereby, if city j
frequently succeeds city i in solutions with short tours, 
pheromone ( , )i j  becomes stronger and stronger, 
increasing the probability that city j succeeds city i in 
solutions that will be generated in the future cycles. 

Many researchers have proposed improvements over the 
original ACO algorithm which briefly introduced above.  
Surveys of recent research efforts and developments in ACO 
are given in [12], [13], and [14].  Since [11], ACO have 
been applied to variety of optimization problems including 
graph colouring [8], bin packing/stock cutting [9], [15], 
[16], [17] scheduling [18], [19], [20], [21], [22], [23], 
redundancy allocation problem [24], and network routing 
[25]. 

III. APPLYING ACO TO THE PROBLEM

An ACO implementation involves several steps: defining 
meaningful pheromone trail , identifying a proper problem 
specific information , and defining an effective mechanism 
to update the pheromone trails.  In the following sections, 
we describe the details of our implementation. 

A. Pheromone trail definition 

The definition of pheromone trails is very important for a 
successful ACO implementation.  In ACO, pheromone trails 
are the communication channels through which ants 
exchange information about the solution space [26].  
Therefore, a meaningful medium of communication plays a 
major role in the utilization of collective knowledge of ants 
to investigate the promising regions of the solution space.  
MTSIP is a variation of the bin packing problem.  We 
defined ( , )i j  as the favorability of processing part types i
and j in the same tool switching instant. This definition is 
similar to the pheromone trail definitions in the previous 
ACO approaches to the bin packing problem [8], [9].  By 
this definition, the pheromone matrix is symmetric, i.e., 

( , ) ( , )i j j i .

B. Building a feasible solution 

Let ={S1, S2,…, Sm} represent a solution with m tool 
switching instants where Si is the set of parts in the ith

instant.  In other words, Si represents a set of parts that are 
processed on a single CNC machine without requiring a tool 
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switch once all required tools are loaded to the magazine.  
Each ant starts with an empty solution, ={S1} and S1= .
Then, parts are randomly assigned to S1 one by one until the 
full tool capacity of the magazine.  If no more parts can be 
assigned to the current instant, then a new instant is created, 
i.e., ={S1, S2} and S2= .  This process continues until all 
parts have been assigned.  Let Sm represent the current 
instant and A(Sm) be the set of admissible parts that can be 
assigned to Sm.  Admissible set A(Sm) includes the parts that 
have not been assigned to an instant yet, and that would not 
violate the magazine capacity constraint when they are 
assigned to Sm.  The probability of assigning part i A(Sm) to 
Sm is given by:  

( ) ( ) if ( )
( ) ( )( , )

0 otherwise
m

m

m j S

i i
i A S

j jp i S  (3) 

where ( )i is the total pheromone trail of part i and ( )i  is 
the problem specific information.  Let s(i) represent the set 
of tools required by part i and |s(i)| be its cardinality.  Total 
pheromone trail ( )i  depends on whether current instant Sm

is empty or not as given in (4).  If Sm is not an empty set, 
( )i  is defined as the sum of the pheromone trails between 

part i and the parts already assigned in Sm.  If Sm is an empty 
set, i.e., a new instant has just been created, ( )i equals to 
|s(i)|, the number of the tool types required by part i.
Therefore, while assigning parts to an empty instant, parts 
with a higher number of tool requirements are preferred with 
respect to the ones with a less number of tool requirements.  

( , ) if
( )

| ( ) | otherwise
m

m
j S

i j S
i

s i
 (4) 

We defined problem specific information ( )i  as a 
function of the residual capacity of the magazine that would 
be available after assigning admissible part i to Sm as 
follows: 

( ) 1 | ( ) |mi C s S i  (5) 
where ( )ms S i  is the set of tools required by the set of 
parts in Sm and part i together.  While assigning new parts to 
the current instant Sm, this approach favors parts that would 
require less number of new tools in addition to the currently 
loaded ones on the magazine over the ones that would 
require several new tools.  

C. Initializing and updating the pheromone trail

As mentioned earlier, pheromone trail ( , )i j  represents 
the favorability of processing part i and j in the same tool 
switching instant.  The pheromone trails are initialized 
according to this definition as given in (6).  The default 
initial value of ( , )i j  is set to the number of parts, N.  If 
two parts i and j share common tools, then ( , )i j  is 
increased by the number of the common tools that they 

share.
( , ) ( ) ( )i j N s i s j  (6) 

At the end of each cycle, the pheromone trails are 
updated.  There are several approaches proposed in the 
literature to update pheromone trails (see [14] for a 
comprehensive summary).  An important concern while 
updating pheromone trails is to prevent the stagnation 
behavior, i.e., the situation in which all ants create the same 
solution [10].  In the original ACO algorithm, all ants are 
allowed to deposit pheromone proportional to their fitness.  
This approach usually results in a slow convergence.  
Another strategy is the elitist approach where only the best 
ants found so far in the search (i.e., the global best) are 
allowed to deposit pheromone.  In the MAX-MIN Ant 
System [27], only one ant, either the global best or the best 
ant in a cycle, is allowed to update the pheromone trails.  
Using the global best promotes exploitation while using the 
cycle best promotes exploration properties of the search.  
Switching between the global best and cycle best allows 
balancing exploration versus exploitation [9].  In addition, to 
minimize the stagnation behavior, upper and lower bounds 
are imposed on the pheromone trails.  The disadvantage of 
the MAX-MIN Ant System is that it introduces three 
additional algorithm parameters. 

We propose a different approach to update pheromone 
trails than previously reported ones because of the unique 
properties of the problem.  MTSIP has a very flat objective 
function space.  Therefore, there is a high probability that 
multiple solutions generated during a cycle have the same 
objective function value.  In most cycles, we observed 
several solutions with the same objective function value.  
Let ( )B t  be the set of unique solutions with the best 
objective function value in cycle t.  Note that the same 
solution may be generated by multiple ants in a cycle -
especially this occurs as the pheromone trails converge 
toward the end of the search.  Set ( )B t  includes only one 
copy of them.  The pheromone trails are updated as follows:  

( )
( , ) ( , ) ( , , )

B t

i j i j i j  (7) 

where  is the evaporation parameter indicating the rate of 
the decay of the pheromone trail, and ( , , ) 1i j  if parts i
and j are in the same instant of solution , and 

( , , ) 0i j  otherwise.  Instead of a single ant, allowing 
multiple peer ants to update the pheromone trails improves 
both exploration and exploitation of the algorithm.  If a part 
pair i and j appears together in the same instant of several 
best solutions, ( , )i j is increased aggressively, resulting in 
exploitation around solution schemas in which parts i and j
are together.  Considering multiple solutions while updating 
the pheromone trail helps exploration as multiple solution 
structure can be searched in parallel.  This also prevents the 
premature convergence of the algorithm. 
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D. Overall Algorithm 

The overall steps of our algorithm are given below.  It 
should be noted that our approach does not employ any 
advanced features to improve the performance of ACO.  
One of the popular ways to improve the performance of an 
ACO implementation is local search [28].  ACO and local 
search can be hybridized in various ways.  For example, 
solutions found by ACO can be run through a local search to 
improve them further, and then the improved solutions are 
used to update the pheromone trails, or the pheromone trails 
are randomly modified [14].  However, we did not 
incorporate any local search procedure because of three 
reasons: (i) to design a simple algorithm with a minimum 
possible number of parameters to be set by the user, (ii)
local search procedures are usually not effective for 
problems with flat objective spaces, and finally (iii) we aim 
to investigate the performance of a pure ACO approach to 
MTSIP.  In addition, our test results are very promising 
without using a local search procedure. 

t 0
initialize ( , )i j

While (t tmax) do
  Randomly create npop solutions using probabilities in 
 (3) 
  Sort the population  
  Identify and delete duplicate solutions 
  Update best-solution-so-far 
  Update ( , )i j  using the best solutions of the cycle  

t t+1
End
Return best-solution-so-far 

IV. COMPUTATIONAL EXPERIMENTS

Ten different problem sets with 30 problems in each were 
used to test the effectiveness of the proposed ACO 
approach.  The parameters of these problem sets are given in 
Table I.  Problem sets TDI, TDII, and TDIII were defined by 
Tang and Denardo [6].  We randomly generated 30 random 
problems for each set as described in [6].  Test problems set 
DI to DVI were used by Denizel [7].  Denizel [7] also 
defined 30 random problems for each problem set and 
reported the ranges for the optimal solutions.  The input data 
of these problems were provided us by the author.  
Therefore, we were able to compare the performance of our 
approach with respect to optimal solutions.  The ACO 
computer code was coded in the C programming language 
and run using Linux PC with 2.8 GHz CPU and 1.5GB 
memory. 

The results found for both test sets are also given in Table 
I.  The parameters of the proposed ACO in all runs were set 
as follows: npop=50, tmax=1000, =0.95, and =1.  For each 
problem instance, ten random replications were performed.  

In the table, we reported the minimum and maximum 
number of tool switching instants found in each instance 
over ten replications as [min, max].  If the same result found 
in all random replications of a problem, this result is given 
without using brackets.  We also provided the minimum and 
maximum (i.e., the range) and the average number of tool 
switching instants found for each problem set.  Finally, we 
reported the average CPU seconds.   

Unfortunately for the Tang and Denardo problem sets, 
there is no published result available to compare our 
findings.  However, we were able to solve the IP 
formulation of the problem for the first set (TDI) using 
CPLEX v9.0.  We reported the associated optimal results of 
this set under the column titled “Optimal.”  The optimal 
solutions for the problems of sets TDII and TDIII could not 
be obtained within reasonable CPU times.  Denizel [7] did 
not report the optimal solution for each individual problem 
of DI-DVI, but provided the range and average value over 
the 30 problems in each set.  We also reported ACO 
solutions in the same format in Table I.  

When the final results were analyzed, one of the strengths 
of the proposed ACO approach appeared to be its 
robustness.  As seen in Table I, for all cases except problem 
#19 of set TDIII, the ACO approach found the same 
objective function values in all ten random replications.  
When the final solutions were analyzed, it was realized that 
the final solutions were slightly different from each other 
with the same objective function.  As discussed earlier, this 
should be expected in similar problems with flat objective 
function surfaces.  In fact, this is one of the motivations for 
using an ACO approach to solve the problem as apposed to 
a metaheuristic based on local search strategy such as TS. 

In terms of the solution quality, the ACO approach also 
performed superbly.  The ACO approach found an optimal 
solution for all 30 problems of set TDI.  For problem sets 
DI, DII, DIII, DV, and DVI, the ACO approach found the 
same optimal range and the average optimal solution quality 
over 30 problems.  For set DIV, the final results were very 
close to the previously reported optimal results.   

V. CONCLUSIONS

In this paper, for the first time an ACO approach was 
developed for the minimum number of tool switching instant 
problem.  The results showed that the proposed ACO 
approach is very promising.  For the large majority of the 
test problems, the proposed ACO approach found the 
optimal solutions.  It would be an interesting further 
research to compare the proposed ACO approach with the 
other metaheuristic approach on larger sized problems.  
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TABLE I
TEST PROBLEM DATA AND RESULTS

Parameter TDI TDII TDIII DI DII DIII DIV DV DVI 
N 10 20 30 20 30 30 25 25 30 
L 10 15 25 15 20 20 30 35 30 
C 4 8 10 8 10 12 16 18 19 

Problem #
TDI

TDI
Optimal

TDII TDIII DI DII DIII DIV DV DVI 

1 6 6 5 12 5 9 6 5 6 5 
2 3 3 7 15 6 7 5 5 6 4 
3 3 3 5 9 6 7 5 5 6 4 
4 4 4 13 11 6 7 5 5 6 5 
5 4 4 7 13 7 8 5 5 5 4 
6 4 4 7 13 7 8 5 5 5 4 
7 5 5 8 12 5 7 5 5 5 4 
8 4 4 7 7 4 10 7 6 6 4 
9 4 4 3 16 6 7 5 5 6 4 

10 4 4 6 15 7 8 6 4 5 4 
11 3 3 9 14 5 8 5 5 5 4 
12 4 4 7 16 6 7 5 5 6 4 
13 4 4 10 15 6 8 5 5 5 4 
14 3 3 7 9 5 7 5 6 6 5 
15 4 4 11 9 7 8 5 6 6 4 
16 4 4 5 15 6 7 5 5 6 4 
17 4 4 8 10 4 8 6 5 5 4 
18 3 3 9 14 5 8 5 5 5 4 
19 3 3 6 [11,12] 9 6 4 7 7 5 
20 4 4 7 9 7 8 5 6 6 5 
21 4 4 2 13 7 6 5 5 6 4 
22 5 5 7 13 6 7 5 7 7 5 
23 4 4 7 11 7 7 5 5 6 4 
24 4 4 5 9 7 7 5 6 6 5 
25 5 5 7 14 5 7 5 5 6 4 
26 4 4 9 11 5 7 5 5 6 4 
27 5 5 10 13 6 6 4 6 7 5 
28 5 5 8 12 5 8 5 5 6 4 
29 4 4 6 14 5 9 6 6 6 5 
30 4 4 6 8 6 6 4 6 6 4 

Range
[3,
6]

[3,6] [2, 13] 
[7, 16] [4, 9] 

[6, 10] [4, 7] [4, 7] [5, 7] [4, 5] 

Average 4.03 4.03 7.13 12.11 5.93 7.43 5.1 5.38 5.83 4.3 
CPU 3.38 NA 9.05 21.93 9.35 19.05 18.62 15.98 17.72 21.88 

Optimal Range from [7] [4, 9] [6, 10] [4, 7] [4, 6] [5, 7] [4, 5] 
The average of the optimal solutions [7] 5.9 7.4 5.1 4.6 5.8 4.3 
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