
Abstract— Efficient tool management is very important for
the productivity in flexible manufacturing systems. This paper
proposes an Ant Colony Approach to minimize the number of
tool switching instants in flexible manufacturing systems for
the first time. The proposed approach is compared to optimal
results from the literature, and very promising results are
reported.

I. INTRODUCTION

N flexible manufacturing systems (FMS), parts are
processed on the Computer Numerical Control (CNC)

machines with tool magazines on which the required tools
are loaded. In case the total number of tools required by all
part types is larger than the tool magazine capacity, tool
loading or switching between the processing of the part
types become inevitable. Tool loading or switching usually
consumes time and therefore may delay the planned
production. Hence, a successful tool management is very
important for high productivity in FMS. The importance of
the tool switching problem has been recognized in the
automated manufacturing literature over the last two
decades. The relevant research has considered two
objectives: minimizing the number of tool switches and
minimizing the number of tool switching instants.

Minimizing the number of tool switches is relevant to the
case where the tool switching time is significant compared
to the processing times. Crama et al. [1] showed that
minimizing the number of tool switches problem is strongly
NP-hard. Tang and Denardo [2] showed that the problem is
polynomially solvable when the part type sequence is given.
Several procedures for solving this problem were proposed
in the literature [3], [4], [5].

Minimizing the number of tool switching instants is
appropriate when the automatic tool interchanging device
can switch a number of tools simultaneously or when the
tool switch time is independent of the number of the tool
switches. The problem is particularly important when the
tool loading times are long; therefore, the efficient loading
of the tool magazines becomes crucial in minimizing the

Manuscript received October 24, 2006
Abdullah Konak is with the Pennsylvania State University Berks,

Information Sciences and Technology, Reading, PA 19610 USA
(corresponding author, phone: 610-396-6310; fax: 610-396-6024; e-mail:
konak@psu.edu).

Sadan Kulturel-Konak is with the Pennsylvania State University Berks,
Management Information Systems, Reading, PA 19610 USA (e-mail:
sadan@psu.edu).

number of tool switching instants. Tang and Denardo [6]
and Denizel [7] studied the minimum number of the tool
switching instants problem. Tang and Denardo [6] showed
that the problem generalizes the classical bin packing
problem; therefore, it is NP-hard. They also showed that the
problem can be formulated as a part type grouping problem
and proposed a branch and bound procedure to find the
optimal grouping. Denizel [7] proposed a Lagrangean
decomposition based lower bounding procedure and uses the
lower bound in a branch and bound algorithm. However,
this approach is limited to the problems up to 30 part types.

In this paper, we consider the minimum number of tool
switching instants problem (MTSIP) and developed an Ant
Colony Optimization (ACO) approach to solve large sized
problems with practical importance. An ACO approach has
not been previously applied to MTSIP. The Integer
Programming (IP) formulation of MTSIP is given as
follows:
Decision Variables and Parameters

1 part type is scheduled at instant ,
0 otherwise.ij

j i
x

1 if tool is assigned to instant ,
0 otherwise.il

l i
y

1 instant is considered,
0 otherwise.i

i
b

C = the capacity of the tool magazine

Model:

1

1

1

Min

1 (C1)

, (C2)

(C3)

, , {0,1}

l

N

i
i

N

ij
i

ij il
j s

M

il i
l

ij il i

z b

x j

x Ny i l

y C b i

x y b

Constraint (C1) ensures that each part type j is assigned to
exactly one instant. Given sl is the set of parts requiring tool
type l, constraint (C2) states that part type j can be scheduled
in instant i only if all its required tools are on the tool
magazine. The tool magazine capacity constraint is given in
(C3).

MTSIP is a special version of the bin packing problem

An Ant Colony Optimization Approach to the Minimum Tool
Switching Instant Problem in Flexible Manufacturing System

Abdullah Konak and Sadan Kulturel-Konak

I

43

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

with sharing, i.e., parts may require common tools. If the
part types do not share any common tool, then the problem
reduces to the bin packing problem where the objective is to
minimize the number of the bins. It should be noted that
although ACO has previously been applied to the bin
packing problem [8] and [9], our approach is different due to
this tool sharing property of the problem.

II. ANT COLONY OPTIMIZATION

ACO was first proposed by Dorigo et al. [10, 11] as a new
approach to the traveling sales-person problem (TSP) and
inspired by the behavior of real ants while searching for
food. Initially, real ants randomly wander to search for
food. When an ant finds food, she will leave a chemical
message called pheromone on the way to her nest so that
other ants are invited to follow this chemical trail instead of
wandering randomly. Over the time, however, the
pheromone trail will loose its attraction as it constantly
evaporates. Therefore, a shorter route from the food source
to the nest is likely to retain a higher level of pheromone
than a longer route does, in turn attracting more ants to
follow. Additionally, ants following a pheromone trail will
reinforce it by laying their pheromone trails as well. Over
the time, a shorter route to the food source will attract more
ants than a longer route. However, some other ants keep
wandering randomly and may discover shorter routes to the
food source, establishing a new stronger pheromone trail.

Dorigo and Gambardella [11] proposed a new search
algorithm to solve the TSP inspired by the way ants search
for food. Similar to Genetic Algorithms (GA), ACO
operates on a set of solutions (population) in parallel. The
population mimics a real ant colony, and each member ant
represents a solution. In ACO, new solutions are randomly
constructed from scratch at each cycle unlike Simulated
Annealing (SA), Tabu Search (TS), and GA where new
solutions are generated from existing ones using local and
global search operators. Dorigo and Gambardella [11]
defined an artificial pheromone (,)i j for each city pair i

and j. The value of (,)i j represents the relative
desirability that city j succeeds city i in a feasible TSP tour.
Each ant constructs a solution by starting from a random city
and randomly traversing one city after another until all cities
are visited. The probability that an ant currently in city i
visits unvisited city j next in the tour is given as a function
of the pheromone as follows:

(,) (,) if
(,) (,)(,)

0 otherwise
k V

i j i j
j V

i k i kp i j (1)

where V is the set of the cities that have not yet been visited
by the ant, (,)i j is a problem specific information (i.e.,
the distance between cities i and j in this case), and are
parameters to set the relative importance of the pheromone

trail information and the problem specific information.
After all ants in the population have constructed their

solutions, the pheromone trail is updated as follows:
(, ,)(,) (,)

()k P

i j k
i j i j

z k
 (2)

where z(k) is the total distance of the tour created by the kth

ant, and (, ,)i j k =1 if city j succeeds city i in solution k,
otherwise (, ,)i j k =0. The first part of (2) represents the
pheromone evaporation where is the evaporation
parameter between 0 and 1. The second part represents
pheromone deposition by the ants. Thereby, if city j
frequently succeeds city i in solutions with short tours,
pheromone (,)i j becomes stronger and stronger,
increasing the probability that city j succeeds city i in
solutions that will be generated in the future cycles.

Many researchers have proposed improvements over the
original ACO algorithm which briefly introduced above.
Surveys of recent research efforts and developments in ACO
are given in [12], [13], and [14]. Since [11], ACO have
been applied to variety of optimization problems including
graph colouring [8], bin packing/stock cutting [9], [15],
[16], [17] scheduling [18], [19], [20], [21], [22], [23],
redundancy allocation problem [24], and network routing
[25].

III. APPLYING ACO TO THE PROBLEM

An ACO implementation involves several steps: defining
meaningful pheromone trail , identifying a proper problem
specific information , and defining an effective mechanism
to update the pheromone trails. In the following sections,
we describe the details of our implementation.

A. Pheromone trail definition

The definition of pheromone trails is very important for a
successful ACO implementation. In ACO, pheromone trails
are the communication channels through which ants
exchange information about the solution space [26].
Therefore, a meaningful medium of communication plays a
major role in the utilization of collective knowledge of ants
to investigate the promising regions of the solution space.
MTSIP is a variation of the bin packing problem. We
defined (,)i j as the favorability of processing part types i
and j in the same tool switching instant. This definition is
similar to the pheromone trail definitions in the previous
ACO approaches to the bin packing problem [8], [9]. By
this definition, the pheromone matrix is symmetric, i.e.,

(,) (,)i j j i .

B. Building a feasible solution

Let ={S1, S2,…, Sm} represent a solution with m tool
switching instants where Si is the set of parts in the ith

instant. In other words, Si represents a set of parts that are
processed on a single CNC machine without requiring a tool

44

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

switch once all required tools are loaded to the magazine.
Each ant starts with an empty solution, ={S1} and S1= .
Then, parts are randomly assigned to S1 one by one until the
full tool capacity of the magazine. If no more parts can be
assigned to the current instant, then a new instant is created,
i.e., ={S1, S2} and S2= . This process continues until all
parts have been assigned. Let Sm represent the current
instant and A(Sm) be the set of admissible parts that can be
assigned to Sm. Admissible set A(Sm) includes the parts that
have not been assigned to an instant yet, and that would not
violate the magazine capacity constraint when they are
assigned to Sm. The probability of assigning part i A(Sm) to
Sm is given by:

() () if ()
() ()(,)

0 otherwise
m

m

m j S

i i
i A S

j jp i S (3)

where ()i is the total pheromone trail of part i and ()i is
the problem specific information. Let s(i) represent the set
of tools required by part i and |s(i)| be its cardinality. Total
pheromone trail ()i depends on whether current instant Sm

is empty or not as given in (4). If Sm is not an empty set,
()i is defined as the sum of the pheromone trails between

part i and the parts already assigned in Sm. If Sm is an empty
set, i.e., a new instant has just been created, ()i equals to
|s(i)|, the number of the tool types required by part i.
Therefore, while assigning parts to an empty instant, parts
with a higher number of tool requirements are preferred with
respect to the ones with a less number of tool requirements.

(,) if
()

| () | otherwise
m

m
j S

i j S
i

s i
 (4)

We defined problem specific information ()i as a
function of the residual capacity of the magazine that would
be available after assigning admissible part i to Sm as
follows:

() 1 | () |mi C s S i (5)
where ()ms S i is the set of tools required by the set of
parts in Sm and part i together. While assigning new parts to
the current instant Sm, this approach favors parts that would
require less number of new tools in addition to the currently
loaded ones on the magazine over the ones that would
require several new tools.

C. Initializing and updating the pheromone trail

As mentioned earlier, pheromone trail (,)i j represents
the favorability of processing part i and j in the same tool
switching instant. The pheromone trails are initialized
according to this definition as given in (6). The default
initial value of (,)i j is set to the number of parts, N. If
two parts i and j share common tools, then (,)i j is
increased by the number of the common tools that they

share.
(,) () ()i j N s i s j (6)

At the end of each cycle, the pheromone trails are
updated. There are several approaches proposed in the
literature to update pheromone trails (see [14] for a
comprehensive summary). An important concern while
updating pheromone trails is to prevent the stagnation
behavior, i.e., the situation in which all ants create the same
solution [10]. In the original ACO algorithm, all ants are
allowed to deposit pheromone proportional to their fitness.
This approach usually results in a slow convergence.
Another strategy is the elitist approach where only the best
ants found so far in the search (i.e., the global best) are
allowed to deposit pheromone. In the MAX-MIN Ant
System [27], only one ant, either the global best or the best
ant in a cycle, is allowed to update the pheromone trails.
Using the global best promotes exploitation while using the
cycle best promotes exploration properties of the search.
Switching between the global best and cycle best allows
balancing exploration versus exploitation [9]. In addition, to
minimize the stagnation behavior, upper and lower bounds
are imposed on the pheromone trails. The disadvantage of
the MAX-MIN Ant System is that it introduces three
additional algorithm parameters.

We propose a different approach to update pheromone
trails than previously reported ones because of the unique
properties of the problem. MTSIP has a very flat objective
function space. Therefore, there is a high probability that
multiple solutions generated during a cycle have the same
objective function value. In most cycles, we observed
several solutions with the same objective function value.
Let ()B t be the set of unique solutions with the best
objective function value in cycle t. Note that the same
solution may be generated by multiple ants in a cycle -
especially this occurs as the pheromone trails converge
toward the end of the search. Set ()B t includes only one
copy of them. The pheromone trails are updated as follows:

()
(,) (,) (, ,)

B t

i j i j i j (7)

where is the evaporation parameter indicating the rate of
the decay of the pheromone trail, and (, ,) 1i j if parts i
and j are in the same instant of solution , and

(, ,) 0i j otherwise. Instead of a single ant, allowing
multiple peer ants to update the pheromone trails improves
both exploration and exploitation of the algorithm. If a part
pair i and j appears together in the same instant of several
best solutions, (,)i j is increased aggressively, resulting in
exploitation around solution schemas in which parts i and j
are together. Considering multiple solutions while updating
the pheromone trail helps exploration as multiple solution
structure can be searched in parallel. This also prevents the
premature convergence of the algorithm.

45

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

D. Overall Algorithm

The overall steps of our algorithm are given below. It
should be noted that our approach does not employ any
advanced features to improve the performance of ACO.
One of the popular ways to improve the performance of an
ACO implementation is local search [28]. ACO and local
search can be hybridized in various ways. For example,
solutions found by ACO can be run through a local search to
improve them further, and then the improved solutions are
used to update the pheromone trails, or the pheromone trails
are randomly modified [14]. However, we did not
incorporate any local search procedure because of three
reasons: (i) to design a simple algorithm with a minimum
possible number of parameters to be set by the user, (ii)
local search procedures are usually not effective for
problems with flat objective spaces, and finally (iii) we aim
to investigate the performance of a pure ACO approach to
MTSIP. In addition, our test results are very promising
without using a local search procedure.

t 0
initialize (,)i j

While (t tmax) do
 Randomly create npop solutions using probabilities in
 (3)
 Sort the population
 Identify and delete duplicate solutions
 Update best-solution-so-far
 Update (,)i j using the best solutions of the cycle

t t+1
End
Return best-solution-so-far

IV. COMPUTATIONAL EXPERIMENTS

Ten different problem sets with 30 problems in each were
used to test the effectiveness of the proposed ACO
approach. The parameters of these problem sets are given in
Table I. Problem sets TDI, TDII, and TDIII were defined by
Tang and Denardo [6]. We randomly generated 30 random
problems for each set as described in [6]. Test problems set
DI to DVI were used by Denizel [7]. Denizel [7] also
defined 30 random problems for each problem set and
reported the ranges for the optimal solutions. The input data
of these problems were provided us by the author.
Therefore, we were able to compare the performance of our
approach with respect to optimal solutions. The ACO
computer code was coded in the C programming language
and run using Linux PC with 2.8 GHz CPU and 1.5GB
memory.

The results found for both test sets are also given in Table
I. The parameters of the proposed ACO in all runs were set
as follows: npop=50, tmax=1000, =0.95, and =1. For each
problem instance, ten random replications were performed.

In the table, we reported the minimum and maximum
number of tool switching instants found in each instance
over ten replications as [min, max]. If the same result found
in all random replications of a problem, this result is given
without using brackets. We also provided the minimum and
maximum (i.e., the range) and the average number of tool
switching instants found for each problem set. Finally, we
reported the average CPU seconds.

Unfortunately for the Tang and Denardo problem sets,
there is no published result available to compare our
findings. However, we were able to solve the IP
formulation of the problem for the first set (TDI) using
CPLEX v9.0. We reported the associated optimal results of
this set under the column titled “Optimal.” The optimal
solutions for the problems of sets TDII and TDIII could not
be obtained within reasonable CPU times. Denizel [7] did
not report the optimal solution for each individual problem
of DI-DVI, but provided the range and average value over
the 30 problems in each set. We also reported ACO
solutions in the same format in Table I.

When the final results were analyzed, one of the strengths
of the proposed ACO approach appeared to be its
robustness. As seen in Table I, for all cases except problem
#19 of set TDIII, the ACO approach found the same
objective function values in all ten random replications.
When the final solutions were analyzed, it was realized that
the final solutions were slightly different from each other
with the same objective function. As discussed earlier, this
should be expected in similar problems with flat objective
function surfaces. In fact, this is one of the motivations for
using an ACO approach to solve the problem as apposed to
a metaheuristic based on local search strategy such as TS.

In terms of the solution quality, the ACO approach also
performed superbly. The ACO approach found an optimal
solution for all 30 problems of set TDI. For problem sets
DI, DII, DIII, DV, and DVI, the ACO approach found the
same optimal range and the average optimal solution quality
over 30 problems. For set DIV, the final results were very
close to the previously reported optimal results.

V. CONCLUSIONS

In this paper, for the first time an ACO approach was
developed for the minimum number of tool switching instant
problem. The results showed that the proposed ACO
approach is very promising. For the large majority of the
test problems, the proposed ACO approach found the
optimal solutions. It would be an interesting further
research to compare the proposed ACO approach with the
other metaheuristic approach on larger sized problems.

46

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

TABLE I
TEST PROBLEM DATA AND RESULTS

Parameter TDI TDII TDIII DI DII DIII DIV DV DVI
N 10 20 30 20 30 30 25 25 30
L 10 15 25 15 20 20 30 35 30
C 4 8 10 8 10 12 16 18 19

Problem #
TDI

TDI
Optimal

TDII TDIII DI DII DIII DIV DV DVI

1 6 6 5 12 5 9 6 5 6 5
2 3 3 7 15 6 7 5 5 6 4
3 3 3 5 9 6 7 5 5 6 4
4 4 4 13 11 6 7 5 5 6 5
5 4 4 7 13 7 8 5 5 5 4
6 4 4 7 13 7 8 5 5 5 4
7 5 5 8 12 5 7 5 5 5 4
8 4 4 7 7 4 10 7 6 6 4
9 4 4 3 16 6 7 5 5 6 4

10 4 4 6 15 7 8 6 4 5 4
11 3 3 9 14 5 8 5 5 5 4
12 4 4 7 16 6 7 5 5 6 4
13 4 4 10 15 6 8 5 5 5 4
14 3 3 7 9 5 7 5 6 6 5
15 4 4 11 9 7 8 5 6 6 4
16 4 4 5 15 6 7 5 5 6 4
17 4 4 8 10 4 8 6 5 5 4
18 3 3 9 14 5 8 5 5 5 4
19 3 3 6 [11,12] 9 6 4 7 7 5
20 4 4 7 9 7 8 5 6 6 5
21 4 4 2 13 7 6 5 5 6 4
22 5 5 7 13 6 7 5 7 7 5
23 4 4 7 11 7 7 5 5 6 4
24 4 4 5 9 7 7 5 6 6 5
25 5 5 7 14 5 7 5 5 6 4
26 4 4 9 11 5 7 5 5 6 4
27 5 5 10 13 6 6 4 6 7 5
28 5 5 8 12 5 8 5 5 6 4
29 4 4 6 14 5 9 6 6 6 5
30 4 4 6 8 6 6 4 6 6 4

Range
[3,
6]

[3,6] [2, 13]
[7, 16] [4, 9]

[6, 10] [4, 7] [4, 7] [5, 7] [4, 5]

Average 4.03 4.03 7.13 12.11 5.93 7.43 5.1 5.38 5.83 4.3
CPU 3.38 NA 9.05 21.93 9.35 19.05 18.62 15.98 17.72 21.88

Optimal Range from [7] [4, 9] [6, 10] [4, 7] [4, 6] [5, 7] [4, 5]
The average of the optimal solutions [7] 5.9 7.4 5.1 4.6 5.8 4.3

REFERENCES

[1] Y. Crama, A. W. J. Kolen, A. G. Oerlemans, and F. C. R. Spieksma,
“Minimizing the number of tool switches on a flexible machine,”
International Journal of Flexible Manufacturing Systems, vol. 6, pp.
33-54, 1994.

[2] C. S. Tang and E. V. Denardo, “Models arising from a flexible
manufacturing machine. I. Minimization of the number of tool
switches,” Operations Research, vol. 36, pp. 767-77, 1988.

[3] J. F. Bard, “A heuristic for minimizing the number of tool switches on
a flexible machine,” IIE Transactions, vol. 20, pp. 382-91, 1988.

[4] G. Laporte, J. J. Salazar-Gonzalez, and F. Semet, “Exact algorithms
for the job sequencing and tool switching problem,” IIE Transactions,
vol. 36, pp. 37-45, 2004.

47

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

[5] M. A. Al-Fawzan and K. S. Al-Sultan, “A tabu search based algorithm
for minimizing the number of tool switches on a flexible machine,”
Computers and Industrial Engineering, vol. 44, pp. 35-47, 2003.

[6] C. S. Tang and E. V. Denardo, “Models arising from a flexible
manufacturing machine. II. minimization of the number of switching
instants,” Operations Research, vol. 36, pp. 778-84, 1988.

[7] M. Denizel, “Minimization of the number of tool magazine setups on
automated machines: a Lagrangean decomposition approach,”
Operations Research, vol. 51, pp. 309-20, 2003.

[8] D. Costa and A. Hertz, “Ants can colour graphs,” Journal of the
Operational Research Society, vol. 48, pp. 295-305, 1997.

[9] J. Levine and F. Ducatelle, “Ant colony optimization and local search
for bin packing and cutting stock problem,” Journal of the
Operational Research Society, vol. 55, pp. 705-16, 2004.

[10] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization
by a colony of cooperating agents,” IEEE Transactions on Systems,
Man and Cybernetics, Part B (Cybernetics), vol. 26, pp. 29-41, 1996.

[11] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” IEEE
Transactions on Evolutionary Computation, vol. 1, pp. 53-66, 1997.

[12] M. Dorigo and C. Blum, “Ant colony optimization theory: A survey,”
Theoretical Computer Science, vol. 344, pp. 243-78, 2005.

[13] M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo, “Model-based
search for combinatorial optimization: a critical survey,” Annals of
Operations Research, vol. 131, pp. 373-95, 2004.

[14] S. D. Shtovba, “Ant algorithms: theory and applications,”
Programming and Computer Software, vol. 31, pp. 167-78, 2005.

[15] G. Bilchev, “Evolutionary metaphors for the bin packing problem,”
San Diego, CA, USA, 1996.

[16] B. Brugger, K. F. Doerner, R. F. Haiti, and M. Reimann, “AntPacking
- an ant colony optimization approach for the one-dimensional bin
packing problem,” Coimbra, Portugal, 2004.

[17] A. Cuesta-Canada, L. Garrido, and H. Terashima-Marin, “Building
hyper-heuristics through ant colony optimization for the 2D bin
packing problem,” Melbourne, Vic., Australia, 2005.

[18] C. Rajendran and Y. Gajpal, “An ant-colony optimization algorithm
for minimizing the completion-time variance of jobs in flowshops,”
International Journal of Production Economics, vol. 101, pp. 259-72,
2006.

[19] C. Rajendran and H. Ziegler, “Ant-colony algorithms for permutation
flowshop scheduling to minimize makespan/total flowtime of jobs,”
European Journal of Operational Research, vol. 155, pp. 426-38,
2004.

[20] C. Rajendran and H. Ziegler, “Two ant-colony algorithms for
minimizing total flowtime in permutation flowshops,” Computers and
Industrial Engineering, vol. 48, pp. 789-97, 2005.

[21] V. T'Kindt, N. Monmarche, F. Tercinet, and D. Laugt, “An ant colony
optimization algorithm to solve a 2-machine bicriteria flowshop
scheduling problem,” European Journal of Operational Research, vol.
142, pp. 250-7, 2002.

[22] Y. Kuo-Ching and L. Ching Jong, “An ant colony system approach for
scheduling problems,” Production Planning and Control, vol. 14, pp.
68-75, 2003.

[23] Y. Kuo-Ching and L. Ching-Jong, “An ant colony system for
permutation flow-shop sequencing,” Computers and Operations
Research, vol. 31, pp. 791-801, 2004.

[24] L. Yun-Chia and A. E. Smith, “An ant colony optimization algorithm
for the redundancy allocation problem (RAP),” IEEE Transactions on
Reliability, vol. 53, pp. 417-23, 2004.

[25] G. Di Caro, F. Ducatelle, and L. M. Gambardella, “AntHocNet: an
adaptive nature-inspired algorithm for routing in mobile ad hoc
networks,” European Transactions on Telecommunications, vol. 16,
pp. 443-55, 2005.

[26] M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant algorithms for
discrete optimization,” Artificial Life, vol. 5, pp. 137-72, 1999.

[27] T. Stutzle and H. H. Hoos, “MAX-MIN Ant System,” Future
Generation Computer Systems, vol. 16, pp. 889-914, 2000.

[28] M. Dorgio and T. Stutzle, “The ant colony optimization metaheuristic:
algorithms, applications, and advances,” in Handbook of
Metaheuristics, F. Glover and G. Kochenberger, Eds. Norwell, MA:
Kluwer Academic Publishers, 2002, pp. 251-285.

48

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

