
 
 

 

  

Abstract—A flow shop problem as a typical manufacturing 
challenge has gained wide attention in academic fields. In this 
paper, we consider a bi-criteria permutation flow shop 
scheduling problem, in which the weighted mean completion 
time and the weighted mean tardiness are to be minimized 
simultaneously.  Since a flow shop scheduling problem has been 
proved to be NP-hard in strong sense, an effective multi-
objective immune algorithm (MOIA) is proposed for searching 
locally Pareto-optimal frontier for the given problem. To prove 
the efficiency of the proposed algorithm, a number of test 
problems are solved and the efficiency of the proposed 
algorithm, based on some comparison metrics, is compared 
with a distinguished multi-objective genetic algorithm, i.e. 
SPEA-II. The computational results show that the proposed 
MOIA performs better than the above genetic algorithm, 
especially for large-sized problems. 

I. INTRODUCTION 

LOW-SHOP scheduling problems address a 
determination of sequencing a number of jobs that have 

to be processed on a number of machines so that 
performance measures, such as makespan, tardiness, etc., are 
optimized. In flow shop scheduling, the processing routes 
are the same for all the jobs. Recently, the flow shop 
scheduling problems have been one of the most prevalent 
problems in the area of scheduling and there are numerous 
papers that have investigated this issue [1]. A 
comprehensive review of flow shop related papers over the 
last 50 years are provided in [2].  

In the general flow shop, passing is allowed. In other 
words, the job sequence on each machine may be different. 
However, in some practical cases the sequencing of different 
jobs that visit a set of machines must be in the same order. 
This class of flow shop problems is referred as permutation 
flow shop [3]. Some papers considered the permutation flow 
shop scheduling problem. Nowicki and Smutnicki [4] 
addressed this problem with respect to makespan criterion 
and proposed an improved tabu search to solve it. Suliman 
[5] proposed a two-phase heuristic approach to tackle the 
same problem. Cheng et al. [6] addressed the three machine 
permutation flow shop problem with release times where the 
objective is to minimize makespan. They proposed a branch 
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and bound algorithm for solving this problem. Grabowski 
and Wodecki [7] proposed a tabu search based algorithm for 
the permutation flow shop problem with makespan criterion. 
Lian et al. [8] proposed a particle swarm optimization 
algorithm for the same problem. 

While there are many studies treated a single objective, 
consideration of multiple criteria is more realistic practically 
[1]. Murata et al. [1] proposed a multi objective genetic 
algorithm to tackle flow shop scheduling problem. They 
considered the problem with two objectives of minimizing 
makespan and total tardiness and then they investigated the 
problem with respect to minimizing makespan, total 
tardiness and total flowtime as objectives. Ponnambalam et 
al. [9] proposed a TSP-GA multi objective algorithm for 
flow shop scheduling where they use a weighted sum of 
multiple objectives (i.e. minimizing makespan, mean flow 
time and machine idle time). Toktas et al. [10] considered 
the two machine flow shop scheduling problem by 
minimizing makespan and maximum earliness as objectives. 
Ravindran et al. [11] proposed three heuristic algorithms to 
solve the flow shop scheduling problem which in makespan 
and total flow time have been considered as objectives. 

In this paper, we deal with a bi-criteria permutation flow 
shop scheduling problem where the weighted mean 
completion time and the weighted mean tardiness are 
considered as objective functions. To tackle this problem, an 
improved multi-objective immune algorithm (MOIA) is 
developed for searching locally Pareto-optimal frontier. The 
remainder of this paper is organized as follows: Section 2 
gives the problem definition. In Section 3, the background 
of immune algorithm is described and then the proposed 
algorithm is given. The experimental results are provided in 
Section 4. Finally, Section 5 consists of conclusions.  

II. PROBLEM DEFINITION 

A. Permutation flow shop scheduling problem 
The addressed scheduling problem can be described as 

follows: Consider an n job m machine permutation flow 
shop scheduling problem where each of n jobs has to be 
processed, without preemption, on m machines in the same 
order, i.e. passing is not allowed. Job j, nj ∈ , consists of a 
sequence of m operations Oj1, Oj2, … , Ojm that operation Ojk 
corresponds to the processing of job j on machine k during 
an uninterrupted processing time pjk. The problem is 
considered under the following assumptions: All jobs are 
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available at zero time, Machines are always available, The 
processing time of each job on each machine is known and 
constant, Setup times and removal times are included in 
processing times, Preemption is not allowed, Passing is not 
allowed, Transportation times are negligible, Each job may 
have its own due date, Each machine can process only one 
job at the same time, A job can not processed on more than 
one machine at the same time, Jobs can wait between two 
successive machines and intermediate storage exists. 

B. Objective functions 
Assume that iC , id and iw denote the completion time, the 

due date and a possible weight associated to job i, 
respectively. The first considered objective function is the 
minimization of the weighted mean completion time. This 
objective can be calculated by the following equation: 

W

Cw
n

i
ii∑

=1          (1) 

Where W is the sum of jobs' weights; that is ∑=
i iwW . 

Another objective considered is the minimization of the 
weighted mean tardiness. To calculate the value of this 
objective, the subsequent equation is used: 

W

Tw
n

i
ii∑

=1           (2) 

Where W is as the same equation (1) and iT  is the tardiness 
for job i and equals to { }ii dC −,0max . 

III. IMMUNE ALGORITHM 

A. Immune algorithm in general 
The biological immune system is a robust, complex, 

adaptive system that defends the body from foreign 
pathogens. The clonal selection and affinity maturation 
principles are used to explain how the immune system reacts 
to pathogens and how it improves its capability of 
recognizing and eliminating pathogens [12]. Clonal selection 
states that by pathogen invasion, a number of immune cells 
(lymphocytes) that recognize these pathogens will 
proliferate; some of them will become effecter cells (plasma 
cells), while others will be maintained as memory cells. The 
effecter cells secrete antibodies in large numbers, and the 
memory cells have long life spans so as to act faster and 
more effectively in future exposures to the same or a similar 
pathogen [13]. During cellular reproduction, the cells suffer 
somatic mutations at high rates, together with a selective 
force; the cells with higher affinity to the invading pathogen 
differentiate into memory cells. Generally, cells with low 
affinity receptors are mutated at a higher rate, whereas cells 
with high affinity receptors will have a lower mutation rate 
[14]. This whole process of somatic mutation plus selection 

is known as affinity maturation [13]. 
A novel computational intelligence technique, inspired by 

immunology, has emerged, known as Artificial Immune 
Systems (AIs). Recently, it has advocated special attention 
to itself in order to various applications. Luh et al. [15] 
proposed an immune based algorithm for finding Pareto 
optimal solutions to multi-objective optimization problems. 
Coello Coello and Cortes [16] applied clonal selection 
principle to solve multi-objective optimization problems. 
Khoo and Situmdrang [14] dealt with the design of assembly 
system for modular products by using an approach based on 
the principles of natural immune systems. Engin and Doyen 
[17] dealt with the hybrid flow shop scheduling problem 
where they applied clonal selection principle and affinity 
maturation mechanism in order to solve the problem. Kumar 
et al. [18] used artificial immune system to tackle a 
continuous flow shop problem with total flow time as 
criterion. Zandieh et al. [13] used the immune algorithm for 
solving the hybrid flow shop scheduling problems where 
setup times depended on sequence. 

 
B. The Proposed Multi-Objective Immune Algorithm 

The proposed algorithm is based on the clonal selection 
principle, modeling the fact that only the highest affinity 
antibodies will proliferate. The distinguishing criterion 
between antigens and antibodies is Pareto dominance. In 
other words, non-dominated solutions are the antigens and 
dominated solutions are the antibodies. The multi-objective 
immune algorithm (MOIA) implementation is described in 
the following sections. The general scheme of the proposed 
algorithm is provided in Fig.1. 

C. Antibody Representation 
Two kinds of different antibody representations are used 

simultaneously in this paper. Job-to-position and continuous 

{Initialize search parameters 
Create the initial antibody repertoire with elite tabu 
search 
Initialize the adaptive Pareto archive set so that is empty  
For 1 to MaxIter (the maximum number of iterations) 
   Perform non-dominated sorting 
   Update the adaptive Pareto archive set  
   While (pool size is not reached) 

The high affinity antibodies, including both 
dominated and non-dominated antibodies, are cloned 
and added to the Pool 

   End While 
   While (Hypermutation rate is not satisfied) 
       Perform swapping mutation on selected antibody 
   End While 
   While (Combination rate is not met) 

Select a prespecified number of antibodies from the 
pool 
Perform linear combination method on the selected 
antibodies to generate a new antibody 

   End While  
End For}  

Fig. 1.  The general scheme of MOIA 
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representation. Each antibody concurrently has a job-to-
position and continuous representation, each of them is used 
in different steps in our algorithm. 

In the Job-to-position representation, as shown in Fig. 2, a 
single row array of the size equal to the number of the jobs 
to be scheduled is considered. The value of the first element 
of the array shows which job is scheduled first. The second 
value shows which job is scheduled second and so on. 

 
Tasgetiren et al [19] devised a new way of representation 

for scheduling problems using continuous values. In this 
paper, a modified version of this representation is provided.  

Consider the sample job-to-position representation 
illustrated in Fig. 2. To construct the continuous version of 
this representation, we first need to generate 7 (as many as 
the number of the jobs to be produced) random numbers 
between ]4,0[],0[ max =x , then these numbers will be sorted 
and the first smallest of them will be assigned to the position 
that contain the first job, that is job number 1, the next 
smallest will be assigned to position that contain the second 
job, that is job number 2 and so on. Suppose the numbers 
shown in Table I are the random numbers obtained. 

 
To build the continuous representation, we have to assign 

0.46 to job number 1, 1.54 to job number 2, 1.77 to job 
number 3 and so on. Thus, Fig. 3 shows the associated 
representation. 

 
To illustrate how the job-to-position representation is 

obtained from the representation shown in Fig. 3, we just 
need to schedule the first job in the place of the first smallest 
values of the continuous representation, the second job in 
the place of the next smallest values of the continuous 
representation and so on. 

D. Antibody Initialization 
Most of the evolutionary algorithms use a random 

procedure to generate an initial set of solutions. However, 
since the output results are strongly sensitive to the initial 
set, we propose a new Elite Tabu Search (ETS) mechanism 
to construct this set of solutions. The main purpose of 
applying this meta-heuristic is to build a set of potentially 
diverse and high quality antibodies in the job-to-position 
representation form. Before describing the elements of the 

proposed Tabu Search, the following definition must be 
provided: 
Ideal Point-Ideal point is a virtual point that its coordinates 
are obtained by separately optimizing each objective 
function. 

Finding the ideal point requires separately optimizing 
each of the objective functions of the problem. However, as 
the problem in question is non-linear, even optimizing it 
considering only one objective is a time-demanding task. To 
overcome this obstacle, we first linearize the problem so that 
each of the objective functions can be possibly solved to 
optimality with available optimization software such as 
LINGO 8. Another problem, even after linearization, is the 
NP-hardness of the large-size linearized problems due to 
their large feasible space and our inability to find the global 
optimum (even a strong local optimum) in reasonable time. 
The following approach is adopted to solve this problem: 
when finding the exact ideal point is not easy, an 
approximation of it called the Dynamic Ideal Point (DIP) is 
used instead. The approximation requires interrupting the 
optimization software (LINGO 8) afterξ  seconds after the 
first feasible solution is found and report the best solution 
found up to that time as the respective coordinate of the 
ideal point. The value ofξ  is determined after running 
various test problems. To improve this approximation and to 
prevent it from impairing our algorithm, DIP must be 
updated at the end of each iteration of the proposed 
HMOSFLA algorithm. 

1) ETS Implementation  
The desired size of the antibody repertoire, which is 

shown by N, remains constant during the optimization 
process. To construct N diverse and good antibodies, the 
proposed elite Tabu Search (ETS) must be done N×α  
times where α  is an integer greater than or equal to 1. The 
Tabu Search starts from a predetermined point called the 
Starting Point which can be set to be the related sequence of 
any one of the two values obtained for coordinates of the 
ideal point. Here, the string of objective function 1 is 
considered as the starting point. Then, the current solution is 
saved in a virtual list and will be replaced by a desired 
solution in its neighborhood that meets the acceptance 
criterion. This process must be continued until the 
prespecified termination criterion is met. The detailed 
description of implementation of the proposed tabu search is 
as follows: 

a) Move Description 
The proposed move procedure, which is used to generate 

a neighborhood subset µ , is based on an implementation of 
what is known in the GA literature as the inversion operator. 
An example of the inversion operator is presented below: 
Before inversion:  2 1 3 | 4 5 6 7 |  9 8 
After inversion:    2 1 3 | 7 6 5 4 |  9 8 

TABLE I 
A SAMPLE SET OF RANDOM NUMBERS 

No.1 No.2 No.3 No.4 No.5 No.6 No.7 

0.46 2.96 1.77 2.49 1.54 3.61 2.88 

Location in a 
sequence 1 2 3 4 5 6 7 

Continuous 
representation 0.46 1.54 2.49 1.77 2.88 2.96 3.61 

Fig.3. Continuous representation of Fig. 2 

Location in a sequence 1 2 3 4 5 6 7 
Job to be scheduled 1 2 4 3 5 6 7 

Fig.2. Job-to-position representation for a flow shop scheduling 
problem 
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b) Tabu List 
The move mechanism uses the intelligent Tabu Search 

strategy, whose principle is to avoid returning to the solution 
recently visited by using an adaptive memory called Tabu 
List. The proposed tabu list is attributive and made of a list 
of pairs of integers (i, j), where },...,1{, nji ∈ . It means that 
it is forbidden to inverse the subsequence of jobs between 
the position i and the position j, if the pair (i, j) exists in the 
tabu list. The size of tabu list, which is shown byψ , is a 
predetermined and sufficiently large value. To diversify the 
search, a long-term memory is deployed and the Tabu 
Tenure (Tmax) will be considered infinite. Besides that, the 
frequency-based memory is used. 

c) Search Direction 
In order to simultaneously maintain suitable 

intensification and diversification, we introduce a new 
function based on Goal Attainment method. This Function 
can be shown as follows: 

∑
=

−
=

k

i i

ii

w
Ff

1

||ζ                  (3) 

Where if is the thi  objective function value of the solution 

iF is the thi coordinate value of the ideal point and iw is the 

weight of thi objective function. The motivation to use this 
metric is that a solution is efficient for a given set of weights 
w if it minimizesζ .  

The main difference of the proposed function with the 
existing ones is that it allows working with a set of solutions 
which is not necessarily convex. This advantage makes the 
proposed ETS very popular that can be implemented in 
every optimization problem with every search space pattern. 
Another advantage is achieved by generating iw  randomly. 
According to this approach, the proposed ETS can search 
the solution space in various directions, so the high 
diversification is maintained.    

To explain the acceptance criteria of a new solution, the 
variable η  is defined as follows:  

AB ζζη −=            (4) 
Where A is the current solution and B is generated from A by 
a recent move. So the acceptance criteria can be defined in 
the following way:  

1) Ifη 0≤ and the move is not found in the tabu list, 
solution A will be replaced by B. 

2) Ifη 0≤ but the move is found in the tabu list, the 
aspiration strategy is used and solution A will be replaced by 
B. 

3) Ifη 0> and the move is not found in the tabu list, 
solution A will be replaced by B when solution B is not 
dominated by solution A.  

4) Ifη 0> and the move is found in the tabu list, solution 
A does not change. 

d) Stopping Criteria 
The proposed tabu search must be done N×α  times. 

After running the ETS, We have N×α number of 
antibodies that are selected among the whole set of visited 
solutions to be as near to the Pareto front as possible. To 
construct N initial antibodies, we select the N best solutions 
among N×α  according to their distances to the ideal point. 

E. Adaptive Pareto archive set 
In many researches, a Pareto archive set is provided to 

explicitly maintain a limited number of non-dominated 
solutions. This approach is incorporated to prevent losing 
certain portions of the current non-dominated front during 
the optimization process. This archive is iteratively updated 
to get closer to correct Pareto-optimal front. When a new 
non-dominated solution is found, if the archive set is not 
full, it will enter the archive set. Otherwise it will be 
ignored. When a new solution enters the archive set, any 
solution in the archive dominated by this solution will be 
removed from the archive set. 

When the maximum archive size is exceeded, removing a 
non-dominated solution may destroy the characteristics of 
the Trade-off front. There exist many different and efficient 
methods which deal with the updating procedure when the 
archive size is exceeded. Among them the most widely 
adopted techniques are: Clustering methods and k-nearest 
neighbor methods. But most of these algorithms do not 
preclude the problem of temporary deterioration, and not 
converge to the Pareto set. 

In this study, we propose an adaptive Pareto archive set 
updating procedure that attempts to prevent losing new non-
dominated solutions, found when Pareto archive size has 
reached its maximum size.   

The archive size, which is shown by Arch_size, is a 
prespecified value and must be determined at the beginning 
of the algorithm. When a new non-dominated solution is 
found, one of the two following possibilities may occur for 
updating the Pareto archive set: 
1) Number of the solutions in the archive set is less than 

Arch_size, thus this solution joins the archive set. 
2) Number of the solutions in the archive set is equal to (or 

greater than) Arch_size, thus the new solution will be 
added if its distance to the nearest non-dominated 
solution in the archive is greater-than-or-equal-to the 
“Duplication Area” of that nearest non-dominated 
solution in the archive and the size of Pareto archive 
increases. 

Duplication area of a non-dominated solution in the 
Pareto archive is defined as a bowl of center of the solution 
and of radius λ . This area is used as a measure of 
dissimilarity in order to find diverse non-dominated 
solutions. The distance between the new non-dominated 
solution and the nearest non-dominated solution in the 
archive is measured in the Euclidean distance form. To put it 
another way, if the new non-dominated solution is not 
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located in the duplication area of its nearest non-dominated 
solution in the archive, it is considered as a dissimilar 
solution and added to the Pareto archive set.  

The main advantage of this procedure is to save dissimilar 
non-dominated solutions, without losing any existing non-
dominated solutions in the archive. It must be noticed that, 
the Pareto archive is updated at the end of each iteration of 
the proposed immune algorithm. 

F. Cloning 
In clonal selection, only the highest affinity antibodies 

will be selected to go to the pool. In this paper, antibodies 
gain membership to the pool to their quality or their 
diversity. In other words, the pool is a subset of both diverse 
and high quality antibodies that consists of an approximation 
to the Pareto-optimal set.  

The construction of the pool starts with the selection of all 
non-repeated non-dominated antibodies from Pareto archive 
set. If the number of such non-dominated antibodies is 
smaller than the required pool size, the remaining antibodies 
are selected among the dominated antibodies. For this 
purpose, the dominated antibodies are divided into various 
fronts and the required number of antibodies is selected with 
the selection mechanism which depicted in Fig. 4. 

 
In this study, the hamming distance is used as a measure 

to diversify the solution space. This measure is the number 
of positions in two strings of equal length for which the 
corresponding elements are different. Put another way, it 
measures the number of substitutions required to change one 
into the other. 

G. Hypermutation   
The high affinity antibodies selected in the previous step 

are submitted to the process of hypermutation. This process 
consists of two phases that are implemented in a sequential 
manner. 

1) Swapping Mutation 
The proposed immune algorithm uses a swapping 

mutation for each of the clones. In other words, each clone 
in its related job-to-position representation is subjected to be 
mutated.  

2) Antibodies Combination 
The combination method that we implemented is based on 

linear combination. Each time the combination procedure is 
to be used, the prespecified number of the mutated clones, 
( β ), are selected randomly and linearly combined together 
to produce a new antibody. Let β  be 3 and xi, xj and xk be 
the selected antibodies being combined, then the new 
antibody xl is obtained with the following line search:  

 
1

3

1

321

=

++=

∑ =i i

kjil

w

xwxwxwx
       (5) 

It must be noted that the selected clones must be in their 
continuous representations and iw , 3,2,1=i  are randomly 
generated.  

H. Stopping Criterion  
The proposed immune algorithm must be repeated during 

a prespecified number of times. 

IV. EXPERIMENTAL RESULTS 
The performance of the proposed multi-objective immune 

algorithm is compared with a well-known multi-objective 
genetic algorithm, i.e. SPEA-II [20]. These two algorithms 
have been coded in the Visual Basic 6 and executed on an 
AMD Athlon™ XP 64 bit, 3.0 GHz, and Windows XP using 
512 MB of RAM. 

A. Algorithms’ assumptions 
The experiments are implemented in two folds: first, for 

the small-sized problems, the other for the large-sized ones. 
For both of these experiments, we consider the following 
assumptions:  
 General assumptions: (1) The processing times (Pij) are 

integers and are generated from a uniform distribution 
of U(1,40), (2) The due dates (di) are uniformly 
distributed in the interval [P(1-T-R/2),P(1-T+R/2)]  
where PmnP )1( −+= with P the mean total processing 
time. The values of T and R are set to 0.2 and 0.6 
respectively, (3) The jobs’ weights (wi) are uniformly 
generated in the interval (1,20), (4) Each experiment is 
repeated 15 times.  

 Multi-objective immune algorithm’s assumptions: (1) 
The value of α is set to 10, (2) The pool size is 
considered to be equal with antibody repertoire, (3) The 
combination rate is set to 1 and (4) the value of β is 
fixed to 3. 

 SPEA-II’s assumptions: (1) The initial population is 
randomly generated, The binary tournament selection 
procedure is used, (3) The selection rate is set to 0.8, (4) 
The order crossover (OX) and inversion (IN) are used 
as crossover and mutation operators, and (5) The ratio 
of ox-crossover and inversion is set to 0.8 and 0.4, 
respectively.    

B. Test problems 
The test problems with different sizes generated 

according to Table II. 

{For 1 to the required number of antibodies) 
Tournament selection between two dominated antibodies 
If candidate 1 is dominated by candidate 2:  

Select candidate 2 
If candidate 2 is dominated by candidate 1: 

Select candidate 1 
If both candidates are non-dominated:  

Find the minimum hamming distance of each 
candidate to the non-dominated antibodies in the 
Pareto archive set.   
Select the candidate with the larger distance 

End for}   

Fig. 4.  The general scheme of clonal selection mechanism 
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C. Comparison metrics 

There are a number of methods available to compare the 
performance of different algorithms. Schaffer [21] and many 
other researchers use the number of Pareto solutions (NPS) 
as a quantitative measure of the performance of the 
algorithms studied. The Error Ratio (ER) and the 
Generational Distance (GD) are also used as the 
performance measure indicators when the Pareto-optimal 
solutions are known [22]. Moreover, the Spacing Metric 
(SM) is utilized to express the distribution of individuals 
over the non-dominated region [23]. The Diversification 
Metric (DM) is also used to measure the spread of the 
solution set [24]. The definitions of the above-mentioned are 
as follow: 

N

e

ER

n

i
i∑

== 1          (6) 

where N is the number of found Pareto optimal solutions, 
and 
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where id  is the Euclidean distance between solution i and 
the closest which belongs to the Pareto-optimal frontier 
obtained from the total enumeration. 
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where d is the mean value of all id . 
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where ii yx '' −  is the Euclidean distance between of the 

non-dominated solution ix '  and the non-dominated 
solution iy ' . 

For the small-sized problems, we have used all the above 
mentioned comparison metrics to have a comprehensive 
comparisons and to show the quantitative dominance. In the 
other hand, for the large-sized problems, because of the 
large size of the problems, it is impossible to find the Pareto 
optimal solutions using the total enumeration algorithm. 
Therefore, the comparison metrics which is used in the 
small-sized problems must be changed. For this purpose, the 
following comparison metrics are used: (1) the number of 
non-dominated solutions (NPS) that each algorithm can find, 
(2) the Quality Metric (QM) that is simply measured by 
putting together the non-dominated solutions found by two 
algorithms, i.e. A and B, and reporting the ratio of the non-
dominated solutions which are discovered by algorithm A to 
the non-dominated solutions which are discovered by 
algorithm B, (3) Spacing Metric (SM), and (4) 
Diversification Metric (DM). 

D. Parameter setting 
For tuning the algorithms, extensive experiments were 

conducted with different sets of parameters. At the end, the 
following set was found to be effective in terms of solution 
quality and diversity level: 

 
1) Small-sized problems 

MOIA’s tuned parameters: (1) The size of antibody 
repertoire at each iteration, N, is set to 50, (2) The algorithm 
is terminated after 50 iterations, (3) Since each objective 
function is linear and the lingo software can obtain the best 
values of the coordinates of the ideal point immediately, the 
value ofξ is set to 0, (4) The neighborhood subset size, µ , 
and the tabu list size,ψ , are respectively set to 3 and 20, in 
both of the ETS, (5) The maximum Pareto archive size, 
Arch_Size, is fixed to 35.  

SPEA-II’ tuned parameters: (1) The population size is 
set to 50, (2) Algorithm is terminated after 50 iterations. 

 
 
 

TABLE II 
PROBLEM SETS 

Problem Job (n) Machine(m) 

Small-sized problems: 
1 7 15 
2 7 20 
3 8 5 
4 8 10 
5 8 15 
6 8 20 
7 9 5 
8 9 10 
9 9 15 

10 9 20 
Large-sized problems: 

11 200 15 
12 200 20 
13 300 5 
14 300 10 
15 300 15 
16 300 20 
17 500 5 
18 500 10 
19 500 15 
20 500 20 
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2) Large-sized problems 
MOIA’s tuned parameters: (1) The size of antibody 

repertoire at each iteration, N, increases to 200, (2) The 
algorithm is terminated after 500 iterations, (3) The value 
ofξ is set to 300 minutes, (4) The neighborhood subset 
size, µ , and the tabu list size,ψ , are respectively fixed to 3 
and 40, in both of the ETS, (5) The maximum Pareto archive 
size, Arch_Size, is set to 100. 

SPEA-II’s tuned parameters: (1) The population size 
increases to 200, (2) each algorithm is terminated after 500 
iterations. 

E. Comparative results 
In this section, the proposed MOIA is applied to the test 

problems and its performance is compared with SPEA-II. 
The average values of the above mentioned comparison 
metrics for small-sized and large-sized test problems are 
illustrated in Tables III and IV, respectively. 

As shown in Tables III and IV, the proposed MOIA is 
superior to the SPEA-II in each test problems. In other 

words, MOIA provides the higher number of diverse locally 
non-dominated solutions which are closer to the true Pareto-
optimal frontier. 

As illustrated in Table V, the proposed MOIA consumes 
more computational time than SPEA-II. Since MOIA, 
because of the structure of the proposed elitist tabu search 
and antibody combination method, can search intelligently 
more regions of the search space, this higher value of 
computational time is reasonable. 

V. CONCLUSION 
This paper has presented a new multi-objective immune 

algorithm (MOIA) for solving a permutation flow shop 
scheduling problem with respect to the weighted mean 
completion time and the weighted mean tardiness. 

To validate the proposed multi-objective immune 
algorithm, we designed various test problems and evaluated 
the performance and the reliability of the proposed MOIA in 
comparison with a conventional multi-objective genetic 
algorithm (i.e. SPEA II) to solve the given problems. Some 

TABLE III 
COMPUTATIONAL RESULTS FOR SMALL-SIZED PROBLEMS 

 NPS  ER  GD  SM  DM 
Problems 

 Total 
Enumeration MOIA SPEA.II  MOIA SPEA.II  MOIA SPEA.II  MOIA SPEA.II  MOIA SPEA.II 

1  6 5.73 4.07  0.05 0.26  0.12 16.52  0.12 0.87  8.27 2.03 

2  7 6.6 5.4  0.04 0.14  0.09 12.67  0.23 0.4  6.93 2.69 

3  7 5.47 4.47  0.27 0.23  0.36 6.77  0.2 0.67  5.8 1.5 

4  7 3.73 3.33  0.36 0.43  0.74 20.23  1.79 2.34  6.27 2.81 

5  10 7.6 7.27  0.12 0.11  0.38 7.14  0.29 0.64  5.53 3.57 

6  4 3.67 2.27  0.02 0.36  0.07 25.6  5.31 5.89  7.27 3.47 

7  9 6.2 2  0.53 0.8  0.76 22.71  1.18 1.56  7.47 3.18 

8  4 2.67 1.54  0.1 0.15  0.24 6.42  5.14 7.23  7 3.43 

9  7 3.67 2  0.21 0.59  0.77 38.42  3.95 4.25  8.07 3.04 

10  5 3.13 2.33  0.1 0.34  0.48 27.55  8.38 8.66  9.87 3.23 
 
 

TABLE IV 
COMPUTATIONAL RESULTS FOR LARGE-SIZED PROBLEMS 

 NPS  QM  SM  DM 
Problems 

 MOIA SPEA 
II  MOIA SPEA 

II  MOIA SPEA 
II  MOIA SPEA 

II 
11  25.16 21.67  67.1 32.9  7.34 8.32  29.93 21.12 

12  23.88 20.56  80.2 19.8  6.29 6.45  33.76 28.55 

13  24.15 22.71  74.3 25.7  4.52 7.67  17.17 12.34 

14  27.18 24.44  66.4 33.6  5.74 6.46  37.83 32.40 

15  25.14 19.93  77.9 22.1  5.70 6.31  27.15 22.46 

16  19.31 14.76  65.2 34.8  6.14 6.37  35.09 29.81 

17  25.30 23.89  62.4 37.6  6.32 6.65  21.53 17.45 

18  31.14 26.66  70.2 29.8  6.39 6.74  31.17 27.57 

19  35.38 29.58  71.4 28.6  7.34 8.32  32.93 26.09 

20  30.13 27.45  60.4 39.6  4.21 5.24  27.32 24.91 
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useful comparison metrics (such as, number of Pareto 
solutions found by the algorithm, error ratio, generational 
distance, spacing metric, and diversity metric) were applied 
to validate the efficiency of the proposed MOIA. The 
experimental results indicated that the proposed MOIA 
outperformed the SPEA II and was able to improve the 
quality of the obtained solutions, especially for the large-
sized problems. 
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TABLE V 
THE AVERAGE VALUES OF COMPUTATIONAL TIMES (SEC.) 

Problems MOIA SPEA II 

Small-sized problems: 

1 16 2 
2 17 3 
3 8 2 
4 12 2 
5 39 2 
6 50 3 
7 8 1 
8 43 2 
9 39 3 

10 65 4 
Large-sized problems: 

11 342 137 
12 283 145 
13 381 129 
14 380 155 
15 470 159 
16 483 162 
17 378 181 
18 483 185 
19 451 188 
20 483 192 
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