
Abstract—A max-plus linear (MPL) representation for 
describing the behavior of a repetitious execution system with a 
MIMO-FIFO structure is proposed. A conventional MPL form 
is required to recalculate the representation matrices by each 
job when applied to systems whose processing times differ by 
each job. Approximately twice the calculation volume is 
required to obtain the earliest and latest times using 
conventional MPL compared with our proposed MPL 
representation. This work assigns the state variables to events 
other than conventional ones, reduces the number of 
independent system parameters in representation matrices, and 
improves the form to schedule efficiently, even when applied to 
systems whose processing times differ by each job. The derived 
equations are similar to the dual system in modern control 
theory, which means that the calculation load for scheduling can 
be reduced remarkably comparing with the conventional 
method.

I. INTRODUCTION

HIS research considers a scheduling method for 

repetitious execution systems with MIMO (Multiple 

Inputs and Multiple Outputs) -FIFO structure. This kind of 

system can also be understood as an extended class of project 

scheduling problems based on PERT [1], which is improved 

for MIMO type and repetitive systems. This class has the 

following features and constraints. 

Parallel execution: Multiple processes can work 

simultaneously. 

Synchronization: The subsequent processes cannot start 

until a certain process has been completed. 

No-concurrency: While a certain resource is in use, the 

subsequent job cannot start. 

The behavior of systems with the above features can also 

be described with a subclass of Petri net called the TEG 

(Timed Event Graph) [2] in which all places have single 

upstream and downstream transitions. Moreover, as an 

independent variable it is favorable to adopt the number of 

event occurrences, called the event counter, rather than 
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‘time’. 

It is also known that the behavior of TEGs can be 

expressed in MPL (Max-Plus Linear) form as a set of linear 

equations in max-plus algebra [3], [4]. The times of event 

changes, especially the earliest starting times or the output 

times, can be calculated by combinations of ‘max’ and ‘+’ 

operations. Thus, many studies on scheduling problems 

utilizing the MPL representation are performed [5], [6]. On 

the other hand, ‘min’ and ‘-‘ operators are used to calculate 

the latest starting times in internal processes. This 

formulation is similar to one for earliest starting times except 

the difference of operators [4]. In project management, 

production scheduling, or transportation systems, it is 

important to grasp the location of bottlenecks or floats in the 

respective processes. Hence, calculation of the earliest and 

the latest times is required. 

However, if we use the MPL description from previous 

research, when the execution times of processes vary by each 

job, all representation matrices should be recalculated 

accordingly. When calculating the latest times, a comparable 

calculation load is added. This indicates that the simplicity 

and the similarity of the state equations are not utilized 

effectively and it is not advantageous in terms of calculation 

load. 

This paper derives a simpler state-space representation in 

MPL form with fewer numbers of independent system 

parameters by improving the assignment of the state variables. 

The representation matrices are decomposed into two parts; 

one dependent on the system structure and the other on the 

execution times of processes. This method leads to a 

reduction of the calculation load even when applied to 

systems whose processing times vary by each job. In addition, 

a similarity between the two MPL representations of forward 

and backward types is examined. The former calculates the 

earliest times and the latter for the latest times, and they are 

similar to the relationship of dual systems in modern control 

theory [7]. With the help of this relationship, the calculation 

volume for obtaining the representation matrices is 

remarkable reduced. 

Note that in the following discussions, assembly 

production systems are mainly used, however the principal 

ideas can also be applied to batch processing systems [8], 

transportation systems [9] [10], and project scheduling [11], 

etc.

II. CONVENTIONAL MPL REPRESENTATION

This section reviews briefly the basic operation rules of 
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max-plus algebra and explains a method for deriving the 

conventional MPL state-space representation utilizing an 

example of a simple production system. 

A. Basic Operators 

Max-plus algebra is an algebraic system in which the max 

and the + operations are defined as addition and 

multiplication, respectively. Denoting the real field by R , if 

Dyx, , RD , then 

),(max yxyx , yxyx

where the symbol for multiplication  is suppressed when 

no confusion is likely to arise. Denoting the unit elements for 

these operators by )(  and )0(e  then the following 

two operators are defined additionally. 

),min( yxyx , yxyx \

Operators for multiple numbers are as follows. If nm ,

),,,max( 1 nmmk

n

mk

xxxx , ),,,min( 1 nmmk

n

mk

xxxx

Statements for matrices are as follows. For nmDX ,

ij][X  represents the ),( ji -th element of X  and TX  is the 

transpose matrix. For pllm DD YX , ,

)][][(max][][][
,,11

kjik
lk

kjik

l

k
ij YXYXYX

)][][(min][\][][
,,11

kjik
lk

kjik

l

k
ij YXYXYX

Suppose the priorities of the operators , \ , and  are 

higher than  and , they would then hold the following 

properties. If mlnml DDD wvZYX ,,,, ,

)()()( vYvXvYX (1)

)()()( wXvXwvX (2)

vZYvZY TTT
)()( (3)

Unit matrices are denoted as follows.  

mn : All elements are  and its size is nm

me : Only diagonal elements are e , all off-diagonal 

elements are , and its size is mm

The two vectors mDwv, , if 

ii ][][ wv  for all i )1( mi

is satisfied are denoted simply by wv .

B. State-Space Representation in MPL form 

In conventional studies for describing the behavior of 

systems in MPL form, the state variables are assigned to the 

starting times for manufacturing processes. Consider a simple 

production system shown in Fig. 1 as an illustrative example. 

Processes 1 and 2 receive materials from external inputs 1 and 

2, respectively, manufactures them and sends the resulting 

parts to process 3. Process 3 manufactures the received part 

and sends the finished product to the external output. Suppose 

the same processing operations are repeated multiple times 

and the following constraints are imposed to the system.  

Jobs cannot be started until the previous job is finished.

Processes 1 and 2 cannot begin until they have received 

the corresponding materials from inputs 1 and 2. 

Process 3 cannot start processing until it has received the 

manufactured part from processes 1 and 2. 

The manufacturing starts as soon as all the above 

conditions are satisfied. 

For the k -th job, the starting times for manufacturing in 

processes 1-3 are denoted by )(kxi )31( i  and those for 

the manufacturing times by )0()(kdi . Moreover, the 

output time of the finished product is represented by )(ky .

We then find the following relations between the relevant 

variables where the multiplication symbol  is suppressed 

)()1()1(

)}(),1()1(max{)(

111

1111

kukxkd

kukdkxkx
(4)

)()1()1(

)}(),1()1(max{)(

222

2222

kukxkd

kukdkxkx
(5)

)()(

)()()1()1(

)}()(

),()(),1()1(max{)(

22

1133

22

11333

kxkd

kxkdkxkd

kdkx

kdkxkdkxkx

(6)

)()()()()( 3333 kxkdkdkxky (7)

and k  is the event counter. By substituting (4), (5) for (6), 

(4)-(7) can be summarized in the matrix forms shown below 

which are similar to the state-space representation in modern 

control theory [2]. 

)()1()( kkkE BuAxx (8)

)()( kkE Cxy (9)

where

)1()()1()()1(

)1(

)1(

32211

2

1

kdkdkdkdkd

kd

kd

A , (10)

)()( 21 kdkd

e

e

B ,

T

kd )(3

C (11)
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Fig. 1.  A simple manufacturing system with two-inputs and one-output. 

The subscripts E  in (8) and (9) represent the earliest times. 

The representation matrices A , B , and C  include the 

system parameters. Matrix A  includes the parameters for the 

event counters 1k  and k . This induces a disadvantage on 

the calculation load. For example, the number of unknown 

parameters grows large when adjusting the system parameters 

for obtaining desirable outputs [11]. 

Moreover, the representation matrices (10) and (11) 

depend on both the precedence constraints and the 

manufacturing times in the respective processes. Thus, it is 

difficult to grasp the effects on system matrices caused solely 

by changes of the system parameters where the 

manufacturing times vary by each job. Reference [11] utilized 

the idea of an incidence matrix and decomposed the system 

matrices to the precedence constraints, locations of inputs and 

outputs. However, since the state variables are assigned in the 

same way as conventional methods, the matrices also include 

the system parameters for the event counters 1k  and k .

Hence, by assigning the state variables to other events, the 

system matrices can avoid dependence on multiple event 

counters and a simpler MPL state-space representation is 

derived. 

III. FORWARD MPL REPRESENTATION

We derive a MPL state-space representation whose system 

matrices are decomposed to the precedence constraints and 

the manufacturing times in the respective processes. The 

assumptions and constraints imposed to the system are as 

follows. 

The number of processes, external inputs, and external 

outputs are n , p , and q , respectively. 

Each job goes through all of the processes and each 

individual process is used only once per job. 

The subsequent job cannot start while the previous job is 

in manufacturing. 

All tasks in a preceding process must finish before the 

following process can begin manufacturing. 

Processes that have external outputs cannot start 

manufacturing until all corresponding materials are 

received.

A. State Equation 

The state variable ik)]([x  is assigned to the starting time 

of manufacturing in the i -th )1( ni  process and ik)]([x
to the completion time. The next relation holds. 

iii kkdk )]([)()]([ xx (12)

Fig. 2 depicts the relationship between the process i  and 

its preceding processes and external inputs. Suppose iP  and 

iR  represents the number sets of attached external inputs and 

preceding processes, respectively. The input variable jk)]([u
is assigned to the feeding time of material. The process i  can 

begin after all of the following three conditions are satisfied; 

the manufacturing of the previous job is completed, all of the 

required parts are received from preceding processes, and all 

of the required materials are received from external inputs. 

Thus, the earliest starting time of manufacturing for the k -th

job in process i  can be formulated as follows. 

j
j

jE
j

iiE kkkk
ii

)]([)]([)]1([)]([ uxxx
PR

(13)

From (12) and (13), the next relation is as follows. 

))()](([))()](([

))()]1(([)]([

kdkkdk

kdkk

ij
j

ijE
j

iiiE

ii

ux
xx

PR

Here we introduce matrices 
nn

k DP ,
nnD0F , and 

pnD0B  which are defined in the following way. 

)](,),(),([diag 21 kdkdkd nkP

e

ij][ 0F
: }{iR , if the i -th process has a 

preceding process j .

: }{iR , if the process does not have any 

preceding processes. 

e

ij][ 0B
: }{iP , if the i -th process has an 

external input j .

: }{iP , if the process does not have any 

external inputs. 

Accordingly, iE k)]([x  can be transformed as follows. 

)]([)]([)]1([

))()](([))()](([

)]1([

))()]([]([

))()]([]([

))]1([]([)]([

00

00

0

1

0

1

1

kkk

kdkkdk

k

kdk

kdk

kk

kiEkik

iiiiE

ik

ijij

p

j

ijEij

n

j

jijk

n

j
iE

uBPxFPxP
uBxF

xP

uB

xF

xPx

Since this is followed for all )1( nii , the next relation is 

satisfied.

)]()1([)()( 00 kkkk kEkE uBxPxFPx (14)
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Fig. 2.  External inputs and preceding processes attached to the i-th process. 

In order to simplify (14), the following theorem is proved. 

Theorem 1. There exists an instance of l  that satisfies 

nn
l

kFP )( 0 , nl1

Proof. In [11], the existence of the following constant l  is 

proved.

nn
l

kPF )( 0 , nl1

Thus,

nnk
l

k
l

k PFPFPF 1

000 )()(

holds, and multiplying kP  on each term from the left side 

leads to the next relation. 

nnk
l

k PFP )( 0 (15)

The ),( ji -th element of (15) is 

)(])[(][])[( 00

1

kd jji
l

kjhkih
l

k

n

h

FPPFP

Recalling 0)(kd j ,

)(])[( 0 kd jji
l

kFP

This holds true for all i  and j ),1( nji , which proves 

the proposition. 

By substituting the entire right-hand side of (14) for the 

first term, )(kEx , in the right-hand side, the following 

relation is obtained. 

)]()1([)(

)()()(

00

2

0

kk

kk

kkn

EkE

uBxPFPe
xFPx

(16)

Similarly, substituting (14) for )(kEx  in the right-hand side 

of (16), repeating the same procedures, and utilizing Theorem 

1, (14) can be transformed into 

)]()1([)()( 0

*

0 kkk kkE uBxPFPx (17)

where
1

00

*

0 )()(
l

kknk FPFPeFP

Consider 

)()1( 0 kk uBx (18)

in the right-hand side of (17). The first term represents the 

completion times of the 1k -th job and the second term is 

the feeding time of material in processes that have external 

inputs. Thus, (18) can be interpreted as the times for turning 

into the ready state. Note that the above two terms do not 

depend on the manufacturing times explicitly. On the other 

hand, since 0F  means the precedence constraints and kP
represents the manufacturing times, kk PFP *

0 )(  represents 

the shortest transportation times between two arbitrary 

processes. It should be noted that kk PFP *

0 )(  depends only 

on the event counter k  and parameters for the counter 1k
do not appear. As an example, consider the production system 

shown in Fig. 1 where the representation matrices are as 

follows.

)(

)(

)(

3

2

1

kd

kd

kd

kP ,

ee
0F ,

T

e

e
0B ,

(19)

)()()()()(

)(

)(

)(

33231

2

1

*

0

kdkdkdkdkd

kd

kd

kk PFP (20)

We compare (8) and (17), the former is conventional and 

the latter is based on the proposed method. Equations (8), 

(10), and (11) include five independent system parameters, 

whereas only three parameters appear in (20). Moreover, the 

coefficient matrix B  of the feeding times of material )(ku
depends on the system parameters in (11) but does not depend 

on them in (19). Equations (8) and (17) have similar forms to 

each other, however the proposed representation is simpler 

and is advantageous especially when treated as unknown 

variables.

B. Output Equation 

Consider an equation when the earliest output time is 

assigned to the output variable. Cases where the external 

inputs and outputs are directly connected are taken into 

account for the purpose of this general discussion. Fig. 3 

depicts the definitions of the relevant variables. Suppose iT
and iV  state the number set of the attached preceding 

processes and the one for the external inputs, respectively. 
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The earliest output time can be formulated in the following 

manner. 

j
j

j
j

iE kkk
ii

)]([)]([)]([ uxy
VT

We introduce matrices 
nqD0C  and 

pqD0D  that are 

defined as follows. 

e

ij][ 0C
: }{iT , if the i -th output has a preceding 

process j .

: }{iT , if the output does not have any 

preceding processes. 

e

ij][ 0D
: }{iV , if the i -th output has an external 

input j .

: }{iV , if the output does not have any 

external inputs. 

By utilizing these matrices, the output variable iE k)]([ y  can 

be stated as follows. 

ii

jij

p

j
jij

n

j

iE

kk

kk

k

)]([)]([

))]([]([))]([]([

)]([

00

0

1

0

1

uDxC

uDxC

y

This holds true for all )1( qii  and the summarized form 

is shown below.

)()()( 00 kkkE uDxCy (21)

For the production system depicted in Fig. 1, the 

representation matrices are as follows. 

][0 eC , ][0D

The coefficient matrix C  of the state vector )(kx  in (9) 

includes the system parameter for the output equation. On the 

other hand, since it is not included in (21), it can be said that 

the proposed MPL representation is simpler than the 

corresponding conventional one. 

The following two lemmas are proved in order to represent 

(21) in a different form. 

Lemma 1. The state vector )(kx  that represents the 

completion of manufacturing times satisfies the following 
inequality. 

)()(0 kkk xxFP (22)

Proof. Consider the i -th )1( ni  element of )(0 kxF . It 

can be expanded as 

Output i
Inputs 

ij T

Precedence 
Processes 

ij V
jk)]([x

jk)]([u

iE k)]([ y

Output i
Inputs 

ij T

Precedence 
Processes 

ij V
jk)]([x

jk)]([u

iE k)]([ y

Fig. 3.  External inputs and preceding processes attached to the i-th external 

output

)()]([)]([)]([

))]([]([)]([ 0

1

0

kdkkk

kk

iiij
j

jij

n

j
i

i

xxx

xFxF

R

Hence, the next inequality holds. 

iii

jijk

n

j
ik

kkkd

kk

)]([)]([)(

))]([]([)]([

0

0

1

0

xxF

xFPxFP

Since this relation is followed for all i )1( ni , the 

proposition is proved. 

Lemma 2. The state vector )(kx  holds the next relation. 

)()()(
*

0 kk k xFPx (23)

Proof. Utilizing the result of Lemma 1 repeatedly, 

)()()()( 0

2

0 kkk kk xxFPxFP (24)

Similarly, the following inequalities are satisfied. 

)()()(

)()()(

1

0

3

0

kk

kk

l
k

k

xxFP

xxFP
(25)

Utilize (22), (24), (25) and the next trivial relation. 

)()( kk xx

Operating  on both sides induces (23). 

Utilizing Lemma 2, )(kEy  in (21) can also be expressed as 

follows.

)()()()( 0

*

00 kkk kE uDxFPCy (26)

The coefficient matrix of the state vector )(kx  includes kP
which depends on the manufacturing times. Thus, it is not 
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advantageous in reducing the calculation load. However, it is 

closely relevant to another MPL representation for the latest 

starting times examined in the next section. 

IV. BACKWARD MPL REPRESENTATION

This section derives a MPL representation for obtaining 

the latest starting times in the respective processes. It is 

performed by setting the finishing times of products to the 

input variables and feeding times of materials to the output 

variables. The target system is identical to the previous 

section and the same symbols are used. 

A. State Equation 

The latest starting times for manufacturing processes are 

considered by regarding the input variable jk)]([u
)1( qj  as the output time to the external output. Fig. 4 

shows the succeeding processes and the external outputs of 

the process i . iQ  is the number set of external outputs 

attached and iS  represents the number set of the succeeding 

processes. The completion time of manufacturing in the i -th

process is equal or earlier than the minimization of the 

following three times; the starting time of the next job, the 

times for manufacturing in succeeding processes, and the 

output times to the external outputs. Hence, the latest 

completion time in the i -th process can be formulated as 

follows.

j
j

jL
j

iiL kkkk
ii

)]([)]([)]1([)]([ uxxx
QS

(27)

Using (12) and (27), the next relation holds. 

))()](([))()](([

))()]1(([)]([

kdkkdk

kdkk

ij
j

ijL
j

iiiL

ii

ux
xx

QS

Moreover, utilizing matrices kP , 0F  and 0B  introduced in 

the previous section transforms this in the following way. 

)()1([[

)]()[(

)]]([[

)]]([[)]1([

))()](([

))()](([)]1([

))()]([\]([

))()]([\]([

))]1([\]([)]([

0

0

0

0

0

0

0

1

0

1

1

kk

k

k

kk

kdk

kdkk

kdk

kdk

kk

TT
k

iL
T

k

i
TT

k

iL
TT

ki
T

k

ii
T

iiL
T

i
T

k

ijij
T

q

j

ijLij
T

n

j

jji
T

k

n

j
iL

uCxP
xPF

uCP
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xFxP
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Fig. 4.  External outputs and succeeding processes attached to the i-th process 

Since this holds true for all )1( nii , the next relation is 

satisfied.

)]()1([

)()()(

0

0

kk

kk
TT

k

L
T

kL

uCxP
xPFx

(28)

Substituting the right-hand side of (28) for the first term 

)(kLx  leads to the following equality. 

)]()1([])[(

)(])[()(

00

2

0

kk

kk
TT

kkn

L
T

kL

uCxPFPe
xPFx

(29)

Substitute (28) for the first term )(kLx  in the right-hand side 

of (29) again. Repeat this procedure and utilize the next 

theorem proved in [11]. 

nn
l

kPF )( 0 , nl1

Finally, (29) can be simplified in the following way. 

)]()1([])[()( 0

*

0 kkk TT
kkL uCxPFPx (30)

B. Output Equation 

We consider an output equation when the latest feeding 

times are assigned to output variables. For general discussion, 

systems in which the external inputs and the external outputs 

are connected directly are also taken into consideration. Fig. 5 

presents the definitions of the relevant variables and 

collections. iW  and iU  represent the number sets of 

succeeding processes which are attached to the i -th external 

input and the external outputs, respectively. Accordingly, the 

latest feeding time can be stated as follows. 

j
j

j
j

iL kkk
ii

)]([)]([)]([ uxy
UW

(31)

Utilizing the representation matrices 0B  and 0D
introduced in the previous section, (31) can be transformed 

into

62

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Scheduling (CI-Sched 2007)



i
T

i
T
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T

q

j
jji

T
n

j
iL
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kkk

)]([)]([

)]([\][)]([\][)]([

00

0

1

0

1

uDxB

uDxBy

Since this relation holds true for all )1( pii , the next 

equation holds. 

)()()( 00 kkk TT
L uDxBy (32)

In order to represent (32) in another form, the following two 

lemmas are proved. 

Lemma 3. The state vector )(kx  that represents the 

starting times for manufacturing satisfies the next inequality. 

)()()( 0 kkT
k xxPF (33)

Proof. For the i -th )1( ni  element of )(0 kT xF , the 

following relation is followed. 

)()]([)]([)]([

))]([\]([)]([ 0

1

0

kdkkk

kk

iiij
Sj

jji
T

n

j
i

T

i

xxx

xFxF

Thus,

ii
T

i

j
T

ij
T

k

n

j
i

T
k

kkkd

kk

)]([)]([)(

))]([\]([)]()[(

0

0

1

0

xxF

xFPxPF

Since this is applicable for all i )1( ni , the proposition is 

proved.

Lemma 4. The state vector )(kx  follows the next equality. 

)()(
* kk

T

k xFx (34)

where
1

00

*

0 )()(
l

kknk PFPFePF

Proof. Utilizing the result of Lemma 3 repeatedly, 

)()()()(])[( 0

2

0 kkk T
k

T
k xxPFxPF (35)

holds true. In a similar way, the following inequalities are 

satisfied.
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Fig. 5.  External outputs and succeeding processes attached to the i-th 

external input 

)()(])[(

)()(])[(

1

0

3

0

kk

kk

Tl
k

T
k

xxPF

xxPF
(36)

Utilize (33), (35), (36), and the next trivial equation. 

)()( kk xx

Operating  on both sides proves (34). 

By using Lemma 4, )(kLy  in (32) can also be expressed as 

follows.

)()(])[()( 00

*

0 kkk TT
kL uDxBPFy (37)

This form includes the manufacturing times in kP  which is 

the coefficient matrix of the state vector )(kx . Therefore, it 

is not advantageous in terms of the calculation load. However, 

it is closely related to the state equation and the output 

equation that is used for obtaining the earliest completion 

times derived in the previous section. 

From the above discussions, the state equations and the 

output equations have two forms for the forward and 

backward type. 

V. NUMERICAL EXAMPLE

A simple numerical example is presented here. We again 

consider the simple manufacturing system depicted in Fig. 1. 

Assume the number of jobs is one, and the manufacturing 

times are given as 

)3,2,1()]1(),1(),1([ 321 ddd

The system matrices appeared in (20) and (22) can be 

expressed as 

e

e

e

33

)(
*

01FP ,

354

2

1

)( 1

*

01 PFP

First, the forward type state equation is considered. 
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Suppose the system is empty in the initial stage, and all 

required materials are ready at time 0t , which means 

T
][)0(x ,

T
]00[)1(u

Then, the earliest completion times can be obtained in the 

following way. 

T
E ]521[)]1()0([)()1( 01

*

01 uBxPFPx

Moreover, the correctness of Lemma 2 is examined. For 

)1(Ex  above, the next relationship can be confirmed in a 

straightforward way. 

)1(]521[)1()(
*

01 E
T

E xxFP

Additionally, consider a case where the manufacturing has 

delayed for 2 unit times in process 1. The state variables are 

then updated to 

T
]723[)1(x

By operating 
*

01 )( FP  from left side, we can also confirm 

that

)1(]723[)1()(
*

01 xxFP T

is followed and Lemma 2 holds true even when the sate 

vector does not hold the earliest times. 

Subsequently, the backward type state equation is 

examined. Suppose the delivery time for 1k  is 7, and there 

is not any additional schedule for 2k . Thus, 

T
]7[)1(u ,

T
][)2(x

Accordingly, the latest starting times can be calculated in the 

next manner. 

T

T
L

T
L

]423[

)]1()2([])[()1( 0

*

01 uCxPFPx

As these inspections show, the forward and backward type 

equations for the online scheduling can be performed using 

the same system matrix 1

*

01 )( PFP , which is accomplished 

by improving the assignment of the state variables. 

VI. CONCLUSION

This paper derived a MPL state-space representation that 

describes the behavior of repetitious execution systems with a 

MIMO-FIFO structure. A disadvantage of the conventional 

MPL form is that all representation matrices should be 

recalculated when the system parameters are changed since 

the two elements for describing precedence constraints and 

the execution times are not separated. 

In this research, the locations of inputs and outputs and 

precedence constraints are given by parameter matrices 

whose every element are logical numbers. The parameter 

matrices are independent of the system parameters. For the 

state variables, we assigned the earliest starting times to the 

completion times of manufacturing. In addition, we assigned 

the latest times to the starting times of manufacturing. This 

revised the MPL form whose representation matrices are 

dependent on only the system parameters of the 

corresponding job and reduced the number of independent 

system parameters. 

The discussions clarified several fundamental properties 

for describing the corresponding systems and it is also 

expected that the calculation can be simplified and its load 

reduced.
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