Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

Global Estimations for Multiprocessor Job-Shop

Nodari Vakhania Member, IEEE"

Abstract. Classical job-shop scheduling prob-
lem (JSP) is one of the heaviest (strongly) NP-
hard scheduling problems, which is very difficult
to solve in practice. No approximation algorithms
with a guaranteed performance exist. We deal
with a natural generalization of this problem al-
lowing parallel processors instead of each single
processor in JSP, and an arbitrary task graph
(without cycles) instead of a serial-parallel task
graph in JSP. Parallel processors might be identi-
cal, uniform or unrelated. The whole feasible so-
lution space grows drastically compared to JSP.
However, as it turned out, parallel processors can
also be used to reduce the solution space to a
subspace, which is essentially smaller than even
the corresponding solution space for JSP [1]. For
large problem instances, this space still may re-
main too big. Here we propose different global es-
timations which allow us to reduce it further. By
applying our bounds to the reduced solution space
a class of exact and approximation algorithms are
obtained. We are in the process of the implemen-
tation of our reduction algorithm and the bounds.
Then we aim to carry oul the experimental study
comparing the behavior and the efficiency of the
proposed bounds in practice.

1 Introduction

Classical job-shop scheduling problem (JSP) is one of the
heaviest (strongly) NP-hard scheduling problems, which
is very diflicult to solve in practice. No approximation al-
gorithms with a guaranteed performance exist. The prob-
lean is important because it reflects the actual operation in
several industries, though it is still too restricted for many
industries. We consider a natural generalization of this

*Partinlly supported by CONACyT grant 48433. Science
Faculty, State University of Morelos, Av, Universidad 1001,
Cuernavaca 62210, Morelos, Mexico; fax: <52 777 329 70 40;
c-mail: nodari@uacm.mx

1-4244-0704-4/07/$20.00 ©2007 IEEE

problem allowing parallel processors instead of each single
processor in JSP, and an arbitrary task graph (without
eycles) instead of a serial-parallel task graph in JSP. Par-
allel processors might be identical, uniform or unrelated.
This meets better the needs of a vast amount of practi-
cal problems: A computer may have parallel processors
each of which might be used by a program task. or in
a manufacturing plant job might be allowed to be pro-
cessed by any of the available parallel machines. Besides,
the precedence relations might be more complicated than
serial-parallel type relations. For example, the completion
of two or more program tasks (subroutines) might be nec-
essary before some other program task can be processed
(as the latter task uses the output of the former tasks);
this is a typical situation in parallel and distributed com-
putations.

The whole feasible solution space grows drastically com-
pared to JSP. However, as it turned out, parallel proces-
sors can also be used to reduce the solution space to a
subspace, which is essentially smaller than even the cor-
responding solution space for JSP [1]. For large problem
instances, this space may still remain too big. Here we
propose different bounds which allow us to reduce it fur-
ther. Combining our bounds with the already reduced
solution space a class of exact and approximation algo-
rithms can be obtained.

Owur generalized problem is as follows. Given are the
set of tasks or operations, O = {1.2,...,n} and m dif-
ferent. processor groups. My is the kth group of parallel
processors or machines, Py being the Ith processor of this
group. (A job in a factory, a program task in a computer
or a lesson in a school are some examples of jobs. A ma-
chine in a factory, a processor in a computer, a teacher in a
school are some examples of machines.) Each task should
be performed by any processor of the given group. d;p is
the (uninterrupted) processing time of task ¢ on proces-
sor P. Bach group of parallel processors can be unrelated,
uniform or identieal. Unlike uniform machines which are
characterized by an operation-independent speed func-
tion, unrelated machines hiave no uniform speed charac-

65

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

teristic, i.e., a machine speed is operation-dependent: that
is. processing times dip are independent, arbitrary inte-
ger numbers, In case of identical machines task processing
times arce processor-independent, all processors have the
same speed.

We have the resowrce constrammts: For each two jobs
i. j such that P(i) = P(j) = P, either s, + dip < s; or
sj +djp < s; should hold, where s; is the starting time
of 7 and P(i) is the processor to which task i is assigned:
in other words, any processor can handle only one task
at a time. The precedence constraints arve as follows. For
each i € O we are given the set of immediate predecessors
pred(i) of task i. so that i cannot start before all tasks
from pred(i) are finished. Task i becomes ready when all
tasks from pred(i) are finished.

A schedule (solution) is a function which assigns to each
task a partienlar processor and a starting time (on that
processor). A feasible schedule is a schedule satisfying
above constraints, An optimal schedule is a feasible sched-
ule which minimizes the makespan, that is, the maximal
task completion time. As it is well-known, an optimal
schedule of JSP is among so-called active schedules: in
an active schedule no operation can start earlier than it
is scheduled without delaying some other operation (for
example see Lageweg, Lenstra and Rinnooy Kan [2] for
the details).

Applying commonly used notation for scheduling prob-
lems, we use J||Cruax. JR|prec|Crhax, JQ|pree|Chax and
JP|prec|Chax, respectively to denote JSP and the ver-
sions of our generalized problem with unrelated. uniform
and identical processors, respectively. If in an instance
of our generalized problem from each gronp of processors
all processors except an arbitrarily selected one is elimi-
nated, then a corresponding instance of JSP is obtained.
JSP and henee the gencralized problem are strongly NP-
hard: though the construction of each feasible schedule
takes a polynomial (in the number of operations and ma-
chines) time, for finding an optimal schedule we might
be forced to enumerate an exponential number of feasible
schedules. Since each feasible schedule ean be rapidly gen-
erated, different heuristics or priority dispatching rules
are used for a rapid generation of some feasible sched-
ule(s). The simplest considerations which reflect priority
dispatching rules are not enough to obtain a solution with
a desirable good quality, If the quality of the required so-
lution is important, we need to work with a larger subsets
of feasible solution space to gnarantee the optimality.

An algorithm, reducing the number of all feasible solu-
tions of the generalized problem was proposed in Vakha-
nia & Shehepin [1]. Surprisingly, with the probability of

almost 1, the number of feasible solutions generated by
this algorithm, as compared to the number of all active
feasible schedules, decreases with the number of machines
and operations in cach group of machines and operations,
as follows. If we let v and p to be the number of op-
erations and machines in each subset of operations and
machines, then with a probability of ahmost 1, the al-
gorithm generates approximately (p)™" and 271 m
times less feasible schedules than the number of all ac-
tive feasible schedules of any corresponding instance of
JSP and our generalized problem, respectively. This al-
gorithm may still generate an inadmissible munber of
feasible schedules for large real-life problem instances.
Branch-and-bound algorithms, as well as some approx-
imation algorithms, such as beam search, incorporate
(lower) bounds for the further reduction of the solution
space. In this paper. we suggest different bounds for the
three versions of our generalized problem. By incorporat-
ing these bounds with the reduced solution tree generated
by the algorithm in [1], different branch-and-hound and
approximation algorithms are obtained. Currently, we
are in the process of the implementation of our reduction
algorithm and our bounds. Then we aim to carry ont
the experimental study comparing the behavior and the
efficiency of the proposed bounds in practice. We hope
we may have some preliminary results by the conference
date.

A brief overview of some related literature is as follows.
The earliest work mentioning a generalization of JSP is
that of Giffer & Thompson [3] in which, instead of un-
related processors and arbitrary precedence relations in
our generalized problem, identical processors and serial-
parallel type precedence relations were considered. More
recently, an extension of JSP with general multi-purpose
machines was studicd by Brucker & Schlie [4], Brucker,
Jurisch & Kramer [5], Vakhania [6], and a lower bound
for the special case of this problem when an operation
processing time is a constant (i.e. machine-independent)
was suggested by .Jurisch [7]. Shmovs. Stein & Wein
& have proposed a polynomial approximation random-
ized algorithm for R|ehain|Ca which can be applied
for the version of our problem with serial-parallel prece-
dence relations JR|serial|Cupax. Dauzére-Péres & Pauli
[9] has proposed a Tubu-search algorithm and Vakhania
[10] has suggested a version of beam search algorithm for
the generalized problem. Ivens & Lambrecht [11], Shutten
[12] study different extensions of JSP including extensions
with setup and transportation times.

66

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

2 Basic Concepts

The algorithm in [1] generates the so-called compact so-
tution tree. We denote this tree by T and call its node
a stage. A complete schedule from the reduced feasible
solution space corresponds to each path from the root to
a leal in T'. each intermediate stage represents a partial
solution. The (partial or complete) solution, correspond-
ing to stage h is denoted by ;. We denote a bunch of
concwrrent ready tasks at each stage h, the candidates
determined by the algorithm [1] to be scheduled at that
stage, by C;. We branch in T' at stage h resolving the
resource (machine) conflicts in Cp,. One immediate sne-
cessor of node i is generated for each task of Cp. Assume
h' is the immediate successor of b with task i € ¢, sched-
uled at that stage. Then with the arc (h,h') two labels
are associated: the task i and the processor on which this
task is actually scheduled. In this way, there are gener-
ated |Cp| extensions of the current partial schedule &, in
our branch-and-bound tree T. oy, can be elearly seen as a
(partial) permutation of n tasks. For ¢ € a3, in that per-
mutation, we shall use the upper index for specifying the
particular processor on which task i is scheduled in o,. In
particular, a,i’ is an extension of @, with task i sched-
uled on processor P. Note that the relative order of two
arbitrary tasks i, j € oy, is relevant only if P(i) = P(§).
We denote by O the set of tasks to be performed on
a processor of kth group and by Oy, the subscet of tasks
from ¢ not yet scheduled by stage h. Each feasible soln-
tion ey, is represented by a directed weighted graph G),.
The digraph Gy = (X, Ey) we associate with the root
of T. To each task i € O corresponds the unique node
i € X. There is one fictitions initial node 0, preceding all
nodes, and one fictitions terminal node n + 1, sncceeding
all nodes in 7y, Ey is the are set consisting ol the ares
(i. 7). for cach task i, dircetly preceding task j: (0,4) € Eo
if task i has no predecessors and (j,n + 1) € Ey if task j
has no suceessors. We denote by w(i, 7) the weight asso-
ciated with (i, j) € Ep; initially, we assign to w(i, j) the
minimal processing time of task i, later we correct these
weights when we assign a task to the particular processor.
Let (h,h') be an edge in T with task j scheduled at itera-
tion 4" on processor P. Then we obtain G,,, from G,, as
follows. We complete the are sct of the latter graph with
the arcs of the form (i, 7)., with the associated weights
w(i. j) = dip, for each task i, scheduled earlier on the pro-
cessor P, We correct the weights of all arcs incident out
from node j (j,0) € Ey. as w(j, 0) 1= d,;p. 1t is easily seen
that the length of a critical path in Gy is the makespan
of the (partial or complete) solution oy, = oy,j" which

we denote by |ay¢)]: by 7(i) we denote the length of a
longest path to node i in Gy, that is, the earliest possible
starting time of task 7 at stage h.

Since the critical path length from node 0 to a node o
in (7 is a lower bonnd on the starting time of operation o
in schedule oy, and in any its successor schedule, we call it
the early starting time or the head of operation o by stage
h and denote by heady (o). R, (M) is the release time of
machine M at stage h, that is, the completion time of the
operation, scheduled last by that stage on M.

Now we derive anxiliary multiprocessor scheduling
problem which we shall use for caleulation of our lower
bounds. Remind that if a lower bound L(e) of the par-
tial solution ey, is more than or equal to the makespan |o|
of some already generated complete solution o, then all
extensions of g, can be abandoned. It is clear that L(ey)
cannot be greater than the makespan of the best potential
extension of @), (since then we could loose this extension),
but it should be as elose as possible to this value (beeause
then the more are the chances that L{a,) > |a]).

Let us first note that a trivial lower bound Ly (a,0%)
for the partial solution o,0? of an instance of our gen-
eralized problem can be obtained as follows. For o) and
0 € Cp, let Ly(opo®) = 7(on) + taily (0), where taily (o),
called the tail of operation o at stage h. is the critical
path length from a direct successor-node of o to the sink
node of Gy, Evidently, this bound ignores all yet unre-
solved potential conflicts, i.e. the processing times of yet
unscheduled tasks. Though it is easy and fast to obtain
Ly, it is clear that we cannot get a good estimation of
the desired optimal makespan by the complete ignorance
of the potential contribution of all nnscheduled tasks. A
stronger lower bound would take into account a possi-
ble contribution of the latter tasks (this would obviously
need additional computational clforts). Clearly, we can-
not know in advance how yet unresolved conflicts will be
resolved in an optimal schedule. But we can make some
assumptions about this (“simulating” in advance some
“future” resource constraints). However, we should be
careful since we are not allowed to violate the condition
L{on) < |o'|. ¢’ being an arbitrary complete extension
of). Roughly speaking, we need to make an optimal
assumption about how the future resource conflicts will
be resolved: this will involve some optimal schednuling on
parallel machines.

For JSP, most commonly is used a one-machine relax-
ation (for example see [13]. [14], [16], [2]. [18]): all re-
source constraints are relaxed (ignored) except the ones of
a one particular (not yet completely scheduled) machine,

67

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

and the resulted one-machine problem with heads and
tails, 17y, gi|Crmas is then solved. A boltleneck machine is
a one which results the maximal makespan among all yet
unscheduled machines {intuitively, a bottleneck machine
gives a maximal expected contribution in the makespan
of extensions of &). This approach can be generalized as
follows. DBasically, we relax the resource constraints on all
machines except the ones from some (bottleneck) set of
machines M. To be specific, let al iteration h, |Ogy| = 2,
i.e.. there are unresolved resource constraints associated
with the machines of M. An operation i € Oy, is char-
acterized by its early starting (release) time head; (7) and
tail taily(z): that is, ¢ cannot be started earlier than at
time heady,(7), and once it is completed, it will take at
least taily, () time for all successors of 7 to be finished. i
can be scheduled on any of the machines of M, and has a
processing time dip on machine P € Mj. Each machine
P € M, has its release time Ry (P). Observe that the op-
cration tails and release times are derived from Gy, (this
ignores all unresolved by stage h resource constraints).
Besides, the tails require no machine time, i.e., time on
any of the machines of M. We are looking for an op-
timal (i.e., minimizing the makespan with tails) ordering
of the operations of Ok, on machines from M under
the above stated conditions, Thus for each stage n for
the partial solution g, we obtain the auxiliary problem
of scheduling tasks with release times and tails on a group
of parallel machines My with the objective to minimize
the makespan. Let us denote this auxiliary problem by
Ay and the respective optimal makespan by | Ayl

Let pun be the set of indexes of all machine groups such
that for each k € pip, |Orn| = 2. 1t is clear that [Ag,|,
for any k € pp. is a lower bound for node h. We may
find all |pg| < m lower bounds for node it and take the
maximum thus finding a bottleneck machine group. Thus
instead of dealing with 1]ry, g;|Ciae in case of JSP. now
we deal with Rlri. g;|Chmaze. Both problems are NP-hard,
though there exist exponential algorithins with a good
practical behavior for the first above problem, have been
commonly used in one-machine relaxation based branch-
and-bound algorithms for JSP (see, for example McMa-
hon & Florian [18]. Carlier [15] and Carlier & Pinson [16]).
Unfortunately, there are no known algorithms with good
practical performance for Plri, qi|Cinar (the version with
identical machines) and so much for R|ri. ¢i|Cmaer. In the
following section we suggest several ways to obtain strong
lower hounds for these problems.

3 Lower bounds

We first describe lower bounds based on earlier ex-
isting algorithms. Then we suggest alternative lower
bounds. Carlier & Pinson [17] have suggested a
lower bound for JP|prec|Chue. They proposed an
Of(nlogn 4+ nmlogm) algorithm for non-sequential ver-
sion of Plri, qi. prmt|Cpa which is a tight lower estima-
tion of the optimal makespan for Plry, g, prmt|Chyar. At
the expense of weakening the bound, the solution of the
above problem can be used as a lower bound for the ver-
sion with unrelated machines as we describe below.

Let d™" be the minimal processing time of operation
0 € Ok, ie., d™ = min{dorr, M € My }. We replace the
mnrelated machine group M. with the identical machine
group M, defined as follows: the number of machines
in both groups is the same, and for cach 0 € O and
M e Ml dops = A2, 1t is elear that an optimal solution
of the obtained instance of Plry, gi, prmit|C,a. with M;
is no more than that of the corresponding instance of
R|ri. gi. pmitn|Crae with M. Hence, the former solution
can be used for the calculation of a lower bound for the
original problem. Obviously, the bound obtained in this
way would be weak if the difference between the above
two solutions is signilicant. Tt might be possible to find a
better “approximation” with an identical machine group
of the unrelated 1}11a.chine group My, i.e., to increase dans.
0 € O, M € M, (this could be the subject of a further
research).

For uniform machines, we can obtain a stronger lower
bound by using the algorithm of Federgruen & Groenevelt
[21] for the problem Qmilri, gi, pmin|Cpa, with the time
complexity of O(tn*) (here ¢ is the number of machines
with distinet speeds).

As to JR|prmt|Chuas. the technique based on lin-
ear programming of Lawler & Labetoulle [24] yields
a polynomial-time algorithm for Rm|ri,qi, pmin|Cax.
This is clearly a lower estimation of the optimal makespan
for Bm|ri, qi|Cimes which, in turn, provides a lower bound
for JR|prmt|Ce.

Now we deseribe alternative methods to obtain lower
bounds. For the versions with identical and uniform ma-
chines, our lower bounds are obtained in an almost linear
(in |Ogp | and [My]) time. For the version with unrelated
machines, we apply linear programming. We obtain a
lower estimation, which is not a strict lower bound for
the same version again in almost linear time. This bound
can be used in approximation algorithms such is a beam
search.

For simplifying the notations, let a; = head; (i) and

68

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

qi = tailp (7). for i € Ogp, where k& € ppn. Let. further,
d? be the processing time of i in § (d;’ may vary from
schedule to schedule depending on the particular machine,
to which i is assigned), 7 (¢f =] + d7, respectively),
be the starting (finishing, respectively) time of operation
i in schedule S. We call ¢ + ¢; the full completion time
of operation 4.

First we apply a version of a “greatest tail heuristic” to
the operations of Ogp: iteratively, among all ready opera-
tions, we determine a one with a longest tail and schedule
it on a machine on which the minimal completion time of
this operation is reached. In the formal description below
we refer to such a machine as a gquick machine).

ALGORITHM GREATEST_TAIL

BEGIN
(0) t:=min{a:|i € Orn}t; A= Okn:

Rp = max{Ry(P),t}, for all P € My; { Bp is

the release of machine P }

(1) Among the unscheduled jobs I € A with a; < ¢,
schedule next job 7 with the greatest tail on its quick
machine) (break ties by selecting a quick machine with
the minimal release time);

tj = max{L Rg}: Ro:=tj+djg; A:= A\{_}}
IF A # 0 THEN ¢ := max{min{Rp|P €
M}, min{a;|i € A}}: GOTO (1)
ELSE RETURN {t;}, j =
1,2,
END.

It is easily seen that the time complexity of the above
algorithm is O(unlogn), where p = |My|. In the follow-
ing, S denotes a greatest tail schedule obtained by the
algorithm GREATEST_TAIL for the operations of Oy,
S, in general, consists of a number of blocks. Intuitively, a
block is a maximal independent part in a schedule. More
precisely, B is a maximal consecutive part in S (that is,
a maximal sequence of the successively scheduled jobs on
the adjacent machines), such that for each two succes-
sively scheduled tasks i and j, task j starts no later than
task ¢ finishes. Let r € Oy, be the latest scheduled in
S operation such that ¢ + g equal to |S| (clearly, there
exists at least one such operation in S). If ¢, = a,, S is
optimal (as task r is scheduled on its quick machine) and
|§ |Axr| is the optimal makespan. If £, > a,, then
r potentially might be completed earlier by rescheduling
some operation(s), scheduled before r, after +. Next we
will see how this works.

Let us call an operation [€ S, scheduled before r with
q < ¢r, an emerging operation in S, if [belongs to the
same block as r. The set of operations scheduled in §

between the latest scheduled emerging operation and op-
eration r is called the kernel. Thus any kernel operation
has a tail, no less than g¢.. We increase “artificially” the
readiness time of some cmerging operation [by sctting
@ = a, and apply again algorithm GREATEST_TAIL.
Then we will get a new greatest tail schedule, S;, in which
[is rescheduled after all operations of kernel. We call the
above rescheduling of task [its application. Once we ap-
ply I, we liberate space for kernel operations (in partic-
ular, for operation r). These operations will be resched-
uled earlier in the new obtained greatest tail schedule 5.
Hence, the makespan in S; might be decreased (in com-
parison with that in §). Let us call the maximal mag-
nitude, by which in this way a kernel operation can be
rescheduled earlier, the shifting value of that operation.
Note that it makes no sense to apply any non-emerging
operation. For the further details, we refer the reader to
Vakhania [19] and [20].

Theorem 1 The shifting value of any kernel operation,
including r, is strictly less than the mazimal operation
processing fime dmae.

Proof. Indeed, let an emerging operation { be applied
in S and let ¢ be the earliest kernel operation, started in
the time interval [, ¢’ in S after the rescheduling of 1.
Since q; > q1, a; > {; as otherwise i, instead of I, would
be scheduled at the moment ¢; in S. Thercfore, t'f‘ >t
i.e., i is antedated by a gap in S;. Besides, the delay
of i in S (i.e., ¥ — a;) can be only less than rlf. Sup-
pose there exists another emerging operation in S; and
we apply it; then similarly, we will get another kernel op-
eration antedated by a gap in the resulted schedule. After
the application of p', g < | M| emerging operations, '
kernel operations will be started in the time interval, oc-
cupicd carlicr by some emerging operation, and cach of
these kernel operations will be antedated by a gap. The
shifting value of each succeeding kernel operation is no
more than that of the first p’ kernel operations. Hence,
the shifting value of any kernel operation is strictly less
than the maximal processing time of rescheduled emerg-
ing operations.{

Thus the successive application of no more than |M|
cmerging operations is sufficient to construct a great-
est tail schedule, say S’, in which the first |M;| ker-
nel operations (a]l kernel operations if their number is
less than |[My|) are antedated by the newly arisen gaps.
Let C' be the sequence of kernel operations in S’ (ob-
serve that (' starts with the kernel operations in §’, an-
tedated by the newly arisen gaps). In S', an operation

69

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1 € O either starts at time a; or it starts right at the
moment of completion of another operation of C'. Hence,
min{t{" | i € €} = min{a, | i € C} is the minimal possi-
ble starting time for C.

Let €7 be the sequence in which the kernel operations
were scheduled in §. Observe that although €' might be
different from C, all the applied in §* emerging operations
have been initially scheduled before C¥ in §. In S, the
sequence O is started with a delay which is determined
by the finishing times of the g’ emerging operations di-
rectly preceding kernel operations in S. Suppose that,
respecting this delay of C'¥ in S, the sequence C itself is

optimal (i.e. it minimizes the maximal completion time of

kernel operations, subject to the release times of the M,
machines). Then from the definition of C'¥ and r, and the
earlier made observation, |S| — dimax = ¢ + ¢° — dimax is
a lower bound on the optimal schedule makespan. Note
that its caleulation takes O(pnlogn) time. This bound,
in general is not a strict lower bound for JPprec|Chaxe
(as the sequence €7 is not optimal), thongh it can be sue-
cessfully applied as a thorough estimation in approximate
algorithins such as beamn search (see for example [10]).

The above bound can be easily transferred to a strict
lower bound for the versions with identical and uniform
machines. In principal, we need to find a good lower esti-
mation for an optimal sequence of kernel operations. This
task can be solved in almost lincar time for both, identical
and uniform machines, while for unrelated machines we
will apply (also polynomial) linear programming. We ob-
tain a good lower estimations for the problem Q|ri|Chnax
(which itself is NP-hard) by solving its preemptive ver-
sion Q|ri, pmitn|Crae in O(n log n+mn) time (see Sahni
& Cho [25] and Labetoulle, Lawler, Lenstra & Rinnooy-
Kan [23]). If we ignore the operation release times (this,
in general, is possible since the optimal makespan without
the release times is no more than that with the readiness
times), we can apply an O(n +m logm) algorithm for
Qlpmitn|Cinas by Gonzalez & Sahni [22]. Similarly, we
obtain a good lower estimation for B|r;|C .. by solving
its preemptive version by linear programming (see Lawler
& Labetoulle [24]).

The above estimations provide us with the earliest pos-
sible finishing time, ¢, of the kernel operations. Let
q = min{gi, 4 € €} and d be the maximal process-
ing time among all emerging operations in 5. Then
Li(C7) = ¢" + q — d is clearly a lower bound on the
makespan of Ayy,. This bound can be further strengthen.
Earlier we saw how the sequence ' is obtained after the
application of no more than |[M,| emerging operations
(which were the latest scheduled ones in S}, Denote this

set of emerging operations by I and the set of all emerg-
ing operations in S by £. In general, emerging operations
from £\ F can be applied instead of some emerging op-
crations of E (note that cmerging operations from the
latter set precede those from E in §). Indeed, if emerg-
ing operations [,[,, are all released by time t, they
will be successively scheduled in S till the moment when
the earliest non-emerging operation gets reacdy. Thus we
may have a choice, which emerging operations to apply.
By choosing emerging operations from £/ we guarantee
that the sequence C' will start without any delay; at the
same time, the rescheduled after €' emerging operations
of E having "long enough™ tail may obviously affect the
resulted makespan (i.e. the maximal full job completion
time.

This consideration makes it clear that by taking into
the account the actual tails and processing times of the
rescheduled emerging operations, the earlier bound might
be further improved, A simple solution might be as fol-
lows. Assnme on each machine from M. an operation of
C'is scheduled (otherwise, as it is easily seen, there is no
need in this additional estimation). At least one emerg-
ing operation should be rescheduled after € hence, any
E' © & will be fully completed no earlier than at time
La(E') = ¢ +d" + ¢, where ¢’ is the minimal finishing
time of the operations of €' scheduled last on one of the
machines of My, d* = min{dip, i € £, P € M;} and
q¢ = min{qi, i € £}, Thus Ly = max{L,(C), L2(E)} is
a lower bound for Aygy,.

4 Conclusions

Some of the developed global estimations are strict lower
bounds and the others not. The latter bounds, which were
obtained in almost linear time, can be used in any solu-
tion tree based approximation algorithm, such as, for ex-
ample, beam search. Similarly, applying our strict lower
bounds in T, we obtain exact branch-and-bound algo-
rithms. Once implemented and tested, the above algo-
rithms can be used as an algorithmic engine for a decision
support system for generalized job shop scheduling prob-
lems. The presented algorithms can be easily aggregated
by an additional graph-completion mechanism for taking
into the account the transportation times and other real-
life job shop scheduling problems [11] and [12].

70

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (Cl-Sched 2007)

References

[1] N. Vakhania and E. Shchepin. "Concurrent opera-
tions can be parallelized in scheduling multiprocessor
job shop”. Journal of Scheduling 5, p.227-245 (2002).

[2] B.). Lageweg, Lenstra J.IK., Rinnooy Kan A.HL.G.,
“Job Shop Scheduling by Implicit Enumeration™,
Management Science 24,441-450 (1977).

[3] B. Giffer and G.L.Thompson, “Algorithm for Solving
Production Scheduling Problems”, Oper. lles. 8,487-
503 (1960).

[1] P. Brucker and R. Schlie. "Job shop scheduling with
multi-purpose machines”. Computing. 45, 369-375
(1990).

[5] P. Brucker, B.Jurisch and A.Kramer, “Complexity of
scheduling problems with multi-pnrpose machines”,
Annals of Operations Research”, 70, 57-73 (1997).

[6] N.N. Vakhania, “Assignment of jobs to parallel com-
puters of ditferent throughput™, Automalion and Re-
mote Control, 56, 280-286 (1993).

[7T] Jurisch B.. “Lower bounds for job-shop scheduling
problem on multi-purpose machines”, Discrete Ap-
plied Mathematics 58, 145-156 (1995).

[8] D.B. Shmoys, C.Stein and J.Wein, “Improved ap-
proximation algorithms for shop scheduling prob-
lems”, SIAM J. on Compuling 23, 617-632 (1994).

9] Dauzére-Pérés and J.Paulli. "An integrated ap-
proach for modeling and solving the general mul-
tiprocessor job shop scheduling problem with tabu
scarch”, Annals of Operations Research, 70, 281-306
(1997).

[10] N. Vakhania, “Global and local search for schednl-
ing job shop with parallel machines”, Lecture Notes
in Artificial Intelligence (IBERAMIA-SBIA 2000),
1952, p.63-75 (2000).

[11] P. Ivens and M. Lambrecht, “Extending the shifting
bottleneck procedure to real-life applications”, Furo-
pean J. of Operational Research 90, 252-268 (1996).

[12] J.M. Schutten, “Practical job shop scheduling”, An-
nals of Operations Research 83, 161-177 (1998).

[13] J. Adams, E.Balas and D.Zawack, "The Shifting
Bottleneck Procedure for Job Shop Scheduling™,
Management Science, 34, 391-401 (1988).

[14] J. Blazewicz, W. Cellary, R.Slowinski and J.
Weglarz, “Scheduling under resource constraints -
Deterministic models™. Annals of Operalions Re-
search, 7 (1986)

71

[15] 1. Carlier, “The one-machine sequencing problem™,

(16]

a7

(18]

119]

20]

21]

(22]

[23]

24]

Buropean J. of Operational Research”™ 11, 42-47
(1982).

J. Carlier and E.Pinson, "An Algorithm for Solving
Job Shop Problem”, Management Science, 35, 164-
176 (1989).

J. Carlier and E.Pinson, *Jakson's psendo precmp-
tive schedule for the Pm/ri. ¢ /Cinar problem”, An-
nals of Operations Research 83, 41-58 (1998).

G.B. MeMahon and M. Florian, “On scheduling with
ready times and due dates to minimize maximum
lateness”, Operations Rescarch 23, A75-482 (1975).

Vakhania N. Scheduling equal-length jobs with deliv-
ery times on identical processors. Int. J. Computer
Math., 82 (2002).

N. Vakhania. “A better algorithm for sequencing
with release and delivery times on identical proces-
sors”. Journal of Algorithms 48, p.273-293, 2003.

A. Federgruen and H. Groenevelt, “Preemptive
scheduling of uniform machines by ordinary network
flow techniques”, Management Science 32, 341-349
(1986).

T. Gonzalez and S. Sahni, “Preemptive scheduling
of uniform processor systems”, Journal of the ACM

25, 92-101 (1978).

J. Labetoulle, E.L. Lawler, J.IX. Lenstra and A.H.G.
Rinnooy-Kan, “Preemptive scheduling of uniform
machines subject to release dates”, in Pulleyblank,
245-261 (1984).

E.L. Lawler and J.Labetoulle, “On preemptive
scheduling of unrelated parallel processors by linear
programming”, J. of the ACM 25, 612-619 (1978).
S. Sahni and Y.Cho, “Ncarly on-line scheduling of a

uniform processor system with release times”, SIAM
J. on Compuling 8, 275-285 (1979).

