
Global Estimations for Multiprocessor Job-Shop

Nodari Vakhania Member. IEEE*

Abstract. Classical job-shop scheduling prob-
lem (JSP) is one of t he heaviest (strongly) NP-
hard scheduling problems, which is very difficult
t o solve in practice. No approximation algorithms
with a guaranteed performance exist. We deal
with a natural generalization of this problem al-
lowing parallel processors instead of each single
processor i n JSP, and an arbi t rary task graph
(without cycles) instead of a serial-parallel task
graph in JSP. Parallel processors might b e identi-
cal, uniform o r unrelated. T h e whole feasible so-
lution space grows drastically compared t o JSP.
However, as i t turned out, parallel processors can
also b e used to reduce t h e solution space t o a
subspace, which is essentially smaller t han even
t h e corresponding solution space for J S P [I]. For
large problem instances, this space still may re-
main too big. Here we propose different global es-
timations which allow us t o reduce i t further. By
applying ou r bounds t o t h e reduced solution space
a class of exact and approximation algorithms a r e
obtained. W e a r e i n t h e process of t h e implemen-
tation of ou r reduction algorithm and t h e bounds.
Then we aim t o carry ou t t h e experimental s tudy
comparing t h e behavior and t he efficiency of t h e
proposed bounds i n practice.

1 Introduction
Classical jol>shop schedr~ling prohlent (JSP) is one of the
heaviest (strongly) NP-hard scheduling problems, which
is very diffic~~lt to solve in practice. No approxiniation al-
gorithn~s with a guaranteed performauce exist. The prob-
lem is important because it reflects the actual operation in
scvcral indnstrics, though it is still too rcstrictcd for many
indi~stries. We co~isider a natural generalization of this

problen~ allowing parallel proc~%sors instead of each single
processor in JSP, and an arbitrary task graph (without
cycles) insted of a serial-parallel taqk graph in JSP. Par-
dlel processors might he identical, uniform or unrelated.
This meets better the needs of a vast amount of practi-
cal problems: A computer may have parallel processors
each of which might be used by a progr~ml task. or in
a n~anufactnring plant job might be allowed to be pro-
cessed by any of the available parallel machines. Besides,
the prmdcncc relations might be inore corr~plicatcd than
serial-parallel type relatioas. For example: the completion
of turo or more progranl tasks (subrouti~~es) might be nec-
essary before sorl~e other prograrn tlwk car1 be processed
(as the latter task uses the output of the former ta5k~);
this is a typical situation in parallel and distributed com-
putations.

The whole fkasible solution space grows clrasticdly corn-
pwcd to JSP. However, as it tur~rcd out, purallcl proccs-
sors cam also be used to reduce the solr~tion space to a
subspace, which is essentially smaller than even the cor-
rmpo~~dil~g solutio~~ space for JSP [I]. For large problern
instances, this space may still remain too big. Here u7e
propme different hounds which allow 11s to rednce it h~r-
ther. Comhining our bounds with the already reduced
solution space a class of exact and approxi~natior~ dg*
ritlnns can bc obtained.

Our generalized problem is as follows. Given are the
set of task* or opemfions, 0 = {I: 2 ,.... n) and n?. dif-
ferent processor goups. MI. is the kth goup of parallel
processors or machines, P ~ I being the ith processor of this
goup. (A job in a factory; a program task in a coluprlter
or a lesson in a school are some examples of jobs. A ma-
cl~i l~e ill a factory, a processor in a C O I I I P U ~ ~ I , a teacher i l ~ a
school are some exexamples of m<whines.) Each task should
he perfomled hy any processor of the given gro~lp. d i p is
the (uninterrupted) processing time of taqk i on proces-
sor P. Each pour, of parallel processors can he unrelated, - - .

.P.lrtially m,pportctl by grarlt w8433, Scicncc unifoim or iden,tl:eal. Unlike ~~niforni machines which are

kknlty, State University of WIorelos. A". ulliversidd 1001, characterized hy an operation-illdependent speed func-
Cuerna\,xa 62210, Morrlos, Mexico; fax: +82 777 329 70 40; tion, unrelated machines have no unifomr speed cl~wac-

65

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

teristic, i.e., a machine speed is operation-dependent; that
is, processing times o ' , ~ are independent: arbitrary inte-
ger numbers. In case of identical machines task procesing
t i ~ r ~ c s arc procewr-indcpcndcnt. all processors have tllc
same speed.

We have the resonme constraints: For each two jobs
i; j such that P(E) = P (j) = P , either yi + dip 5 yj or
s j + d,p 5 si should hold: where s, is the starting time
of i and P(i) is the procsrur to which taqk i is assignen;
in other words, any processor can handle only one task
a t a time. The precedence c o ~ t m i n t a are as follows. For
each i E 0 \ve are given the set of immediate predecessors
pred(i) of t ~ k i: so that i cannot start before all tasks
fron~ wed(i) are finished. Task i becomes ready when all
tasks from pred(i) are finished.

A schedule (solution) is a function which assigns to each
task a partic~llar processor and a starting time (on that
processor). A feasible schedule is a schedule satisfying
above constrair~ts. An opti7nul ychdule is a fcmiblc ycllcd-
111e which minimizes the rndespn, that is, the lnaxi~nal
task con~pletion time. As it is well-known, an optimal
schedule of JSP is i u ~ ~ o r ~ g so-cdled active schduley: in
an active schedule no operation can start earlier than it
is scheduled without delaying some other operation (for
exaniple see Lagenreg, Lenstra and Rinno0.v Kan [2] for
the details).

Applying co~rm~only u s d notation fur schcrluling p r o b
lems, we use JIIC,,; JRlpreclC ,",, JQlpreclCm, and
J P l p ~ e c l C , , , ~ , respectively t o denote JSP ancl the wr-
siorrs of our generalized prohlern with unrelated, uniform
and identical processors, respectively. If in an instance
of onr generalized prohlem from each group of processors
all processors except an arbitrarily se l ec t~ l one is eli~ni-
rrated, t11t.n a correspondir~g instance of JSP is obtairred.
JSP and hcncc thc gcncralizcd problcm arc strongly NP-
hard: thoueh the construction of each feasible schedule u

takes a polynon~ial (in the number of operations and ma-
chines) time, for finding an optinial schedule we might
be forced to enumerate an exponential number of feaqible
schedules. Since each feasible sch~ lu le can be rapidly gen-
erated, d ikrent heuristics or priority dispatching rules
are used for a rapid generatio11 of wrrle feasible yelled-

ule(s). The simplest considerations which reflect priority
dispatchi~~g rules are not enough to ohtain a sol~ltion wibh
a desirable good qiiality. If the quality of the required w
lution is important, we need to work with a larger subsets
of feasihle soh~tion snace t o marantee the ontimalitv. "

An algorithm, reducing the number of all feasible solu-
tiol~s of the generalized problem was: proposed in Vakl~a-
nia & Shchcpin [I]. Surprisingly, with tlic probability of

almost 1, the number of feasible solntions generated by
this algorithn~, as co~npared t o the n~nnher of all active
feasible scl~exlules, decmases with the number of n~achines
and opcrations in tach group of n~achincs a11d operations,

follows. If we let u and / r to he tile n ~ ~ n ~ h e r of o p
erations and machines in each subset of operations and
rnadlines, then with a probability of ahnost 1. the d-
gorithm generates approximately (p)"'" and 2"'(@-') P m"

times less fmqihle scl~ednles than the number of all ac-
tive feasible schedules of any corresponding instance of
JSP and our generalized problem, respectively. This al-
gorithm may still generate an il~admissible ln~lnber of
femihle schedules for large real-life problenl instances.
Branch-and-bound algorithms. as well as some approx-
imation algorithms, such as beam search. incorporate
(lower) bounds for the further reduction of the solution
space. In this paper. w suggest different bonnds for the
three versions of onr generalbzed problen~. By incorporat-
ing tllcsc bounds with thc rcduccd solutior~ trcc gc~lcratcd
by the algorithm in [I], different branch-and-hound and
approxiniation algorithms are obtained. Currentle we
are in the procesv of the irnple~nentatio~~ of our reduction
algorithm and our bounds. Then we aim t o carry out
the experimental study comparing the behavior and the
e1ficienc.y of the proposed bounds in practice. We hope
we nlay have some preliminary results by the conference
datc.

A brief overview of some related literature i~ as follonw.
The earliest work n~entioning a generalization of JSP is
that of Giffer & Tl~ornpsorl [3] in whicb, instead of un-
related processors and arbitrary precedence relations in
our generalized problem, identical processors mid serial-
parallel type precedence relations were considered. More
recentl,y, an exter~sior~ of JSP with general rnulti-purpose
machines was studicd by Bruckcr & Sclilic [4], Bruckcr,
.Turisch & I<ramer 151, Vakhania 14, and a lower bound
for the special c m of this problem when an operation
processing time is a constant (i.e. niacl~i~~ei~ldepet~dent)
was suggested by . l u r k h 171. Shmoys, Stein & Wein
[R] have proposed a polynomial approxiniation random-
ked algorithm for Rlrl~ninlC,,, which can be applied
for the versior~ of our problern with serial-parallel prece-
dence relations .JRlseriallC,,. DauzBre-P6res & Pauli
[9] haq proposed a 'Ihhn-search algorithm and Vakl~ania
[lo] has suggestwl a version of beam search algorithm for
the generalized problem. Ivem & Lambrecht Ill], Shutten
[12] stndy different extensions of JSP inclnding extensions
with setup and transportation times.

66

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

2 Basic Concepts

The algorithn~ in [I] generates the secalled com,pact 30-

lution tree. We de110te this tree by T and cdl it,s node
a stage. h con~plctc schcdulc fro111 the rcduccd fcasiblc
xol~~tion space corresponds to each path from the root to
a leaf in T : each intermediate stage represents a partial
solutior~. The (partial ur complete) sdutio~r. correspond-
ing to stage h is denoted by a h . W> denote a bunch of
concurrent ready tasks a t ench stage h, the candidates
detern~ined 11y the algorithm [I] to be s rhedu l~ l a t that
stage, by Ch. \Ire branch in T at stage A resolving the
rcsoorcc (rnacllinc) cor~flicts in 4 , . 011c irrnr~cdiatc ync-
cessor of node h is generated for e x h taqk of Ch. Asyunle
Id is the immediate successor of h with task i E C,, sched-
uled at tlrat stage. Then with tlre arc (h, h') twu labels
are associated: the task i and the processor on which this
tmk is actually schedl~led. In this way, there are gener-
ated lChl extensions of the current partial sdiedr~le m, in
our branch-and-bound trcc T. o h can be clci%rly uccn itr a
(partid) pennr~tation of n taqks. FOP i E n~, in that per-
mutation, we shall use the apper index for specifying the
~asticular ~rocessor on which task i is scheduled in a!,. In
piuticuliu, ohiP is an extension of o h with task i schecl-
uled on processor P. Note that the relative order of two
arhitrwy tmks i . j E oh is relevant only if P(i) = P(.j).

We denote by Ok the set of tasks to be perfornled OIL

a procawr of kt11 group and by Okr thc subuct of tasks
from OR not yet schedi~led by stage h. Each fefensible so111-
tion Oh is representetl by a directed weighted graph GI,.
The digraph Go = (X. Eo) we associate wit11 the root
of T. To each task i E 0 corresponds the unique node
i E X . There is one fictitio~~s initial node 0, preceding all
nodes, and one fictitious terminal node tr + I , succeeding
all nodes in Go. Eo is the arc set consisting of the arcs
(i; j), for each task i, directly prcccding task j : (O , i) E Eo
if task i lux no predecessors and (3, n + 1) E Eu if task j
has no s~~ccesnm. We denote by i r~(i , j) the weight a s s
ciated with (i . j) E Eo; initially, we -sign to m(i, j) the
rnininlal processing time of task i, later we correct these
weights when we aqsign a task to the particnlar procemor.
Let (h.1~') be an edge in T with task j scheduled a t itera,
tion 11.' on processor P. Then weobtain G,,, frorr~ G,, as
follow-s. CVc complctc thc arc sct of thc lattcr graph with
the arcs of the lorn1 (i , . ~) ; with the a-wciated weights
x:(i. j) = dip, for each tmk i, schwlnled earlier on the prc-
cesmr P. IVe correct the weights of all arcs ir~cident out
from node j (j,o) E Eo, ns i~?(j ,o) := d,p. It is easily seen
that the length of a critical path in Gh, is the makespan
of the (partial or complete) solution oh, = uhjP whicl~

we denote hy lnh!)l; hy 7h(i) we denote the length of a
longest path to node i in Gh, that is, the earliest possible
starting time of task i a t stage h.

Sinw thc critical pat11 Icn@t~ fro111 11odc 0 to a nodc u
in Gh is a lower honnd on the starting t i n ~ e of operation o
in schedule a h and in any its successor schedule, we call it
the earh startircg ti.r,~e or the head of operation o by stage
h and denote by h d h (o) . Rh(11f) is the ~eleose time of
machine A t at stage h, that is, the completion time of the
operation, schwlulml lmt by that stage on PI.

Now we derive auxiliary nlnltiprocevsor schednling
problc~n wl~ic l~ u c ~ h d l usc: for calculatio~~ of our lowcr
bo~mds. Remind that if a louver bound L(ah) of the par-
tial solution a,, is more than or equd t o the makespan ol
of sorrle already generated wlrlplete solutiot~ a , the~r all
extensions of a h c,w he abandoned. I t is cleas that L(ah)
cannot he greater than the makespan of the best potential
extension of a h (since then we could loose this extension);
but it should bc as closc: as pmiblc t o t l~ i s value (bccausc
then the more are the chances that L(f7h) 2 Inl).

Let us first note that a trivial louer bound ~ y , (n h o ~)
for the partid solution muQ of an instance of our gen-
eralized problem can be obtained as follows. For o h and
o E Ch. let L.r(ahoQ) = ah) + tailh(o), where tailh(o),
called the tn?:l of operation o a t stage h,, is the critical
path length korn a direct successor-node of o to the sink
nodc of GI,. Evidently, this bound i p o r a all yct unrc.
solved potential conflicts, i.e. the processing times of yet
ut~scheduled tasks. Though it is easy and fast to obtain
Lr , it is clear that ure w l n o t get a ~ o d atilnation of
the desired optin~al makespan by the con~plete ignorance
of the ~otent ia l contribution of all unschednled tasks. A
stronger lower bound wookl take into account a pos3i-
ble contribr~tion of the latter tasks (this would obviously
nccd additional compntational ccforts). Clearly, we can-
not know in advance how yet unresolved conflicts will be
rmlved in an ontimal schedule. But we can make some
assumptions about this ("simulati~~g" in advance some
"future" resource constraints). However, we should be
carefill since u e are not allo\ved t o violate the condition
L(ah) 5 la1[, d being an arbitrary cotnplete e x t e t ~ s i o ~ ~
d a,,. Roud~ly speaking, we need t o ~rlake a11 optirnal
assumption about how- thc futurc rcsourcc conflicts will
he resol\red; this will involve some optimal ssd~edl~ling on
parallel machines.

For JSP, most con~monly is used a one-mncbine relax-
atio11 (for example see [13]: [Id]. [lG]. [Z], [la]): all w
source constraints are relaxed (ignored) except the ones of
a one particular (not yet co~npletely scheduled) rnacl~ine;

67

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

and the resoltel-l onemachine problem wit11 heads and 3 Lower bounds
tails, llri, q,lCmor is then solved. A bottlen,rrk n~achine is
a one w11icl1 results the maximal makespan among all yet We first dencrihe lower bollnds 011 earlier ex-

u l l ~ ~ l c ~ u ~ l ~ lllac~lillu (intuitively, * ~ot t~cl lcck ll lac~il lc isting algorithn~s. Then we suggest alternative lower

gives a maximal expected contrib~~tion in the n~akespan bou1~1Is. Carlie1 & Pillmll [I71 have suK4estl.d a

of extensions of of,). This approach can be generalized a% b m r bound for JPlVeclC~ra,~. They proposed an

follows. Ba~ically, we relax the resource constraints 01, d l O(n.logn + nfnlogm) algorithm for non-sq~rential ver-

machines except the ones from some (bottleneck) set of "0" of Pri,q,,pmltlCnl.= which is a tight lower estima-
machines M k . To he specific, let a t iteration h,, IOr.I 2 2, tion of the optimal makespan for PIT;, qi,pl.mtc,.,. At

I .~ . . tllere are unresolved resource constraints associatd the expense of weakening the bo~md. the soh~tion of the
with tile mscllilles of mr. i E okh is Cllw- above prohlen~ can be used ns a lower bound for the ver-
=terized lIy its early stuting tinle lIedh(i) and sion wit11 unrelated rnachines rn we de?;cribe below.
tail taiIh(j); that is, i cannot be started earlier than a t Let C"" be the minimal processing time of operation

time l ~ e a d r ~ (i) ~ and once it is con~pleted, it will take a t 0 E Oh. i.e.; d:'" = min{donr, M E Mx). We replace the

least tailh(i) tirne for d l succffsors of i to he finished. i ~mrelated~n~achine group Mx with the identical machine

can be on any of the -hines of M~ md has a group M r , defined as follows: the run~her of macl~ines

processing tinle ddr milclline p E ,ur. ~~~h nlachine ilk buth,yonps is the same, a r ~ d for cach o E 01- and
p E M~ has its release tillle ~ ~ (p) . observe that tile op 114 E M I , doh, = d:'". I t isclear that an optin~al sol~~t ion

cratior~ tails and rclcuvc times urc derived from GI, (this of the obtained instance of Pri. qi,prmtlC,,,., with M I .
ignores all nnresolved by stage h resonrce constraints). is no more than that of the corresponding instance of
Desides: the tails require no machine time, i.e., time on Rlr;,q,,p:~tr~'lC,~~, with Mk. Hence, the former solutior~
m y of the rnacl~ines of M s . We are looki~~g for an o p can be used for the calculation of a lower bound for the
timal (i.e.: minimizing the makespan with tails) ordering original prohlem. Ohvio~~sly, the bonnd obtained in this
of the operations of Okh on machines from M c under way would he weak if the difference between the ahove
the above stated col~ditions. Thus for each stage R for two solutions is significant. I t might be pussible t o find a

the partial solutioa oh we obtaia the auxiliwy problem hetter "approxin~ation" with a11 identical machine g r o ~ ~ p
of schcduli~lg tasks with release tirncs and tails on a group of the anrelated ;nachine group M r . i.e., t o increa~e donr,
of parallel machines Mk with the objective to minimize o E Or, M E Mk (this could be the subject of a further
the makespan. Let us denote this a~~xil iary problem by research).
A~-B and the respective o p t i n ~ d lrlakespan by IA1-1.1. For uniform machines, we can obtain a stronger lower

Let be the set of indexes of d l m d i n e groups such ho~md l>y rising the algorithm of F d e r g n ~ e n & Groenevelt
that for each k t ,hh! IOkbl 2 2. I t is clear that 1Akr1, [21] for the problen~ Qrnlr i ,qi ,~nC, . , , with the time
for any k E ph. is a lower bound for node h. We may culrlplexity of O(trb3) (here t is the lrulrlber of r r~achir~s
find all I,& < rn lower bounds for r~ocle h arrd take the with distinct spcds).
n~nximum thus finding a bottlcncck machinc group. Thus As to JRlprrnflC,.,, the technique ha-ed on lin-
instead of dealing with llrj; q;[Cm.r in case of JSP: now ear progrrmmming of Lawler & Lahetonlle 1241 yields
we deal with Rlr,,qilCm,,. Both prohlems are NP-hard, a polynomial-time algorithm for Rmlri, yi,pmtn(C,,,.,.
thoudl there exist expone~~tial algoritl~ms wit11 a good This is clearly a lower estimation of the optimal makespan
practical behavior for the first above problem, have been for Rm,lri, qilCmeE which, in turn, provides a lower bonnd
commonly uswl in one-machine relaxation bawd branch- for JRlprmtlC,.,.
and-bound algorithms for JSP (see, for example bfcM* Now a- descrihe alternative methods t o ohtain lower
hurl & Florian 1181. Carlier 1151 and Carlier & Pirlsorl 1161). bouads. For the versiolls with identical and dlnifona ma-
Unfortunately, there are no k n m n 4gorithms with good chi~~es. our lower bounds are obtained in an $must linear
practical performa~~ce for Plri:qilCmar (the \,ersion with (in IOrhI and IM1-1) timc. For thc vcrsion with unrclatcd
identical machi~~es) and so much for Rlri, qilC,,.,. In the machines, we apply linear progranln~ing. Itre obtain a
following section we suggest several ways to obtain strong lower atimation, which is not a strict lower hoand for
l m ho~mds for these prohlems. the same version again in almost linear time. This bound

can he ~ ~ s e d in approxin~ation algoritlm~s such is a heam
sewdl.

For sitnplifj~ing the notations, let ai = h e a l ~ (i) and

68

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

69

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

i E C either starts at time ni or it starts right a t the
nloment of completion of another operation of C. Hence.
nlill{t? I i E C) = min{ai I i E C) is the nlillinla~ possi-
ble starting t i~nc for C.

Let CS he the seqnence in which the kernel operations
were scheduletl in S. Observe that although C S n~ight be
different frorn C, all the applied in S' emerging operations
have been initially scheduled before CS in S. In S? the
sequence CS is started with a delay which is determined
hy the finishing times of the u' emerging operations di-
rectly preceding kernel operations in S . Suppose that,
respecting this delay of C" in S, the seqllence C itself is
optimal (i.e. it minimizs the maximal completion time of
kernel operations, subject to the release tinlev of the MI
machimes). Then from the definition of C" and T, and the
earlier made observation, IS1 -dm., = 2 + q: -dm,, is
a lower h o ~ n ~ d on the optimal schedule makespan. Note
that its calculation takes O(p.nlogn) tiale. This bonnd,
i r~ gernral is not a strict lo~vcr bound for JPyreclC,,,.,
(as the sequence C" is not optimal), t l i o ~ ~ g l ~ it can he snc-
cessfnllv anolied as a thoroulrh est,i~nation in annroximate ., . . ~, . .
dgorith~nu such as bean search (see for exaruple [lo]).

The above bound can be easily transferred to a strict
lmer bound for the versions with identical and uniform
tnacliines. In principal. we need to find a good lower esti-
mation for an ootinral seanence of kernel onerations. This
task can be solvcvl in a ln~mt linear time for botlr, identical
and uniforni machines, while fbr nnrelated niachines ure
will apply (also poly;l~on~ial) linear progra~nn~ing. We ob-
tain a good lower estimations for the problem Qr,lC,,,.,
(which itself is NP-hard) by solving its preemptive ver-
sion Qlr,,prntnlC ,,,., in O(n logn.+mn,) time (see S d ~ n i
& Cho [26] and Lahetoolle, Lawler, Lenstra & Rinnooy-
Karl [23]). If we ignore the operatioti release times (this,
in gcncral, is possiblc sincc thc optimal makcspan without
the release times is no nmre than that with the readiness
times), we can apply an O(n + m log rn) algorithm for
QIv~L~~L~C,... by Goa~aled & Sahni [22]. Sin~ilarly, we
obtain a good l m r estimation for RlriC,,, by solving
its preen~ptive version by linear programming (see Lawler
& Labetoulle [241).

The above estirr~atior~s pruvide us with the earliest puu-
sible hishing time, c', of the kernel operations. Let
q = nlin{qi, i E c") and d be the maximal process-
ing time among all emerging operations in S. Then
LI (C") = c* + q - d is clearly a lower bound on the
n~akespan of AI,,. This houn~d can he fi~rther strengthen.
Eivlier we saw hou. the sequence C is obtained after the
application of no more than l M h l emerging operations
(which wcrc thc latcst schcdulcd oncs in S). Dcnotc this

set of emerging operations by E and the set of all emerg-
ing operations in S by E. In general, emerging operations
from E \ E can be applied inst,exl of solne emerging o p
crations of E (notc that crncrging operations Fro111 tlm
latter set precede those from E in S). Indeed, if emerg-
ing operations 11, ..., 1, are d l r e l e a 4 by time t, they
will be succeusivdy sch~duled in S till tlre rrrornent when
the earliest non-emerging operation gets ready. Thus n7e
may have a choice! which emerging operations to apply.
By cl~oosing emerging operatio~~s from E we guarantee
that the sequence C will start without any delay; at the
same time, the resched~~led after C e~nerging operations
of E having "long enough tail may ohvionsly atfect the
resnlted n~akespan (i.e. the ~r~sxinlal f ir11 job completion
time.

This consideration makes it clear that by taking into
the Rcconnt the actual tails and processing times of the
resclleduled emerdng operations, the earlier bound might
be furtt~cr i~nproved. A sin~plc solution inight be as fol-
lows. Assnme on each machine from Mb an operation of
C is scheduled (otherwise. as it is easilv seen. there is no
need in t11is iulhitiona~ wlilnation). At ~east'oue emerg-
ing operat,ion should be rescheduled after C: hence: any
E' C E ulll be fully completed no earlier than at time
L2(E1) = c' + rl' + q', where c' is the minimal finishing
time of the operations of C schedoled last 011 one of the
n ~ a c t ~ i n ~ u of MI., d = n~ir~{d,p, i E E . P E M b) and
q' = min{qi, i E E}. Thus L I . ~ = max(L~(c).Ly(E)} is
a lower bound for A I ~ .

4 Conclusions

Some of the developed glohal estimations are strict low-r
bounds a i d the others not. The latter bounds, which were
obtained in almost h e a r time, can be used in any solu-
tion tree based approxin~ation algorithm, snch aq, for ex-
ample, bean1 search. Similarly, applying our strict lower
bounds in T, we obtain exact brar~cl~-and-bound algc-
rithn~s. Oncc implcn~cntcd and tcstcd, thc abovc a lge
rithn~s can be nsed a? an algorithn~ic engine for a decision
support system for generalized job shop scheduling pro&
Ie~ns. The presented algorithms can be easily agregated
by an additional graph-con~pletion n~echanis~n for taking
into the account the transportation t i m s a ~ ~ d other real-
life 101, sbop sd~ednling proble~iems [Il l and [12].

70

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

References [IS] J. Carher. :?he one-machine seqnencing problem",
B,,mpen,n J. of Opemtional Resmrh" 11, 42-47

[I] N. VRkhania and E. Shd~epin. "Concurrent opera- (1982).
tions can be parallelixerl in scheduling tnnltiprocessor
job shop". Jouirrul of Schedubiny 5. p.227-245 (2002). 1161 J. Carlier and E.Pinson, "An Algorithm for Solving

Job Shop Problem", Management Science, 35, 164-
[2] B. J. Lageweg, Lenstra J.K., Rinnooy K w A.H.G., 176 (1989).

"Job Shop Schduling by Irnplicit Enumeration".
Mnnagemen' Science 24,441-450 (1977). [17] J . Ctrrlicr and E.Pirtsor~. "Jakson's pxudo prcxrnp

tive schedule for the Pm/ri .q, /C, , , problem", An-
[3] B. Giffer and G.L.Thompson, "Algorithm for Solving nals of Opemtiom nesearrh 83, (1998).

Prod~~ction Schedllling Problen~s". Oper. Res. 8:487-
503 (1960). [18] G.B. EvIchlahon and M. Florian. "On scheduling with

[4] P. Brucker and R. Schlie. "Job shop scheduling with ready times and due dates to minimize nlaxin~nm
lutc~~css", Ope7atioru Resea7.ulr 23, 475-482 (1975).

~ n u l t i - p u r p ~ e ~l~achines". Corrbputirrg. 45; 369-375
(1990). 1191 Vakhania N. Scheduling equal-length jobs with deliv-

151 P. Brncker, B.Jurisc11 and A.Kramer, "Complexity of ery times on identical procgsors. Int. .I. Computw

sched~~ling prohlen~s with nnllti-p~~rpose n~achines", Mnth., 82 (2002).

Annak of Opemtionq Resend", 70; 57-73 (1997). [ZO] N. Vakhania. "A hetter algorithm for sequencing

[6] N.N. Vakhania, "Assignnient of jobs to parallel com- with release and delivery times on identical proces-

puters of different thro~~ghpnt". Al~tomation and RP- sors". Jo?mnl of Algorithms 48, p.273-293, 2003.

mote Contnrl, 56, 280286 (1995). [21] A. Federgrnen and H. Groener-elt. "Preen~ptive
[7] Jurisch B., "Lower bounds for job-shop scheduling scl~cduling of uniform rnachinw by ordinary nctwork

problem on multi-purpose machines", Discrete Ap- flow techniq~~es", Managemat Scieince 32, 341-349
plied Mathematics 58, 145-156 (1995). (1986).

[8] D.B. Shnloys, C.Stcin ruld J.14'ein. "lrnprovd a p [22] T. Gonzala and S. Sal~ni, "Preen~ptive scheduling
prawiniation algorithms for shop scheduling p r o b of uniforn~ processor systems"; Journal of the ACM
lerns", SIAM J. on Comnpldirrg 23, 617-632 (1994). 25. 92-101 (1978).

[9] Dauzbe-P6r6s and J-Palllli. "An integrated av 1231 J . Labetoulle, E.L. Lawler, J.K. Lenstra and A.H.G.
proxh for p node ling and solving the general mnl- Rinnooy-Knn, "Preen~ptive scheduling of uniform
tiproccvsor job shop scl~cduling problcrn with tabu mnrhines nuhject to relertw dates", in Pfrlle~/hlan,&
scorch". Annals of 0pemtio.n~ Research, 70: 281-306 245-261 (1984).
(1997). 1241 E.L. Lawler and J.Laheto~~lle, "On preemptive

[lo] N. Vakhmia, "Global and local search for scherlnl- scl~eduling of unrelated parallel processors by linear
ing job shop with parallel machines": Lrctrrrr Notes programmind', .I. of the AChf 25, 612-619 (1978).
in Artificiul Intelligence. (IDERAMIA-SDIA 2000),
1952, p.63-75 (2000). [25] S. Sahni and Y.Cho. "Ncarly on-linc scheduling o f a

uniform processor system with release times", SIAM
[l l] P. h e n s and M. L~unbrecht: "Extending the shifting J. 0 9 . Co9npsti9r.q 8, 275-285 (1979).

bottleneck procedllre to real-life applications"! Elrm-
pean J. of Opemtionnl R e s m . ~ h 90: 252-268 (1996).

[I21 J.M. Schr~tter, "Practical job shop nchedl~ling"~ An-
nnls of Opemtions Research 83. 161-177 (1998).

[13] J. Adams, E.Balas a ~ ~ d D.Zawack, "The Shifting
Bottlsrreck Procedure for Job Shop Scheduli~tg",
Managcment Science: 34: 391-401 (1988).

[14] J. Blazewic~, W. Cellary. R.Slowinski and J.
Weglarz, "Scheduling lmder resource constraints -
Deterministic models". Annals of Opemtion* Re-
search, 7 (1986)

71

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

