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Abstract. Classical job-shop scheduling prob- 
lem (JSP)  is one of t he  heaviest (strongly) NP- 
hard scheduling problems, which is very difficult 
t o  solve in practice. No approximation algorithms 
with a guaranteed performance exist. We  deal 
with a natural generalization of this  problem al- 
lowing parallel processors instead of each single 
processor i n  JSP,  and  an arbi t rary task graph 
(without cycles) instead of a serial-parallel task 
graph in JSP. Parallel processors might b e  identi- 
cal, uniform o r  unrelated. T h e  whole feasible so- 
lution space grows drastically compared t o  JSP. 
However, as i t  turned out, parallel processors can 
also b e  used to reduce t h e  solution space t o  a 
subspace, which is essentially smaller t han  even 
t h e  corresponding solution space for J S P  [I]. For 
large problem instances, this  space still may re- 
main too big. Here  we propose different global es- 
timations which allow us  t o  reduce i t  further. By 
applying ou r  bounds t o  t h e  reduced solution space 
a class of exact and  approximation algorithms a r e  
obtained. W e  a r e  i n  t h e  process of t h e  implemen- 
tation of ou r  reduction algorithm and  t h e  bounds. 
Then we aim t o  carry ou t  t h e  experimental s tudy 
comparing t h e  behavior and  t he  efficiency of t h e  
proposed bounds i n  practice. 

1 Introduction 
Classical jol>shop schedr~ling prohlent (JSP) is one of the 
heaviest (strongly) NP-hard scheduling problems, which 
is very diffic~~lt to solve in practice. No approxiniation al- 
gorithn~s with a guaranteed performauce exist. The prob- 
lem is important because it reflects the actual operation in 
scvcral indnstrics, though it is still too rcstrictcd for many 
indi~stries. We co~isider a natural generalization of this 

problen~ allowing parallel proc~%sors instead of each single 
processor in JSP, and an arbitrary task graph (without 
cycles) insted of a serial-parallel taqk graph in JSP. Par- 
dlel processors might he identical, uniform or unrelated. 
This meets better the needs of a vast amount of practi- 
cal problems: A computer may have parallel processors 
each of which might be used by a progr~ml task. or in 
a n~anufactnring plant job might be allowed to be pro- 
cessed by any of the available parallel machines. Besides, 
the prmdcncc relations might be inore corr~plicatcd than 
serial-parallel type relatioas. For example: the completion 
of turo or more progranl tasks (subrouti~~es) might be nec- 
essary before sorl~e other prograrn tlwk car1 be processed 
(as the latter task uses the output of the former ta5k~); 
this is a typical situation in parallel and distributed com- 
putations. 

The whole fkasible solution space grows clrasticdly corn- 
pwcd to JSP. However, as it tur~rcd out, purallcl proccs- 
sors cam also be used to reduce the solr~tion space to a 
subspace, which is essentially smaller than even the cor- 
rmpo~~dil~g solutio~~ space for JSP [I]. For large problern 
instances, this space may still remain too big. Here u7e 
propme different hounds which allow 11s to rednce it h~r-  
ther. Comhining our bounds with the already reduced 
solution space a class of exact and approxi~natior~ dg* 
ritlnns can bc obtained. 

Our generalized problem is as follows. Given are the 
set of task* or opemfions, 0 = {I: 2 ,.... n) and n?. dif- 
ferent processor goups. MI.  is the kth goup  of parallel 
processors or machines, P ~ I  being the ith processor of this 
goup. (A job in a factory; a program task in a coluprlter 
or a lesson in a school are some examples of jobs. A ma- 
cl~i l~e ill a factory, a processor in a C O I I I P U ~ ~ I ,  a teacher i l ~  a 
school are some exexamples of m<whines.) Each task should 
he perfomled hy any processor of the given gro~lp. d i p  is 
the (uninterrupted) processing time of taqk i on proces- 
sor P. Each pour, of parallel processors can he unrelated, - - .  

.P.lrtially m,pportctl by grarlt w8433, Scicncc unifoim or iden,tl:eal. Unlike ~~niforni machines which are 

kknlty, State University of WIorelos. A". ulliversidd 1001, characterized hy an operation-illdependent speed func- 
Cuerna\,xa 62210, Morrlos, Mexico; fax: +82 777 329 70 40; tion, unrelated machines have no unifomr speed cl~wac- 
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teristic, i.e., a machine speed is operation-dependent; that 
is, processing times o ' , ~  are independent: arbitrary inte- 
ger numbers. In case of identical machines task procesing 
t i ~ r ~ c s  arc procewr-indcpcndcnt. all processors have tllc 
same speed. 

We have the resonme constraints: For each two jobs 
i; j such that P(E) = P ( j )  = P ,  either yi + dip 5 yj or 
s j  + d,p 5 si should hold: where s, is the starting time 
of i and P( i )  is the procsrur to which taqk i is assignen; 
in other words, any processor can handle only one task 
a t  a time. The precedence c o ~ t m i n t a  are as follows. For 
each i E 0 \ve are given the set of immediate predecessors 
pred(i) of t ~ k  i: so that i cannot start before all tasks 
fron~ wed(i) are finished. Task i becomes ready when all 
tasks from pred(i) are finished. 

A schedule (solution) is a function which assigns to each 
task a partic~llar processor and a starting time (on that 
processor). A feasible schedule is a schedule satisfying 
above constrair~ts. An opti7nul ychdule is a fcmiblc ycllcd- 
111e which minimizes the rndespn, that is, the lnaxi~nal 
task con~pletion time. As it is well-known, an optimal 
schedule of JSP is i u ~ ~ o r ~ g  so-cdled active schduley: in 
an active schedule no operation can start earlier than it 
is scheduled without delaying some other operation (for 
exaniple see Lagenreg, Lenstra and Rinno0.v Kan [2] for 
the details). 

Applying co~rm~only u s d  notation fur schcrluling p r o b  
lems, we use JIIC,,; JRlpreclC ,",, JQlpreclCm, and 
J P l p ~ e c l C , , , ~ ,  respectively t o  denote JSP ancl the wr- 
siorrs of our generalized prohlern with unrelated, uniform 
and identical processors, respectively. If in an instance 
of onr generalized prohlem from each group of processors 
all processors except an arbitrarily se l ec t~ l  one is eli~ni- 
rrated, t11t.n a correspondir~g instance of JSP is obtairred. 
JSP and hcncc thc gcncralizcd problcm arc strongly NP- 
hard: thoueh the construction of each feasible schedule u 

takes a polynon~ial (in the number of operations and ma- 
chines) time, for finding an optinial schedule we might 
be forced to enumerate an exponential number of feaqible 
schedules. Since each feasible sch~ lu le  can be rapidly gen- 
erated, d ikrent  heuristics or priority dispatching rules 
are used for a rapid generatio11 of wrrle feasible yelled- 

ule(s). The simplest considerations which reflect priority 
dispatchi~~g rules are not enough to ohtain a sol~ltion wibh 
a desirable good qiiality. If the quality of the required w 
lution is important, we need to work with a larger subsets 
of feasihle soh~tion snace t o  marantee the ontimalitv. " 

An algorithm, reducing the number of all feasible solu- 
tiol~s of the generalized problem was: proposed in Vakl~a- 
nia & Shchcpin [I]. Surprisingly, with tlic probability of 

almost 1, the number of feasible solntions generated by 
this algorithn~, as co~npared t o  the n~nnher of all active 
feasible scl~exlules, decmases with the number of n~achines 
and opcrations in tach group of n~achincs a11d operations, 

follows. If we let u and / r  to he tile n ~ ~ n ~ h e r  of o p  
erations and machines in each subset of operations and 
rnadlines, then with a probability of ahnost 1. the d- 
gorithm generates approximately (p)"'" and 2"'(@-') P m" 

times less fmqihle scl~ednles than the number of all ac- 
tive feasible schedules of any corresponding instance of 
JSP and our generalized problem, respectively. This al- 
gorithm may still generate an il~admissible ln~lnber of 
femihle schedules for large real-life problenl instances. 
Branch-and-bound algorithms. as well as some approx- 
imation algorithms, such as beam search. incorporate 
(lower) bounds for the further reduction of the solution 
space. In this paper. w suggest different bonnds for the 
three versions of onr generalbzed problen~. By incorporat- 
ing tllcsc bounds with thc rcduccd solutior~ trcc gc~lcratcd 
by the algorithm in [I], different branch-and-hound and 
approxiniation algorithms are obtained. Currentle we 
are in the procesv of the irnple~nentatio~~ of our reduction 
algorithm and our bounds. Then we aim t o  carry out 
the experimental study comparing the behavior and the 
e1ficienc.y of the proposed bounds in practice. We hope 
we nlay have some preliminary results by the conference 
datc. 

A brief overview of some related literature i~ as follonw. 
The earliest work n~entioning a generalization of JSP is 
that of Giffer & Tl~ornpsorl [3] in whicb, instead of un- 
related processors and arbitrary precedence relations in 
our generalized problem, identical processors mid serial- 
parallel type precedence relations were considered. More 
recentl,y, an exter~sior~ of JSP with general rnulti-purpose 
machines was studicd by Bruckcr & Sclilic [4], Bruckcr, 
.Turisch & I<ramer 151, Vakhania 14, and a lower bound 
for the special c m  of this problem when an operation 
processing time is a constant (i.e. niacl~i~~ei~ldepet~dent) 
was suggested by . l u r k h  171. Shmoys, Stein & Wein 
[R] have proposed a polynomial approxiniation random- 
ked algorithm for Rlrl~ninlC,,, which can be applied 
for the versior~ of our problern with serial-parallel prece- 
dence relations .JRlseriallC,,. DauzBre-P6res & Pauli 
[9] haq proposed a 'Ihhn-search algorithm and Vakl~ania 
[lo] has suggestwl a version of beam search algorithm for 
the generalized problem. Ivem & Lambrecht Ill], Shutten 
[12] stndy different extensions of JSP inclnding extensions 
with setup and transportation times. 
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2 Basic Concepts 

The algorithn~ in [I] generates the secalled com,pact 30- 

lution tree. We de110te this tree by T and cdl it,s node 
a stage. h con~plctc schcdulc fro111 the rcduccd fcasiblc 
xol~~tion space corresponds to each path from the root to 
a leaf in T :  each intermediate stage represents a partial 
solutior~. The (partial ur complete) sdutio~r. correspond- 
ing to stage h is denoted by a h .  W> denote a bunch of 
concurrent ready tasks a t  ench stage h, the candidates 
detern~ined 11y the algorithm [I] to be s rhedu l~ l  a t  that 
stage, by Ch. \Ire branch in T at  stage A resolving the 
rcsoorcc (rnacllinc) cor~flicts in 4 , .  011c irrnr~cdiatc ync- 
cessor of node h is generated for e x h  taqk of Ch. Asyunle 
Id is the immediate successor of h with task i E C,, sched- 
uled at tlrat stage. Then with tlre arc (h, h') twu labels 
are associated: the task i and the processor on which this 
tmk is actually schedl~led. In this way, there are gener- 
ated lChl extensions of the current partial sdiedr~le m, in 
our branch-and-bound trcc T. o h  can be clci%rly uccn itr a 
(partid) pennr~tation of n taqks. FOP i E n~, in that per- 
mutation, we shall use the apper index for specifying the 
~asticular ~rocessor on which task i is scheduled in a!,. In 
piuticuliu, ohiP is an  extension of o h  with task i schecl- 
uled on processor P. Note that the relative order of two 
arhitrwy tmks i . j  E oh is relevant only if P(i) = P(.j). 

We denote by Ok the set of tasks to be perfornled OIL 

a procawr of kt11 group and by Okr  thc subuct of tasks 
from OR not yet schedi~led by stage h. Each fefensible so111- 
tion Oh is representetl by a directed weighted graph GI,. 
The digraph Go = (X. Eo) we associate wit11 the root 
of T. To each task i E 0 corresponds the unique node 
i E X .  There is one fictitio~~s initial node 0, preceding all 
nodes, and one fictitious terminal node tr + I ,  succeeding 
all nodes in Go. Eo is the arc set consisting of the arcs 
(i; j), for each task i, directly prcccding task j :  ( O , i )  E Eo 
if task i lux no predecessors and (3, n + 1) E Eu if task j 
has no s~~ccesnm.  We denote by i r~( i , j )  the weight a s s  
ciated with ( i . j )  E Eo; initially, we -sign to m(i, j )  the 
rnininlal processing time of task i, later we correct these 
weights when we aqsign a task to the particnlar procemor. 
Let (h.1~') be an edge in T with task j scheduled a t  itera, 
tion 11.' on processor P. Then weobtain G,,, frorr~ G,, as 
follow-s. CVc complctc thc arc sct of thc lattcr graph with 
the arcs of the lorn1 ( i , . ~ ) ;  with the a-wciated weights 
x:(i. j) = dip, for each tmk i, schwlnled earlier on the prc- 
cesmr P. IVe correct the weights of all arcs ir~cident out 
from node j (j,o) E Eo, ns i~?(j ,o)  := d,p. It is easily seen 
that the length of a critical path in Gh, is the makespan 
of the (partial or complete) solution oh, = uhjP whicl~ 

we denote hy lnh!)l; hy 7h(i) we denote the length of a 
longest path to node i in Gh, that is, the earliest possible 
starting time of task i a t  stage h. 

Sinw thc critical pat11 Icn@t~ fro111 11odc 0 to a nodc u 
in Gh is a lower honnd on the starting t i n ~ e  of operation o 
in schedule a h  and in any its successor schedule, we call it 
the earh startircg ti.r,~e or the head of operation o by stage 
h and denote by h d h ( o ) .  Rh(11f) is the ~eleose  time of 
machine A t  at  stage h, that is, the completion time of the 
operation, schwlulml lmt by that stage on PI. 

Now we derive auxiliary nlnltiprocevsor schednling 
problc~n wl~ic l~  u c  ~ h d l  usc: for calculatio~~ of our lowcr 
bo~mds. Remind that if a louver bound L(ah) of the par- 
tial solution a,, is more than or equd t o  the makespan ol 
of sorrle already generated wlrlplete solutiot~ a ,  the~r all 
extensions of a h  c,w he abandoned. I t  is cleas that L(ah) 
cannot he greater than the makespan of the best potential 
extension of a h  (since then we could loose this extension); 
but it should bc as closc: as pmiblc  t o  t l~ i s  value (bccausc 
then the more are the chances that L(f7h) 2 Inl). 

Let us first note that a trivial louer bound ~ y , ( n h o ~ )  
for the partid solution muQ of an instance of our gen- 
eralized problem can be obtained as follows. For o h  and 
o E Ch. let L.r(ahoQ) =  ah) + tailh(o), where tailh(o), 
called the tn?:l of operation o a t  stage h,, is the critical 
path length korn a direct successor-node of o to the sink 
nodc of GI,. Evidently, this bound i p o r a  all yct unrc. 
solved potential conflicts, i.e. the processing times of yet 
ut~scheduled tasks. Though it is easy and fast to obtain 
Lr ,  it is clear that ure w l n o t  get a ~ o d  atilnation of 
the desired optin~al makespan by the con~plete ignorance 
of the ~otent ia l  contribution of all unschednled tasks. A 
stronger lower bound wookl take into account a pos3i- 
ble contribr~tion of the latter tasks (this would obviously 
nccd additional compntational ccforts). Clearly, we can- 
not know in advance how yet unresolved conflicts will be 
rmlved in an ontimal schedule. But we can make some 
assumptions about this ("simulati~~g" in advance some 
"future" resource constraints). However, we should be 
carefill since u e  are not allo\ved t o  violate the condition 
L(ah) 5 la1[, d being an arbitrary cotnplete e x t e t ~ s i o ~ ~  
d a,,. Roud~ly  speaking, we need t o  ~rlake a11 optirnal 
assumption about how- thc futurc rcsourcc conflicts will 
he resol\red; this will involve some optimal ssd~edl~ling on 
parallel machines. 

For JSP, most con~monly is used a one-mncbine relax- 
atio11 (for example see [13]: [Id]. [lG]. [Z], [la]): all w 
source constraints are relaxed (ignored) except the ones of 
a one particular (not yet co~npletely scheduled) rnacl~ine; 
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and the resoltel-l onemachine problem wit11 heads and 3 Lower bounds 
tails, llri, q,lCmor is then solved. A bottlen,rrk n~achine is 
a one w11icl1 results the maximal makespan among all yet We first dencrihe lower bollnds 011 earlier ex- 

u l l ~ ~ l c ~ u ~ l ~  lllac~lillu (intuitively, * ~ot t~cl lcck ll lac~il lc  isting algorithn~s. Then we suggest alternative lower 

gives a maximal expected contrib~~tion in the n~akespan bou1~1Is. Carlie1 & Pillmll [I71 have suK4estl.d a 

of extensions of of,). This approach can be generalized a% b m r  bound for JPlVeclC~ra,~. They proposed an 

follows. Ba~ically, we relax the resource constraints 01, d l  O(n.logn + nfnlogm) algorithm for non-sq~rential ver- 

machines except the ones from some (bottleneck) set of "0" of Pri,q,,pmltlCnl.= which is a tight lower estima- 
machines M k .  To he specific, let a t  iteration h,, IOr.I 2 2, tion of the optimal makespan for PIT;, qi,pl.mtc,.,. At 

I .~ . .  tllere are unresolved resource constraints associatd the expense of weakening the bo~md. the soh~tion of the 
with tile mscllilles of mr. i E okh is Cllw- above prohlen~ can be used ns a lower bound for the ver- 
=terized lIy its early stuting tinle lIedh(i)  and sion wit11 unrelated rnachines rn we de?;cribe below. 
tail taiIh(j); that is, i cannot be started earlier than a t  Let C"" be the minimal processing time of operation 

time l ~ e a d r ~ ( i ) ~  and once it is con~pleted, it will take a t  0 E Oh. i.e.; d:'" = min{donr, M E Mx).  We replace the 

least tailh(i) tirne for d l  succffsors of i to he finished. i ~mrelated~n~achine group Mx with the identical machine 

can be on any of the -hines of M~ md has a group M r ,  defined as follows: the run~her  of macl~ines 

processing tinle ddr milclline p E ,ur. ~~~h nlachine ilk buth,yonps is the same, a r ~ d  for cach o E 01- and 
p E M~ has its release tillle ~ ~ ( p ) .  observe that tile op 114 E M I ,  doh, = d:'". I t  isclear that an optin~al sol~~t ion 

cratior~ tails and rclcuvc times urc derived from GI, (this of the obtained instance of Pri. qi,prmtlC,,,., with M I .  
ignores all nnresolved by stage h resonrce constraints). is no more than that of the corresponding instance of 
Desides: the tails require no machine time, i.e., time on Rlr;,q,,p:~tr~'lC,~~, with Mk. Hence, the former solutior~ 
m y  of the rnacl~ines of M s .  We are looki~~g for an o p  can be used for the calculation of a lower bound for the 
timal (i.e.: minimizing the makespan with tails) ordering original prohlem. Ohvio~~sly, the bonnd obtained in this 
of the operations of Okh on machines from M c  under way would he weak if the difference between the ahove 
the above stated col~ditions. Thus for each stage R for two solutions is significant. I t  might be pussible t o  find a 

the partial solutioa oh we obtaia the auxiliwy problem hetter "approxin~ation" with a11 identical machine g r o ~ ~ p  
of schcduli~lg tasks with release tirncs and tails on a group of the anrelated ;nachine group M r .  i.e., t o  increa~e donr, 
of parallel machines Mk with the objective to minimize o E Or,  M E Mk (this could be the subject of a further 
the makespan. Let us denote this a~~xil iary problem by research). 
A~-B and the respective o p t i n ~ d  lrlakespan by IA1-1.1. For uniform machines, we can obtain a stronger lower 

Let be the set of indexes of d l  m d i n e  groups such ho~md l>y rising the algorithm of F d e r g n ~ e n  & Groenevelt 
that for each k t ,hh! IOkbl 2 2. I t  is clear that 1Akr1, [21] for the problen~ Qrnlr i ,qi ,~nC, . , ,  with the time 
for any k E ph. is a lower bound for node h. We may culrlplexity of O(trb3) (here t is the lrulrlber of r r~achir~s  
find all I,& < rn lower bounds for r~ocle h arrd take the with distinct spcds).  
n~nximum thus finding a bottlcncck machinc group. Thus As to JRlprrnflC,.,, the technique ha-ed on lin- 
instead of dealing with llrj; q;[Cm.r in case of JSP: now ear progrrmmming of Lawler & Lahetonlle 1241 yields 
we deal with Rlr,,qilCm,,. Both prohlems are NP-hard, a polynomial-time algorithm for Rmlri, yi,pmtn(C,,,.,. 
thoudl there exist expone~~tial algoritl~ms wit11 a good This is clearly a lower estimation of the optimal makespan 
practical behavior for the first above problem, have been for Rm,lri, qilCmeE which, in turn, provides a lower bonnd 
commonly uswl in one-machine relaxation bawd branch- for JRlprmtlC,.,. 
and-bound algorithms for JSP (see, for example bfcM* Now a- descrihe alternative methods t o  ohtain lower 
hurl & Florian 1181. Carlier 1151 and Carlier & Pirlsorl 1161). bouads. For the versiolls with identical and dlnifona ma- 
Unfortunately, there are no k n m n  4gorithms with good chi~~es.  our lower bounds are obtained in an $must linear 
practical performa~~ce for Plri:qilCmar (the \,ersion with (in IOrhI and IM1-1) timc. For thc vcrsion with unrclatcd 
identical machi~~es) and so much for Rlri, qilC,,.,. In the machines, we apply linear progranln~ing. Itre obtain a 
following section we suggest several ways to obtain strong lower atimation, which is not a strict lower hoand for 
l m  ho~mds for these prohlems. the same version again in almost linear time. This bound 

can he ~ ~ s e d  in approxin~ation algoritlm~s such is a heam 
sewdl. 

For sitnplifj~ing the notations, let ai = h e a l ~ ( i )  and 
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i E C either starts at  time ni or it starts right a t  the 
nloment of completion of another operation of C. Hence. 
nlill{t? I i E C) = min{ai I i E C )  is the nlillinla~ possi- 
ble starting t i~nc  for C. 

Let CS he the seqnence in which the kernel operations 
were scheduletl in S. Observe that although C S  n~ight be 
different frorn C, all the applied in S' emerging operations 
have been initially scheduled before CS in S. In S? the 
sequence CS is started with a delay which is determined 
hy the finishing times of the u' emerging operations di- 
rectly preceding kernel operations in S .  Suppose that, 
respecting this delay of C" in S,  the seqllence C itself is 
optimal (i.e. it minimizs the maximal completion time of 
kernel operations, subject to the release tinlev of the MI 
machimes). Then from the definition of C" and T, and the 
earlier made observation, IS1 -dm., = 2 + q: -dm,, is 
a lower h o ~ n ~ d  on the optimal schedule makespan. Note 
that its calculation takes O(p.nlogn) tiale. This bonnd, 
i r~  gernral is not a strict lo~vcr bound for JPyreclC,,,., 
(as the sequence C" is not optimal), t l i o ~ ~ g l ~  it can he snc- 
cessfnllv anolied as a thoroulrh est,i~nation in annroximate ., . . ~, . . 
dgorith~nu such as bean  search (see for exaruple [lo]). 

The above bound can be easily transferred to a strict 
lmer  bound for the versions with identical and uniform 
tnacliines. In principal. we need to find a good lower esti- 
mation for an ootinral seanence of kernel onerations. This 
task can be solvcvl in a ln~mt linear time for botlr, identical 
and uniforni machines, while fbr nnrelated niachines ure 
will apply (also poly;l~on~ial) linear progra~nn~ing. We ob- 
tain a good lower estimations for the problem Qr,lC,,,., 
(which itself is NP-hard) by solving its preemptive ver- 
sion Qlr,,prntnlC ,,,., in O(n logn.+mn,) time (see S d ~ n i  
& Cho [26] and Lahetoolle, Lawler, Lenstra & Rinnooy- 
Karl [23]). If we ignore the operatioti release times (this, 
in gcncral, is possiblc sincc thc optimal makcspan without 
the release times is no nmre than that with the readiness 
times), we can apply an O(n + m log rn) algorithm for 
QIv~L~~L~C,... by Goa~aled & Sahni [22]. Sin~ilarly, we 
obtain a good l m r  estimation for RlriC,,, by solving 
its preen~ptive version by linear programming (see Lawler 
& Labetoulle [241). 

The above estirr~atior~s pruvide us with the earliest puu- 
sible hishing time, c', of the kernel operations. Let 
q = nlin{qi, i E c") and d be the maximal process- 
ing time among all emerging operations in S. Then 
LI  (C") = c* + q - d is clearly a lower bound on the 
n~akespan of AI,,. This houn~d can he fi~rther strengthen. 
Eivlier we saw hou. the sequence C is obtained after the 
application of no more than l M h l  emerging operations 
(which wcrc thc latcst schcdulcd oncs in S). Dcnotc this 

set of emerging operations by E and the set of all emerg- 
ing operations in S by E. In general, emerging operations 
from E \ E can be applied inst,exl of solne emerging o p  
crations of E (notc that crncrging operations Fro111 tlm 
latter set precede those from E in S). Indeed, if emerg- 
ing operations 11, ..., 1, are d l  r e l e a 4  by time t, they 
will be succeusivdy sch~duled in S till tlre rrrornent when 
the earliest non-emerging operation gets ready. Thus n7e 
may have a choice! which emerging operations to apply. 
By cl~oosing emerging operatio~~s from E we guarantee 
that the sequence C will start without any delay; at  the 
same time, the resched~~led after C e~nerging operations 
of E having "long enough tail may ohvionsly atfect the 
resnlted n~akespan (i.e. the ~r~sxinlal f ir11 job completion 
time. 

This consideration makes it clear that by taking into 
the Rcconnt the actual tails and processing times of the 
resclleduled emerdng operations, the earlier bound might 
be furtt~cr i~nproved. A sin~plc solution inight be as fol- 
lows. Assnme on each machine from Mb an operation of 
C is scheduled (otherwise. as it is easilv seen. there is no 
need in t11is iulhitiona~ wlilnation). At ~east'oue emerg- 
ing operat,ion should be rescheduled after C: hence: any 
E' C E ulll be fully completed no earlier than at  time 
L2(E1) = c' + rl' + q', where c' is the minimal finishing 
time of the operations of C schedoled last 011 one of the 
n ~ a c t ~ i n ~ u  of MI., d = n~ir~{d,p, i E E .  P E M b )  and 
q' = min{qi, i E E}. Thus L I . ~  = max(L~(c).Ly(E)} is 
a lower bound for A I ~ .  

4 Conclusions 

Some of the developed glohal estimations are strict low-r 
bounds a i d  the others not. The latter bounds, which were 
obtained in almost h e a r  time, can be used in any solu- 
tion tree based approxin~ation algorithm, snch aq, for ex- 
ample, bean1 search. Similarly, applying our strict lower 
bounds in T, we obtain exact brar~cl~-and-bound algc- 
rithn~s. Oncc implcn~cntcd and tcstcd, thc abovc a lge  
rithn~s can be nsed a? an algorithn~ic engine for a decision 
support system for generalized job shop scheduling pro& 
Ie~ns. The presented algorithms can be easily agregated 
by an additional graph-con~pletion n~echanis~n for taking 
into the account the transportation t i m s  a ~ ~ d  other real- 
life 101, sbop sd~ednling proble~iems [Il l  and [12]. 
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