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Abstract—This paper discusses large-scale single-machine 
rescheduling problems with efficiency and stability as 
bi-criterion, where more than one disruption arises during the 
execution of an initial schedule. Partial rescheduling (PR), 
which involves only partial unfinished schedules, is adopted in 
response to each disruption and forms a PR sub-problem. The 
remaining unfinished schedule is just right-shifted or not 
following the solution of PR sub-problem. During the process of 
schedule execution, a rolling PR strategy is driven by 
disruption events. Each global rescheduling consisting of two 
segments of local rescheduling revises the original schedule into 
a new schedule, which is exactly the next original schedule. Two 
types of local objective functions are designed for PR 
sub-problems locating in the process or the terminal of original 
schedules respectively, where the global information of 
bi-criterion problems is reflected to an extent. The analytical 
results demonstrate that each local PR objective is consistent to 
the global one. For PR sub-problems with such a particular 
criteria, a genetic algorithm is used to solve it. Extensive 
computational experiments were performed. Computational 
results show that the rolling PR can greatly improve schedule 
stability with a little sacrifice in schedule efficiency and 
consistently outperforms the rolling right-shift rescheduling. 
The rolling PR strategy is effective to address large-scale 
rescheduling problems with more disruptions. 

I. INTRODUCTION

deterministic initial schedule is often produced in 

advance in order to direct production operations and to 

support other planning activities such as tooling, raw 

material delivery, and resource allocation. However, 

unforeseen disturbances, such as rush orders, excess 

processing time, and machine breakdown etc, will arise 

during the execution of such an initial schedule. 

Rescheduling is usually performed to deal with such 

dynamic environments. A new schedule can be obtained by 

revising the unfinished schedule on occurrence of 

disruptions.  

Reactive rescheduling can be performed timely driven by 

disruption events or periodically [1]. Two types of reactive 

rescheduling strategies were used in the existing literatures. 
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Full rescheduling (FR), where all unfinished jobs are 

rescheduled to satisfy certain objective, can be merely 

applied in problems with small or medium size though it can 

result in an optimal solution. Right-shift rescheduling (RSR), 

where all unfinished jobs are just slid to the right as far as 

necessary to accommodate (absorbing idle time) the 

disruption, cannot guarantee the solution quality though it 

requires less computational efforts. Compromising FR and 

RSR, partial rescheduling can provide a trade-off between 

solution quality and computational cost through considering 

only partially unfinished jobs.  

The practical solution of rescheduling problems requires 

satisfaction of two often conflicting goals: (1) to retain 

schedule efficiency, i.e. to keep the schedule performance 

less degraded as possible as we can, and (2) simultaneously 

to minimize the cost impact of the schedule deviation. Wu et 

al. [2] addressed rescheduling problems with efficiency and 

stability, where only one disruption occurs. Sabuncuoglu et 

al. [1] used a PR strategy to deal with the large-scale 

rescheduling problems. However, the schedule stability is 

often poor because of merely considering the schedule 

efficiency.

During the execution of a large-scale initial schedule, 

more than one disruption possibly arises due to the long 

execution duration. Furthermore, the number of unfinished 

operations at one disruption is likely too large to reschedule. 

Following the experiences of Wang et al. addressing 

large-scale scheduling problems in [3] and [4], we develop a 

rolling PR strategy to deal with large-scale rescheduling 

problems with efficiency and stability for single machine on 

occurrence of more disruptions in this paper.  

II. SINGLE-MACHINE RESCHEDULING WITH EFFICIENCY AND 

STABILITY

Consider a single-machine problem with release times to 

minimize the makespan. There are  jobs to be scheduled. 

A job denoted as  has a release time , a processing time 

, and a tail , which represents the processing time on 

subsequent machines in the system. These three 

aforementioned parameters of each job are known a priori. 

For a solution  for this problem, the makespan, denoted 

as

n
i ir

ip iq

S
( )M S , is defined as follows: 

( ) max( )i i i
i S

M S b p q             (1) 

where  is the beginning time of job i  in . This 

problem is NP-hard 

ib S

[5].
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A minimal makespan initial schedule  can be 

generated without considering any disruptions. However, 

after a disruption occurs, at the moment u , when the 

machine returns to service, the unfinished jobs should be 

rescheduled. The release times of all unfinished jobs are 

updated as follows: 

0S

max( , )ir u ir                  (2) 

In this paper, the schedule stability, denoted as , is 

measured by the schedule deviation based on initial schedule, 

i.e.

( )D S

0
( ) | |i i

i S

D S b b                (3) 

where  is the beginning time of job  in .
0

ib i 0S

The rescheduling problems with efficiency and stability 

are to minimize both (1) and (3). An optimization problem 

with such two goals can be formulated to be a problem with 

the following objective 

min ( ) ( ) ( )
S

J S D S M S            (4) 

This problem is also NP-hard [2].

III. PR SUB-PROBLEM AT EACH DISRUPTION

In large-scale dynamic circumstances with more 

disruptions, FR strategy is neither beneficial nor needed 

because many operations are probably rescheduled more 

than one time. RSR strategy does not take any consideration 

of objective optimality. Therefore, PR strategy will be a 

better choice due to its compromise between FR and RSR.  

In this paper, we use  to represent the rescheduling 

moment driven by a disruption. At , the original schedule 

refers to the new schedule obtained through rescheduling at 

the previous disruption. Obviously, the original schedule for 

the first rescheduling, when , is exactly the initial 

schedule. The first rescheduling revises the first original 

schedule into the first new schedule, which will be 

implemented until the next disruption occurs. In a general 

way, the original schedule at  is the new schedule at 

t
t

1t

t 1t ,

denoted as .( 1)S t

In the PR strategy of the following sections, the global 

rescheduling consists of two segments of local rescheduling. 

At each disruption, from the interrupted jobs on, all 

unfinished jobs are divided into two portions. The first 

portion from the beginning jobs of the original schedule, 

which forms a PR sub-problem, is totally rescheduled with 

respect to a certain criteria, whereas for the jobs of the 

remaining portion, RSR is performed following the solution 

of the PR sub-problem. In such a rescheduling pattern, the 

global new schedule after each disruption consists of the PR 

solution and the RSR solution.  

Let  be the set of all jobs. Let  be the set of 

finished jobs at t  and  be the partial original 

schedule for . Let  be the set of the unfinished jobs 

at  (In this paper, we assume that the interrupted job 

should be resumed in rescheduling and included into 

N tN

( )S t

tN tN

t

tN ),

then tN N Nt

Definition 1. At , the set of unfinished jobs involved by 

a PR sub-problem is referred to as a PR-horizon, denoted as 

. The size of PR-horizon refers to the number of jobs in 

, denoted as 

.

t

tN

tN tN .

Definition 2. Let the initial schedule for a single-machine 

scheduling problem be , the RSR solution 
0S RS  to  is 

referred to as 

0S

t -RSR solution to  if the first 

unfinished job is shifted to right by a time interval 

0S
t .

Let  be the set of the remaining jobs in tN tN  except 

, i.e. . The number of jobs in  is 

denoted as . The global rescheduling involves the PR 

for  and the RSR for . At , the new schedule 

consists of the local new schedule for  and the latter 

new schedule for . 

tN t tN N Nt

|

tN

| tN

tN tN t

tN

tN

The ideas of match-up rescheduling (MUR) came from 

Bean and Birge [6]-[7]. When a disruption occurs, 

rescheduling involving a transitional period of the initial 

schedule can accommodate the disruption and make the new 

schedule completely consistent to the initial schedule from 

the terminal point of the transitional schedule on. 

Rescheduling with respect to such goal is referred to as 

MUR. The terminal point of the transitional schedule is 

referred to as a match-up point and the transitional period is 

referred to as a match-up time. Suppose that a match-up 

point was forced on the initial schedule in advance, a new 

schedule would match up the initial one from the match-up 

point on only if enough idle time exists in the match-up time, 

and if not, there must be a delay for the match-up point. In 

the following, we present the definition of “match-up delay” 

and apply it in the design of criteria for PR sub-problems. 

Definition 3. For a forced match-up point of initial 

schedule, a time interval t  is referred to as a match-up 

delay if the completion time of match-up point is delayed by 

t  in the new schedule. When , there is a non-delay 

match-up of the new schedule to the initial schedule. 

0t

At , when a disruption occurs in the unfinished original 

schedule 

t
( 1)S t , from the interrupted point on, the partial 

schedule based on PR-horizon  is denoted as . In 

order to implement the global PR strategy, the completion 

time of , which is denoted as 

tN ( )tS N

( )tS N ( 1)C t , would be 

regarded as a match-up point forced in ( 1)S t . After 

rescheduling, the new schedule for  is denoted as 

, whose completion time is denoted as . If 

, the match-up delay in  is 

tN

( )
p

tS N ( )
pC t

( ) ( 1)
pC t C t tN

( ) ( ) ( 1)
p pC t C t C t . Else if ( ) ( 1)

pC t C t , the 

match-up delay ( ) 0
pC t , i.e. a non-delay match-up of 

2
73

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Scheduling (CI-Sched 2007)



new schedule to the original schedule can be obtained in 

. Let the -RSR solution to  for  be 

. Thus, the new schedule  consists of 

 and .

tN ( )
pC t ( 1)S t tN

( )
pr

tS N ( )S t

( )
p

tS N ( )
pr

tS N

Two types of local objective functions for PR 

sub-problems are defined as follows based on PR-horizon 

 locating in the process and the terminal of original 

schedules respectively: 

tN

( )

min { | ( ) ( 1) | | | [ ( )]}
p

t
t

p p
t i i t

S N i N

J b t b t N C t | | 0tN  (5) 

( )

min { | ( ) ( 1) | ( ( ))}
p

t
t

p
t i i

S N i N

J b t b t M S t | | 0tN   (6) 

Where  denotes the beginning time of job  in 

 and  denotes the beginning time of job  in 

.

( 1)ib t i

( 1)S t ( )
p

ib t i

( )
p

tS N (5) is designed for  locating in the process of 

original schedules. The local objective of PR sub-problems 

is to minimize both the schedule deviation and the match-up 

delay  for . Since the consideration of the 

match-up delay in PR-horizon would make the new schedule 

inserted by less idle time, it is reasonable to use the number 

of latter jobs as the weight for the match-up delay in case 

more idle time greatly puts off the latter jobs. In fact, the 

second item is exactly an upper bound for the schedule 

deviation in  when the match-up delay for  is 

. In such a pattern, the schedule deviation for 

happens to be considered in the PR local rescheduling and it 

results in that the global information is considered to an 

extent in local PR. Such an elaborately designed criteria will 

make the PR strategy more effective.  

tN

( )
pC t tN

tN tN

( )
pC t tN

When  locates in the terminal of original schedules, 

the set  is empty and we directly consider the makespan 

in PR sub-problems according to 

tN

tN

(6).

IV. ROLLING PR BASED GENETIC ALGORITHM

When disruptions occur during the schedule execution, 

PR is driven by disruption events in a rolling mechanism. 

Let x  be the number of disruptions, the rolling PR is 

performed as follows: 

Step 1 Minimize the makespan to generate the initial 

schedule  without considering any disruption, 

let , then the first original schedule 

;

0S
1t
0

(0)S S

Step 2 Implement the original schedule ( 1)S t  until a 

disruption occurs, when the moment is noted as 

;td
Step 3 For a specified disruption duration , compute 

the time  for the machine returning to service, 

, the release times of unfinished jobs 

in 

tD

tu

t tu d Dt

N  are updated according to (2);

Step 4 The first  jobs from the beginning of k ( )tS N

are included into the PR-horizon , note the 

completion time of , , calculate the 

number of jobs in ,

tN

( )tS N ( 1)C t

tN | | (| |t tN n N N )t

t

(Here  is the specified size of PR-horizon); k

Step 5 If , the PR sub-problem is formed 

according to 

| | 0tN

(5). Its solution , the 

completion time of ,  as well as 

the match-up delay  in  can be 

obtained. Let  be the -RSR 

solution for  to the original schedule. Thus the 

new schedule is ;

Else if 

( )
p

tS N

( )
p

tS N ( )
pC t

( )
pC t tN

( )
pr

tS N ( )
pC t

tN

( ) ( ) ( ) ( )
p pr

t tS t S N S N S N

| | 0tN , the PR sub-problem is formed 

according to (6) and the solution  can be 

obtained. Thus the new schedule is 

. Let . If 

( )
p

tS N

( ) ( ) ( )
p

t tS t S N S N 1t t t x , go 

to Step 2, else go to Step 6; 

Step 6 The global new schedule  is the last new 

schedule, i.e. 

S
( )S S x . Calculate the global 

schedule makespan ( )M S  and the schedule 

deviation , the objective ( )D S J S  defined as 

(4) can be obtained; 

In this paper, since the size of PR sub-problems is 

restricted, a genetic algorithm can be used to solve 

sub-problems formulated by (5) or (6). We can encode the 

schedules and generate the initial population in the similar 

manners to Wu et al. [2]. However, since our objectives 

differ from those of Wu et al., the genetic algorithm in [2]

should be modified.  

For the bi-criterion scheduling problem, Wu et al. encode 

by converting the sequence into a string of “artificial tails”. 

Let 1, ,j n  index jobs in  ordered according to the 

sequence to be encoded. An artificial tail is defined as 

follows: 

tN

0kq ,
1j j jq q p .

Thus the earlier a job appears in the sequence, the longer 

its artificial tail will be. A list, , ordered by the 

job number is maintained for each solution as its 

“chromosome”. This encoding can be manipulated by a 

typical crossover operator, and can be evaluated by applying 

Schrage’s heuristic 

1{ , , }kq q

[8], which guarantees schedule 

feasibility. 

To start the genetic algorithm, an initial solution 

population must be generated. Two desirable properties of 

the initial population are (1) high quality solutions 

(corresponding to fitness), and (2) diverse solutions. A 

heuristic method developed by Wu et al. is used to generate 

the initial population. The method for initial population 
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generation uses the solutions produced by a fast, 

parametrically varied heuristic termed “  grid search”, 

which allow varying emphasis to be placed on the two 

criteria.

Once the initial population is generated, each solution in 

the population is encoded by the string of artificial tails, 

, used to generate the schedule. From the 

current population, , a number of “more fit” solutions 

will be selected for reproduction based on the fitness 

measure.  

1{ , , }yQ q qk

P

A critical element of a genetic algorithm is the measure of 

solution fitness. The fitness measure represents the selection 

probability of a solution during the search. For equation (5),

the fitness measure for a given PR solution, , is then 

defined as follows: 

( )
y

tS N

max max
[ ] [

l l
y t ty t tj

j P

]f J J J J

Where 

max

( )

| ( ) ( 1) | | | [ ( ) ( 1)]
c

t

c m
t i i t

i S N

J b t b t N C t C t ,

( )

| ( ) ( 1) | | | [ ( ) ( 1)]
y

t

y y
ty i i t

i S N

J b t b t N C t C t .

Where  is the PR solution by Carlier’s algorithm ( )
c

tS N

[8],  and  are the beginning times of job  in 

 and .  is the completion time of the 

minimum deviation PR solution,  is the completion 

time of .  is a constant used for tuning purposes. 

As  increases, the genetic algorithm becomes more 

selective when generating off-spring solutions. With a large 

-value, only the “most fit” solution will survive and the 

algorithm converges prematurely in one step. 

( )
c
ib t ( )

y
ib t i

( )
c

tS N ( )
y

tS N ( )
mC t

( )
yC t

( )
y

tS N l

l

l

The genetic algorithm can be summarized as follows: 

Step 1 Initialization: start with an initial set of tuning 

parameters [i.e. , population size (ps), mutation 

probability (mp), and number of generations (ng)], 

generate an initial population by “

l

 grid 

search”, compute the fitness yf , ,

and save the set of artificial tails, ,

corresponding to each solution .

( )
y

tS N P

yQ

( )
y

tS N

Step 2 , start iterations. 1g

Step 3 Copy the set of mb  best solutions from the 

current population to the next generation. 

Step 4 Perform crossover ( )ps mb 2

t

 times as follows: 

select a distinct pair of solutions 

 randomly from the current 

population based on probabilities: 

( ( ), ( ))
y j

tS N S N

yf  and jf ; (b) 

generate two crossover sites 1x  and 2x  ( 1 2x x )

from a discrete uniform distribution between 1 and 

; (c) swap the sublist { ,  of Q

with the corresponding sublist in 

| tN | , }y ykq q1 y

1{ , , }j jQ q q jk , apply Schrage’s heuristic to 

obtain the new schedule, compute the criteria 

tyJ , tjJ ; (d) copy both off-spring solution to the 

next generation, compute yf , jf , and save ,yQ

jQ .

Step 5 For each solution , apply mutation with 

probability, . Mutation is performed by setting 

( )
y

tS N

mp

[0,1]uniform , then recomputed all the 

artificial tails in  by yQ (1 )i iq q iq .

Step 6 Set the generation as the current population, 

1g g , if g ng , go to step 3, else stop. 

V. ANALYSIS OF ROLLING PR

Lemma.  In the rolling PR, for a match-up delay ( )C t

in ,tN ( ) ( 1) ( )
t

i i t
i N

b t b t N C t .

Proof. Assumed that no idle time exists in the original 

schedule for , the match-up delay  will make the 

beginning time of each job delayed by , then the 

schedule deviation for  between the new schedule and 

the original schedule, which is formulated as 

tN ( )C t

( )C t

tN

( ) ( 1)

t

i i
i N

b t b t , is exactly ( )tN C t . This situation 

embodies the largest schedule deviation among all situations 

and it is the worst case. Therefore, if there is idle time in the 

original schedule for , the schedule deviation must be 

less than 

tN

( )tN C t  due to idle time being absorbed. 

Anyway, ( ) ( 1) ( )
t

i i t
i N

b t b t N C t .            

Following the aforementioned rolling PR, if the number of 

disruptions is x , the global new schedule goes through 

 from  during the execution. Since 

 is exactly the ultimate new schedule , the schedule 

deviation between  and  is accumulatively realized 

in 

(1), (2), ( )S S S x 0S

( )S x S

S 0S
x  times of local rescheduling. Therefore, we have the 

following Theorem 1.  

Theorem 1. In rolling PR driven by more disruptions, 

each local PR objective is consistent with the global 

objective, whose optimization is realized separately in each 

local rescheduling. The sum of local PR objectives is an 

upper bound for the global one, i.e.  

1

( ) ( )
x

t
t

J D S M S J

Proof.
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The proof procedure as well as the result shows that each 

local objective is a portion of the global objective and local 

rescheduling partly optimizes the global objective while 

optimizing the local objective. Therefore, each local 

objective is consistent with the global objective, whose 

optimization is realized separately in each local rescheduling. 

The sum of all local objectives is an upper bound for the 

global one.                    

From the conclusions in [2], we can easily obtain the 

following theorem. 

Theorem 2. After a local PR, a non-delay match-up of 

new schedule to original schedule can be obtained as long as 

enough idle time exists in the original schedule for 

PR-horizon. 

The global objective can be optimized if each local 

objective is separately optimized in each local PR. We 

describe the conclusions as follows: 

Corollary 1. If there is enough idle time in each 

unfinished original schedule, the rolling PR can make each 

new schedule non-delay match-up its original schedule 

within each PR-horizon and the sum of local objectives is 

exactly the global objective. 

Corollary 1 demonstrates that the upper bound in 

Theorem 1 can be reached and it is a tight upper bound. 

If RSR is performed instead of PR at each disruption, such 

rolling rescheduling is referred to as rolling RSR. 

Comparing rolling PR with rolling RSR, we can obtain the 

following corollary:  

Corollary 2. The sum of local objectives in rolling PR is 

no more than that in rolling RSR.  

VI. COMPUTATIONAL RESULTS AND ANALYSIS

In tests of this section, the initial schedule was generated 

by use of Schrage’s algorithm [8]. All procedures were 

coded in C language and ran in the Microsoft Visual C 6.0 

under the Windows XP operating environment. All tests ran 

on a computer with Pentium 4-M CPU 1.80GHz. Three 

disruptions would occur during a run. The durations of 

disruption range from five percent to ten percent of the 

processing time of the initial schedule. We assumed that the 

disruption would not occur among the last twenty jobs 

because the number of the rescheduled jobs is too few to 

make rescheduling trivial in those cases.  

Problems were randomly generated using a format similar 

to that used by Ovacik et al. [9], where the range parameter 

 is used to control how rapidly jobs are expected to arrive 

for processing. When  value is 0.20, jobs arrive rather 

rapidly so that almost no idle time exists in the initial 

schedule. However, the situation when  value is 2.00 is 

the reverse, jobs arrive rather slowly so that much idle time 

is inserted in the initial schedule. Therefore, the problems 

with three  values actually represent three situations 

where different amount of idle time exists in the initial 

schedules. 

0
( ) | | | ( ) (0) |i i i i

i N i N

D S b b b x b

| ( ) ( 1) ( 1) ( 2) ( 2) (1) (0) |i i i i i i i
i N

b x b x b x b x b x b b

{| ( ) ( 1) | | ( 1) ( 2) | | (1) (0) |}i i i i i i
i N

b x b x b x b x b b

1

| ( ) ( 1) |
x

i i
i N t

b t b t
1

| ( ) ( 1) |
x

i i
t i N

b t b t

1

{ | ( ) ( 1) | | ( ) ( 1) | | ( ) ( 1) |}
t t t

x

i i i i i i
t i N i N i N

b t b t b t b t b t b t

Due to Lemma 

1

( ) { | ( ) ( 1) | | | ( )}
t

x

i i t
t i N

D S b t b t N C t

1

( ) ( ) { | ( ) ( 1) | | | ( )} ( )
t

x

i i t
t i N

J D S M S b t b t N C t M S

1

1

{ | ( ) ( 1) | | | ( )} { | ( ) ( 1) | ( )}
t l

x

i i t i i
t i N i N

b t b t N C t b x b x M S

1

x

t
t

J

In the genetic algorithm for PR sub-problem, we used 

2l , population size , mutation probability 100ps

0.05mp , and the number of generations 200ng . When 

the  procedure was used to generate initial population, 

0.01 and 0.5 .

A. Testifying the conclusions for rolling PR 

Theorem 1 indicates that the sum of local objectives is an 

upper bound of the global objective. The gap between the 

upper bound and the actual global objective is affected by 

many factors, among which we only examined the effect of 
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the amount of idle time in initial schedule and the size of 

PR-horizon. 

Table 1 shows the results for 200-job problems. Three 

values represent respectively three situations of idle time 

amount among the initial schedule: the larger the value of 

 is, the more the idle time is. The PR-horizon size was 

specified to be total four types, which is 10-job, 20-job, 

30-job, and 40-job. Each entry was obtained from the 

statistic results of 20 instances. 400 problems are tested. The 

percentage ratio of the actual global objective to the sum of 

local objectives is calculated as 
1

100
x

tt
J J . The 

smaller the percentage ratio is, the larger the gap between 

the global objective and the upper bound is. The cases where 

the ratio reached 100% represents zero-gap cases, i.e. the 

actual global objective reached the upper bound and the sum 

of local objectives is exactly the actual global one. 

PR-horizon size (

Fig. 1.  CPU time of rolling PR for 200-job problems with 1.00 range 

parameter 

The computational results of Table 1 indicate that the gap 

between the upper bound and the global objective is strongly 

affected by the idle time in the initial schedule as well as the 

PR-horizon size. If there is less idle time among the initial 

schedule, the gap is smaller and will be increased as the 

PR-horizon size gets large. When the PR-horizon size is 30 

or 40 and  is large, zero-gap can be reached, which 

demonstrates that the PR-horizons are large enough so that 

enough idle time is accumulated to make each new schedule 

non-delay match-up its original schedule in PR-horizons, i.e. 

the conditions of Corollary 1 can be satisfied. 

B. Comparing rolling PR with rolling RSR 

We can use a RSR solution as a baseline where our 

approach is compared due to its low computational burden. 

The rolling PR and the rolling RSR were respectively 

performed in response to disruptions during the execution of 

initial schedule. The percentage improvements of rolling PR 

over rolling RSR were calculated as ( )RSR PR PR .

Table 2, 3 and 4 show the results of 200-job problems with 

three  values. Each entry was obtained from the statistic 

results of 20 problems.  

It is obviously shown that the schedule stability for rolling 

PR was largely improved over that for rolling RSR. Though 

the improvements of schedule efficiency were trivial in most 

cases and even declined a little in some cases, the overall 

objective for rolling PR was obviously improved over that 

for rolling RSR. The improvements were obviously getting 

larger as PR-horizon size increases. The computational 

results also indicate that the improvements of schedule 

stability are more when more idle time exists in the initial 

schedule. 

Figure 1 presents CPU time paid by rolling PR with 

different PR-horizon sizes. It indicates that more CPU time 

should be paid for more improvements achieved by rolling 

PR with larger PR-horizon. 

VII. CONCLUSIONS

Aiming at large-scale rescheduling problems with 

disruptions, the rolling partial rescheduling strategy driven 

by disruption events is adopted in this paper. The new 

schedule is required to satisfy two goals: efficiency and 

stability. Two particular types of PR sub-problems are 

respectively designed for PR-horizon locating in the process 

and the terminal of original schedules. A genetic algorithm 

is used to solve PR sub-problems. The relation between local 

PR objectives and the global objective is analyzed and 

conclude that the sum of local PR objectives is an upper 

bound for the global one. Extensive computational 

experiments were performed. The computational results 

show that the rolling PR can greatly improve the schedule 

stability with a little sacrifice in schedule efficiency and 

consistently outperforms the rolling RSR. The rolling PR 

based on genetic algorithm is effective for large-scale 

rescheduling problems with more than one disruption. 

REFERENCES

[1] S. M. Bayiz, “Analysis of reactive scheduling problems in a job shop 

environment,” European Journal of Operational Research, 2000, 126: 

567-586. 

[2] D. S. Wu, R. H. Storer, and P. C. Chang, “One-machine rescheduling 

heuristics with efficiency and stability as criteria,” Computers in 

Operations Research, 1993, 20(1): 1-14. 

[3] B Wang, Y. G.  Xi, and H. Y. Gu, “An improved rolling horizon 

procedure for single-machine scheduling with release times,” Control 

and Decision 2005, 20(3): 257-260 

[4] B Wang, Y. G.  Xi, and H. Y. Gu, “Terminal penalty rolling 

scheduling based on an initial schedule for single-machine scheduling 

problem,” Computers and Operations Research, 2005, 32(11): 

3059-3072. 

[5] M. R. Garey, D. S. Johnson, “Computers Intractability”, Freeman, San 

Francisico, Calif., 1979. 

[6] J. C. Bean, J. R. Birge, “Match-up real-time scheduling,” Proceedings 

of the Symposium on Real Time Optimization in Automated 

Manufacturing Facilities, NBS publication 724, National Bureau of 

Standards, 1985: 197-212. 

[7] J. C. Bean, J. R. Birge, J Mittenehal, and C. E. Noon, “Match-up 

scheduling with multiple resources, release dates and disruption,” 

Operations Research, 1991, 39(3): 470-483. 

[8] J. Carlier, “The one-machine sequencing problem,” European Journal 

of Operational Research, 1982, 11: 42-47. 

[9] I. M. Ovacik, R. Uzsoy, “Rolling horizon algorithms for a 

single-machine dynamic scheduling problem with 

sequence-dependent setup times,” International Journal of Production 

Research, 1994, 32(6): 1243-1263. 

6
77

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Scheduling (CI-Sched 2007)



TABLE 1

THE PERCENTAGE OF THE ACTUAL GLOBAL PERFORMANCE VERSUS THE SUM OF LOCAL PR OBJECTIVES

0.20 1.00 2.00 Range parameter 

( )

PR-horizon Size 

( ) Ave. Max. Min. Ave. Max. Min. Ave. Max. Min. 

10 97.1 97.6 96.5 90.1 97.5 60.6 31.9 45.3 24.3 

20 94.1 95.2 93.3 87.6 95.0 57.8 47.8 89.3 27.2 

30 91.3 92.8 90.3 84.6 92.5 55.1 70.0 100 33.7 

40 87.5 89.1 84.8 80.2 89.9 68.4 91.5 100 76.1 

TABLE 2

THE PERCENTAGE IMPROVEMENTS OF ROLLING PR OVER ROLLING RSR FOR 200-JOB PROBLEMS: 0.20

( )D S ( )M S ( ) ( )J D S M S
PR-horizon Size 

( )
Ave. Max. Min. Ave. Max. Min. Ave. Max. Min. 

10 1.52 1.97 0.80 0 0 0 1.41 1.85 0.75

20 4.67 6.61 3.04 0 0 0 4.30 6.01 2.87

30 7.97 14.3 5.14 0 0 0 7.33 12.9 4.81

40 12.1 17.3 8.48 0 0 0 10.6 15.6 7.95

TABLE 3

THE PERCENTAGE IMPROVEMENTS OF ROLLING PR OVER ROLLING RSR FOR 200-JOB PROBLEMS: 1.00

( )D S ( )M S ( ) ( )J D S M S
PR-horizon Size 

( )
Ave. Max. Min. Ave. Max. Min. Ave. Max. Min. 

10 1.39 2.54 0.83 0.04 0.61 -0.21 1.22 2.10 0.74

20 4.98 8.53 2.54 0.99 4.09 -1.36 4.47 7.09 2.37

30 8.37 15.6 4.01 2.08 5.99 -1.08 7.54 12.8 3.74

40 13.2 31.8 7.84 3.43 8.34 0 11.7 24.1 7.26

TABLE 4

THE PERCENTAGE IMPROVEMENTS OF ROLLING PR OVER ROLLING RSR FOR 200-JOB PROBLEMS: 2.00

( )D S ( )M S ( ) ( )J D S M S
PR-horizon Size 

( )
Ave. Max. Min. Ave. Max. Min. Ave. Max. Min. 

10 4.95 9.37 1.62 0.06 0.47 0 2.48 4.07 1.05

20 13.1 20.6 8.28 0.10 1.11 0 6.73 10.3 3.37

30 17.1 26.1 7.52 0.07 1.38 0 8.82 14.6 3.38

40 21.4 30.5 12.3 0.05 0.52 0 11.3 15.9 4.79
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