
Rolling Partial Rescheduling Driven by Disruptions on
Single-machine Based on Genetic Algorithm

Bing Wang, and Xiaoying Hong

Abstract—This paper discusses large-scale single-machine
rescheduling problems with efficiency and stability as
bi-criterion, where more than one disruption arises during the
execution of an initial schedule. Partial rescheduling (PR),
which involves only partial unfinished schedules, is adopted in
response to each disruption and forms a PR sub-problem. The
remaining unfinished schedule is just right-shifted or not
following the solution of PR sub-problem. During the process of
schedule execution, a rolling PR strategy is driven by
disruption events. Each global rescheduling consisting of two
segments of local rescheduling revises the original schedule into
a new schedule, which is exactly the next original schedule. Two
types of local objective functions are designed for PR
sub-problems locating in the process or the terminal of original
schedules respectively, where the global information of
bi-criterion problems is reflected to an extent. The analytical
results demonstrate that each local PR objective is consistent to
the global one. For PR sub-problems with such a particular
criteria, a genetic algorithm is used to solve it. Extensive
computational experiments were performed. Computational
results show that the rolling PR can greatly improve schedule
stability with a little sacrifice in schedule efficiency and
consistently outperforms the rolling right-shift rescheduling.
The rolling PR strategy is effective to address large-scale
rescheduling problems with more disruptions.

I. INTRODUCTION

deterministic initial schedule is often produced in

advance in order to direct production operations and to

support other planning activities such as tooling, raw

material delivery, and resource allocation. However,

unforeseen disturbances, such as rush orders, excess

processing time, and machine breakdown etc, will arise

during the execution of such an initial schedule.

Rescheduling is usually performed to deal with such

dynamic environments. A new schedule can be obtained by

revising the unfinished schedule on occurrence of

disruptions.

Reactive rescheduling can be performed timely driven by

disruption events or periodically [1]. Two types of reactive

rescheduling strategies were used in the existing literatures.

Manuscript received October 29, 2006. This work was supported partly

by Science Research Foundation of Shandong University at Weihai

(XZ2005001)

Bing Wang (corresponding author) is with the Department of

Automation, School of Information Engineering, Shandong University at

Weihai, Shandong 264209, People’s Republic of China. (Telephone number:

0086-0631-2982649; fax: 0086-0631-5688338; e-mail:

wangbing@sdu.edu.cn).

Xiaoying Hong is with the Department of Automation, School of

Information Engineering, Shandong University at Weihai, Shandong

264209, People’s Republic of China. (e-mail: snowbabyhong@sohu.com)

Full rescheduling (FR), where all unfinished jobs are

rescheduled to satisfy certain objective, can be merely

applied in problems with small or medium size though it can

result in an optimal solution. Right-shift rescheduling (RSR),

where all unfinished jobs are just slid to the right as far as

necessary to accommodate (absorbing idle time) the

disruption, cannot guarantee the solution quality though it

requires less computational efforts. Compromising FR and

RSR, partial rescheduling can provide a trade-off between

solution quality and computational cost through considering

only partially unfinished jobs.

The practical solution of rescheduling problems requires

satisfaction of two often conflicting goals: (1) to retain

schedule efficiency, i.e. to keep the schedule performance

less degraded as possible as we can, and (2) simultaneously

to minimize the cost impact of the schedule deviation. Wu et

al. [2] addressed rescheduling problems with efficiency and

stability, where only one disruption occurs. Sabuncuoglu et

al. [1] used a PR strategy to deal with the large-scale

rescheduling problems. However, the schedule stability is

often poor because of merely considering the schedule

efficiency.

During the execution of a large-scale initial schedule,

more than one disruption possibly arises due to the long

execution duration. Furthermore, the number of unfinished

operations at one disruption is likely too large to reschedule.

Following the experiences of Wang et al. addressing

large-scale scheduling problems in [3] and [4], we develop a

rolling PR strategy to deal with large-scale rescheduling

problems with efficiency and stability for single machine on

occurrence of more disruptions in this paper.

II. SINGLE-MACHINE RESCHEDULING WITH EFFICIENCY AND

STABILITY

Consider a single-machine problem with release times to

minimize the makespan. There are jobs to be scheduled.

A job denoted as has a release time , a processing time

, and a tail , which represents the processing time on

subsequent machines in the system. These three

aforementioned parameters of each job are known a priori.

For a solution for this problem, the makespan, denoted

as

n
i ir

ip iq

S
()M S , is defined as follows:

() max()i i i
i S

M S b p q (1)

where is the beginning time of job i in . This

problem is NP-hard

ib S

[5].

A

72

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

A minimal makespan initial schedule can be

generated without considering any disruptions. However,

after a disruption occurs, at the moment u , when the

machine returns to service, the unfinished jobs should be

rescheduled. The release times of all unfinished jobs are

updated as follows:

0S

max(,)ir u ir (2)

In this paper, the schedule stability, denoted as , is

measured by the schedule deviation based on initial schedule,

i.e.

()D S

0
() | |i i

i S

D S b b (3)

where is the beginning time of job in .
0

ib i 0S

The rescheduling problems with efficiency and stability

are to minimize both (1) and (3). An optimization problem

with such two goals can be formulated to be a problem with

the following objective

min () () ()
S

J S D S M S (4)

This problem is also NP-hard [2].

III. PR SUB-PROBLEM AT EACH DISRUPTION

In large-scale dynamic circumstances with more

disruptions, FR strategy is neither beneficial nor needed

because many operations are probably rescheduled more

than one time. RSR strategy does not take any consideration

of objective optimality. Therefore, PR strategy will be a

better choice due to its compromise between FR and RSR.

In this paper, we use to represent the rescheduling

moment driven by a disruption. At , the original schedule

refers to the new schedule obtained through rescheduling at

the previous disruption. Obviously, the original schedule for

the first rescheduling, when , is exactly the initial

schedule. The first rescheduling revises the first original

schedule into the first new schedule, which will be

implemented until the next disruption occurs. In a general

way, the original schedule at is the new schedule at

t
t

1t

t 1t ,

denoted as .(1)S t

In the PR strategy of the following sections, the global

rescheduling consists of two segments of local rescheduling.

At each disruption, from the interrupted jobs on, all

unfinished jobs are divided into two portions. The first

portion from the beginning jobs of the original schedule,

which forms a PR sub-problem, is totally rescheduled with

respect to a certain criteria, whereas for the jobs of the

remaining portion, RSR is performed following the solution

of the PR sub-problem. In such a rescheduling pattern, the

global new schedule after each disruption consists of the PR

solution and the RSR solution.

Let be the set of all jobs. Let be the set of

finished jobs at t and be the partial original

schedule for . Let be the set of the unfinished jobs

at (In this paper, we assume that the interrupted job

should be resumed in rescheduling and included into

N tN

()S t

tN tN

t

tN),

then tN N Nt

Definition 1. At , the set of unfinished jobs involved by

a PR sub-problem is referred to as a PR-horizon, denoted as

. The size of PR-horizon refers to the number of jobs in

, denoted as

.

t

tN

tN tN .

Definition 2. Let the initial schedule for a single-machine

scheduling problem be , the RSR solution
0S RS to is

referred to as

0S

t -RSR solution to if the first

unfinished job is shifted to right by a time interval

0S
t .

Let be the set of the remaining jobs in tN tN except

, i.e. . The number of jobs in is

denoted as . The global rescheduling involves the PR

for and the RSR for . At , the new schedule

consists of the local new schedule for and the latter

new schedule for .

tN t tN N Nt

|

tN

| tN

tN tN t

tN

tN

The ideas of match-up rescheduling (MUR) came from

Bean and Birge [6]-[7]. When a disruption occurs,

rescheduling involving a transitional period of the initial

schedule can accommodate the disruption and make the new

schedule completely consistent to the initial schedule from

the terminal point of the transitional schedule on.

Rescheduling with respect to such goal is referred to as

MUR. The terminal point of the transitional schedule is

referred to as a match-up point and the transitional period is

referred to as a match-up time. Suppose that a match-up

point was forced on the initial schedule in advance, a new

schedule would match up the initial one from the match-up

point on only if enough idle time exists in the match-up time,

and if not, there must be a delay for the match-up point. In

the following, we present the definition of “match-up delay”

and apply it in the design of criteria for PR sub-problems.

Definition 3. For a forced match-up point of initial

schedule, a time interval t is referred to as a match-up

delay if the completion time of match-up point is delayed by

t in the new schedule. When , there is a non-delay

match-up of the new schedule to the initial schedule.

0t

At , when a disruption occurs in the unfinished original

schedule

t
(1)S t , from the interrupted point on, the partial

schedule based on PR-horizon is denoted as . In

order to implement the global PR strategy, the completion

time of , which is denoted as

tN ()tS N

()tS N (1)C t , would be

regarded as a match-up point forced in (1)S t . After

rescheduling, the new schedule for is denoted as

, whose completion time is denoted as . If

, the match-up delay in is

tN

()
p

tS N ()
pC t

() (1)
pC t C t tN

() () (1)
p pC t C t C t . Else if () (1)

pC t C t , the

match-up delay () 0
pC t , i.e. a non-delay match-up of

2
73

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

new schedule to the original schedule can be obtained in

. Let the -RSR solution to for be

. Thus, the new schedule consists of

 and .

tN ()
pC t (1)S t tN

()
pr

tS N ()S t

()
p

tS N ()
pr

tS N

Two types of local objective functions for PR

sub-problems are defined as follows based on PR-horizon

 locating in the process and the terminal of original

schedules respectively:

tN

()

min { | () (1) | | | [()]}
p

t
t

p p
t i i t

S N i N

J b t b t N C t | | 0tN (5)

()

min { | () (1) | (())}
p

t
t

p
t i i

S N i N

J b t b t M S t | | 0tN (6)

Where denotes the beginning time of job in

 and denotes the beginning time of job in

.

(1)ib t i

(1)S t ()
p

ib t i

()
p

tS N (5) is designed for locating in the process of

original schedules. The local objective of PR sub-problems

is to minimize both the schedule deviation and the match-up

delay for . Since the consideration of the

match-up delay in PR-horizon would make the new schedule

inserted by less idle time, it is reasonable to use the number

of latter jobs as the weight for the match-up delay in case

more idle time greatly puts off the latter jobs. In fact, the

second item is exactly an upper bound for the schedule

deviation in when the match-up delay for is

. In such a pattern, the schedule deviation for

happens to be considered in the PR local rescheduling and it

results in that the global information is considered to an

extent in local PR. Such an elaborately designed criteria will

make the PR strategy more effective.

tN

()
pC t tN

tN tN

()
pC t tN

When locates in the terminal of original schedules,

the set is empty and we directly consider the makespan

in PR sub-problems according to

tN

tN

(6).

IV. ROLLING PR BASED GENETIC ALGORITHM

When disruptions occur during the schedule execution,

PR is driven by disruption events in a rolling mechanism.

Let x be the number of disruptions, the rolling PR is

performed as follows:

Step 1 Minimize the makespan to generate the initial

schedule without considering any disruption,

let , then the first original schedule

;

0S
1t
0

(0)S S

Step 2 Implement the original schedule (1)S t until a

disruption occurs, when the moment is noted as

;td
Step 3 For a specified disruption duration , compute

the time for the machine returning to service,

, the release times of unfinished jobs

in

tD

tu

t tu d Dt

N are updated according to (2);

Step 4 The first jobs from the beginning of k ()tS N

are included into the PR-horizon , note the

completion time of , , calculate the

number of jobs in ,

tN

()tS N (1)C t

tN | | (| |t tN n N N)t

t

(Here is the specified size of PR-horizon); k

Step 5 If , the PR sub-problem is formed

according to

| | 0tN

(5). Its solution , the

completion time of , as well as

the match-up delay in can be

obtained. Let be the -RSR

solution for to the original schedule. Thus the

new schedule is ;

Else if

()
p

tS N

()
p

tS N ()
pC t

()
pC t tN

()
pr

tS N ()
pC t

tN

() () () ()
p pr

t tS t S N S N S N

| | 0tN , the PR sub-problem is formed

according to (6) and the solution can be

obtained. Thus the new schedule is

. Let . If

()
p

tS N

() () ()
p

t tS t S N S N 1t t t x , go

to Step 2, else go to Step 6;

Step 6 The global new schedule is the last new

schedule, i.e.

S
()S S x . Calculate the global

schedule makespan ()M S and the schedule

deviation , the objective ()D S J S defined as

(4) can be obtained;

In this paper, since the size of PR sub-problems is

restricted, a genetic algorithm can be used to solve

sub-problems formulated by (5) or (6). We can encode the

schedules and generate the initial population in the similar

manners to Wu et al. [2]. However, since our objectives

differ from those of Wu et al., the genetic algorithm in [2]

should be modified.

For the bi-criterion scheduling problem, Wu et al. encode

by converting the sequence into a string of “artificial tails”.

Let 1, ,j n index jobs in ordered according to the

sequence to be encoded. An artificial tail is defined as

follows:

tN

0kq ,
1j j jq q p .

Thus the earlier a job appears in the sequence, the longer

its artificial tail will be. A list, , ordered by the

job number is maintained for each solution as its

“chromosome”. This encoding can be manipulated by a

typical crossover operator, and can be evaluated by applying

Schrage’s heuristic

1{ , , }kq q

[8], which guarantees schedule

feasibility.

To start the genetic algorithm, an initial solution

population must be generated. Two desirable properties of

the initial population are (1) high quality solutions

(corresponding to fitness), and (2) diverse solutions. A

heuristic method developed by Wu et al. is used to generate

the initial population. The method for initial population

3
74

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

generation uses the solutions produced by a fast,

parametrically varied heuristic termed “ grid search”,

which allow varying emphasis to be placed on the two

criteria.

Once the initial population is generated, each solution in

the population is encoded by the string of artificial tails,

, used to generate the schedule. From the

current population, , a number of “more fit” solutions

will be selected for reproduction based on the fitness

measure.

1{ , , }yQ q qk

P

A critical element of a genetic algorithm is the measure of

solution fitness. The fitness measure represents the selection

probability of a solution during the search. For equation (5),

the fitness measure for a given PR solution, , is then

defined as follows:

()
y

tS N

max max
[] [

l l
y t ty t tj

j P

]f J J J J

Where

max

()

| () (1) | | | [() (1)]
c

t

c m
t i i t

i S N

J b t b t N C t C t ,

()

| () (1) | | | [() (1)]
y

t

y y
ty i i t

i S N

J b t b t N C t C t .

Where is the PR solution by Carlier’s algorithm ()
c

tS N

[8], and are the beginning times of job in

 and . is the completion time of the

minimum deviation PR solution, is the completion

time of . is a constant used for tuning purposes.

As increases, the genetic algorithm becomes more

selective when generating off-spring solutions. With a large

-value, only the “most fit” solution will survive and the

algorithm converges prematurely in one step.

()
c
ib t ()

y
ib t i

()
c

tS N ()
y

tS N ()
mC t

()
yC t

()
y

tS N l

l

l

The genetic algorithm can be summarized as follows:

Step 1 Initialization: start with an initial set of tuning

parameters [i.e. , population size (ps), mutation

probability (mp), and number of generations (ng)],

generate an initial population by “

l

 grid

search”, compute the fitness yf , ,

and save the set of artificial tails, ,

corresponding to each solution .

()
y

tS N P

yQ

()
y

tS N

Step 2 , start iterations. 1g

Step 3 Copy the set of mb best solutions from the

current population to the next generation.

Step 4 Perform crossover ()ps mb 2

t

 times as follows:

select a distinct pair of solutions

 randomly from the current

population based on probabilities:

((), ())
y j

tS N S N

yf and jf ; (b)

generate two crossover sites 1x and 2x (1 2x x)

from a discrete uniform distribution between 1 and

; (c) swap the sublist { , of Q

with the corresponding sublist in

| tN | , }y ykq q1 y

1{ , , }j jQ q q jk , apply Schrage’s heuristic to

obtain the new schedule, compute the criteria

tyJ , tjJ ; (d) copy both off-spring solution to the

next generation, compute yf , jf , and save ,yQ

jQ .

Step 5 For each solution , apply mutation with

probability, . Mutation is performed by setting

()
y

tS N

mp

[0,1]uniform , then recomputed all the

artificial tails in by yQ (1)i iq q iq .

Step 6 Set the generation as the current population,

1g g , if g ng , go to step 3, else stop.

V. ANALYSIS OF ROLLING PR

Lemma. In the rolling PR, for a match-up delay ()C t

in ,tN () (1) ()
t

i i t
i N

b t b t N C t .

Proof. Assumed that no idle time exists in the original

schedule for , the match-up delay will make the

beginning time of each job delayed by , then the

schedule deviation for between the new schedule and

the original schedule, which is formulated as

tN ()C t

()C t

tN

() (1)

t

i i
i N

b t b t , is exactly ()tN C t . This situation

embodies the largest schedule deviation among all situations

and it is the worst case. Therefore, if there is idle time in the

original schedule for , the schedule deviation must be

less than

tN

()tN C t due to idle time being absorbed.

Anyway, () (1) ()
t

i i t
i N

b t b t N C t .

Following the aforementioned rolling PR, if the number of

disruptions is x , the global new schedule goes through

 from during the execution. Since

 is exactly the ultimate new schedule , the schedule

deviation between and is accumulatively realized

in

(1), (2), ()S S S x 0S

()S x S

S 0S
x times of local rescheduling. Therefore, we have the

following Theorem 1.

Theorem 1. In rolling PR driven by more disruptions,

each local PR objective is consistent with the global

objective, whose optimization is realized separately in each

local rescheduling. The sum of local PR objectives is an

upper bound for the global one, i.e.

1

() ()
x

t
t

J D S M S J

Proof.

4
75

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

The proof procedure as well as the result shows that each

local objective is a portion of the global objective and local

rescheduling partly optimizes the global objective while

optimizing the local objective. Therefore, each local

objective is consistent with the global objective, whose

optimization is realized separately in each local rescheduling.

The sum of all local objectives is an upper bound for the

global one.

From the conclusions in [2], we can easily obtain the

following theorem.

Theorem 2. After a local PR, a non-delay match-up of

new schedule to original schedule can be obtained as long as

enough idle time exists in the original schedule for

PR-horizon.

The global objective can be optimized if each local

objective is separately optimized in each local PR. We

describe the conclusions as follows:

Corollary 1. If there is enough idle time in each

unfinished original schedule, the rolling PR can make each

new schedule non-delay match-up its original schedule

within each PR-horizon and the sum of local objectives is

exactly the global objective.

Corollary 1 demonstrates that the upper bound in

Theorem 1 can be reached and it is a tight upper bound.

If RSR is performed instead of PR at each disruption, such

rolling rescheduling is referred to as rolling RSR.

Comparing rolling PR with rolling RSR, we can obtain the

following corollary:

Corollary 2. The sum of local objectives in rolling PR is

no more than that in rolling RSR.

VI. COMPUTATIONAL RESULTS AND ANALYSIS

In tests of this section, the initial schedule was generated

by use of Schrage’s algorithm [8]. All procedures were

coded in C language and ran in the Microsoft Visual C 6.0

under the Windows XP operating environment. All tests ran

on a computer with Pentium 4-M CPU 1.80GHz. Three

disruptions would occur during a run. The durations of

disruption range from five percent to ten percent of the

processing time of the initial schedule. We assumed that the

disruption would not occur among the last twenty jobs

because the number of the rescheduled jobs is too few to

make rescheduling trivial in those cases.

Problems were randomly generated using a format similar

to that used by Ovacik et al. [9], where the range parameter

 is used to control how rapidly jobs are expected to arrive

for processing. When value is 0.20, jobs arrive rather

rapidly so that almost no idle time exists in the initial

schedule. However, the situation when value is 2.00 is

the reverse, jobs arrive rather slowly so that much idle time

is inserted in the initial schedule. Therefore, the problems

with three values actually represent three situations

where different amount of idle time exists in the initial

schedules.

0
() | | | () (0) |i i i i

i N i N

D S b b b x b

| () (1) (1) (2) (2) (1) (0) |i i i i i i i
i N

b x b x b x b x b x b b

{| () (1) | | (1) (2) | | (1) (0) |}i i i i i i
i N

b x b x b x b x b b

1

| () (1) |
x

i i
i N t

b t b t
1

| () (1) |
x

i i
t i N

b t b t

1

{ | () (1) | | () (1) | | () (1) |}
t t t

x

i i i i i i
t i N i N i N

b t b t b t b t b t b t

Due to Lemma

1

() { | () (1) | | | ()}
t

x

i i t
t i N

D S b t b t N C t

1

() () { | () (1) | | | ()} ()
t

x

i i t
t i N

J D S M S b t b t N C t M S

1

1

{ | () (1) | | | ()} { | () (1) | ()}
t l

x

i i t i i
t i N i N

b t b t N C t b x b x M S

1

x

t
t

J

In the genetic algorithm for PR sub-problem, we used

2l , population size , mutation probability 100ps

0.05mp , and the number of generations 200ng . When

the procedure was used to generate initial population,

0.01 and 0.5 .

A. Testifying the conclusions for rolling PR

Theorem 1 indicates that the sum of local objectives is an

upper bound of the global objective. The gap between the

upper bound and the actual global objective is affected by

many factors, among which we only examined the effect of

5
76

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

the amount of idle time in initial schedule and the size of

PR-horizon.

Table 1 shows the results for 200-job problems. Three

values represent respectively three situations of idle time

amount among the initial schedule: the larger the value of

 is, the more the idle time is. The PR-horizon size was

specified to be total four types, which is 10-job, 20-job,

30-job, and 40-job. Each entry was obtained from the

statistic results of 20 instances. 400 problems are tested. The

percentage ratio of the actual global objective to the sum of

local objectives is calculated as
1

100
x

tt
J J . The

smaller the percentage ratio is, the larger the gap between

the global objective and the upper bound is. The cases where

the ratio reached 100% represents zero-gap cases, i.e. the

actual global objective reached the upper bound and the sum

of local objectives is exactly the actual global one.

PR-horizon size (

Fig. 1. CPU time of rolling PR for 200-job problems with 1.00 range

parameter

The computational results of Table 1 indicate that the gap

between the upper bound and the global objective is strongly

affected by the idle time in the initial schedule as well as the

PR-horizon size. If there is less idle time among the initial

schedule, the gap is smaller and will be increased as the

PR-horizon size gets large. When the PR-horizon size is 30

or 40 and is large, zero-gap can be reached, which

demonstrates that the PR-horizons are large enough so that

enough idle time is accumulated to make each new schedule

non-delay match-up its original schedule in PR-horizons, i.e.

the conditions of Corollary 1 can be satisfied.

B. Comparing rolling PR with rolling RSR

We can use a RSR solution as a baseline where our

approach is compared due to its low computational burden.

The rolling PR and the rolling RSR were respectively

performed in response to disruptions during the execution of

initial schedule. The percentage improvements of rolling PR

over rolling RSR were calculated as ()RSR PR PR .

Table 2, 3 and 4 show the results of 200-job problems with

three values. Each entry was obtained from the statistic

results of 20 problems.

It is obviously shown that the schedule stability for rolling

PR was largely improved over that for rolling RSR. Though

the improvements of schedule efficiency were trivial in most

cases and even declined a little in some cases, the overall

objective for rolling PR was obviously improved over that

for rolling RSR. The improvements were obviously getting

larger as PR-horizon size increases. The computational

results also indicate that the improvements of schedule

stability are more when more idle time exists in the initial

schedule.

Figure 1 presents CPU time paid by rolling PR with

different PR-horizon sizes. It indicates that more CPU time

should be paid for more improvements achieved by rolling

PR with larger PR-horizon.

VII. CONCLUSIONS

Aiming at large-scale rescheduling problems with

disruptions, the rolling partial rescheduling strategy driven

by disruption events is adopted in this paper. The new

schedule is required to satisfy two goals: efficiency and

stability. Two particular types of PR sub-problems are

respectively designed for PR-horizon locating in the process

and the terminal of original schedules. A genetic algorithm

is used to solve PR sub-problems. The relation between local

PR objectives and the global objective is analyzed and

conclude that the sum of local PR objectives is an upper

bound for the global one. Extensive computational

experiments were performed. The computational results

show that the rolling PR can greatly improve the schedule

stability with a little sacrifice in schedule efficiency and

consistently outperforms the rolling RSR. The rolling PR

based on genetic algorithm is effective for large-scale

rescheduling problems with more than one disruption.

REFERENCES

[1] S. M. Bayiz, “Analysis of reactive scheduling problems in a job shop

environment,” European Journal of Operational Research, 2000, 126:

567-586.

[2] D. S. Wu, R. H. Storer, and P. C. Chang, “One-machine rescheduling

heuristics with efficiency and stability as criteria,” Computers in

Operations Research, 1993, 20(1): 1-14.

[3] B Wang, Y. G. Xi, and H. Y. Gu, “An improved rolling horizon

procedure for single-machine scheduling with release times,” Control

and Decision 2005, 20(3): 257-260

[4] B Wang, Y. G. Xi, and H. Y. Gu, “Terminal penalty rolling

scheduling based on an initial schedule for single-machine scheduling

problem,” Computers and Operations Research, 2005, 32(11):

3059-3072.

[5] M. R. Garey, D. S. Johnson, “Computers Intractability”, Freeman, San

Francisico, Calif., 1979.

[6] J. C. Bean, J. R. Birge, “Match-up real-time scheduling,” Proceedings

of the Symposium on Real Time Optimization in Automated

Manufacturing Facilities, NBS publication 724, National Bureau of

Standards, 1985: 197-212.

[7] J. C. Bean, J. R. Birge, J Mittenehal, and C. E. Noon, “Match-up

scheduling with multiple resources, release dates and disruption,”

Operations Research, 1991, 39(3): 470-483.

[8] J. Carlier, “The one-machine sequencing problem,” European Journal

of Operational Research, 1982, 11: 42-47.

[9] I. M. Ovacik, R. Uzsoy, “Rolling horizon algorithms for a

single-machine dynamic scheduling problem with

sequence-dependent setup times,” International Journal of Production

Research, 1994, 32(6): 1243-1263.

6
77

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

TABLE 1

THE PERCENTAGE OF THE ACTUAL GLOBAL PERFORMANCE VERSUS THE SUM OF LOCAL PR OBJECTIVES

0.20 1.00 2.00 Range parameter

()

PR-horizon Size

() Ave. Max. Min. Ave. Max. Min. Ave. Max. Min.

10 97.1 97.6 96.5 90.1 97.5 60.6 31.9 45.3 24.3

20 94.1 95.2 93.3 87.6 95.0 57.8 47.8 89.3 27.2

30 91.3 92.8 90.3 84.6 92.5 55.1 70.0 100 33.7

40 87.5 89.1 84.8 80.2 89.9 68.4 91.5 100 76.1

TABLE 2

THE PERCENTAGE IMPROVEMENTS OF ROLLING PR OVER ROLLING RSR FOR 200-JOB PROBLEMS: 0.20

()D S ()M S () ()J D S M S
PR-horizon Size

()
Ave. Max. Min. Ave. Max. Min. Ave. Max. Min.

10 1.52 1.97 0.80 0 0 0 1.41 1.85 0.75

20 4.67 6.61 3.04 0 0 0 4.30 6.01 2.87

30 7.97 14.3 5.14 0 0 0 7.33 12.9 4.81

40 12.1 17.3 8.48 0 0 0 10.6 15.6 7.95

TABLE 3

THE PERCENTAGE IMPROVEMENTS OF ROLLING PR OVER ROLLING RSR FOR 200-JOB PROBLEMS: 1.00

()D S ()M S () ()J D S M S
PR-horizon Size

()
Ave. Max. Min. Ave. Max. Min. Ave. Max. Min.

10 1.39 2.54 0.83 0.04 0.61 -0.21 1.22 2.10 0.74

20 4.98 8.53 2.54 0.99 4.09 -1.36 4.47 7.09 2.37

30 8.37 15.6 4.01 2.08 5.99 -1.08 7.54 12.8 3.74

40 13.2 31.8 7.84 3.43 8.34 0 11.7 24.1 7.26

TABLE 4

THE PERCENTAGE IMPROVEMENTS OF ROLLING PR OVER ROLLING RSR FOR 200-JOB PROBLEMS: 2.00

()D S ()M S () ()J D S M S
PR-horizon Size

()
Ave. Max. Min. Ave. Max. Min. Ave. Max. Min.

10 4.95 9.37 1.62 0.06 0.47 0 2.48 4.07 1.05

20 13.1 20.6 8.28 0.10 1.11 0 6.73 10.3 3.37

30 17.1 26.1 7.52 0.07 1.38 0 8.82 14.6 3.38

40 21.4 30.5 12.3 0.05 0.52 0 11.3 15.9 4.79

7
78

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

