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A Hybrid GA-based Scheduling Algorithm for
Heterogeneous Computing Environments

Han Yu

Abstract— We design a hybrid algorithm to schedule the
execution of a group of dependent tasks for heterogeneous
computing environments. The algorithm consists of two elements:
a genetic algorithm(GA) to map tasks to processors, and a
heuristic-based approach to assign the execution order of tasks.
This algorithm takes advantage of both the exploration power
of GA and the heuristics embedded in the scheduling problem,
so it can effectively reduce the search space while not sacrificing
the search quality. The experiments show that this algorithm
performs consistently better than Heterogeneous Earliest-Finish-
Time(HEFT) without incurring much computational cost. Multi-
ple runs of the algorithm can further improve the search result.

I. INTRODUCTION

SCHEDULING a group of dependent tasks on parallel
processors is an intensively studied problem in parallel

computing. By decomposing a computation into smaller tasks
and executing the tasks on multiple processors, we can poten-
tially reduce the total execution time of the computation.

The scheduling problem is typically given by a group of
dependent tasks along with a group of interconnected proces-
sors. The data dependency and execution precedence among
tasks can be described with a directed acyclic graph (DAG).
The goal of scheduling is to minimize the total execution time
of tasks, also known as makespan, by assigning the tasks
to the processors. There are many variations of scheduling
problems, with different assumptions on the interconnection
and processing ability of processors. Traditional scheduling
problems assume a homogeneous computing environment in
which all processors have the same processing abilities and
they are fully connected. Recent studies have been diverted
to scheduling for heterogeneous computing environments in
which the execution time of a task may vary among different
processors, not all processors are directly connected, and the
bandwidth of communication links connecting processors may
also be different. In addition, some scheduling problems allow
a task to be executed on multiple processors, while other
problems restrict the execution of a task on only one processor.

In this paper, we focus on the study of scheduling for hetero-
geneous computing environments. We assume that processors
are fully connected with the same communication links (i.e.,
with the same bandwidths), but they have different processing
abilities. In addition, each task can only be executed on one
processor. The communication time between two dependent
tasks should be taken into account if they are assigned to
different processors. We also assume a static computing model
in which the dependence relations and the execution times of
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Fig. 1. An example DAG containing ten tasks.

tasks are known a priori and do not change over the course of
scheduling and task execution. In addition, all processors are
fully available to the computation on the time slots they are
assigned.

Figure 1 shows an example DAG that contains ten tasks, t1
to t10. The arrows represent data dependencies among tasks.
Two tasks are dependent if the execution of one task relies
on the execution result of the other. The numbers represent
the communication times needed to transfer data between two
dependent tasks. Table I lists the execution times of each
task on three processors, P1, P2, and P3. Figure 2 shows an
execution schedule of tasks with a makespan of 153.

For a pair of dependent tasks, ti and tj , if the execution of
tj depends on the output from the execution of ti, then ti is
the predecessor of tj , and tj is the successor of ti. We use
prod(t) and succ(t) to denote the set of predecessor tasks and
successor tasks of task t, respectively.

II. RELATED WORK

The search for an optimal solution to the problem of multi-
processor scheduling has been proven to be NP-hard except
for some special cases [5]. Numerous approaches have been
developed to solve the problem. These approaches can be
mainly classified into two categories: deterministic approaches
and non-deterministic approaches.

Deterministic approaches attempt to exploit the heuristics
extracted from the nature of the problem in guiding the search
for a solution. They are efficient algorithms as the search
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TABLE I

THE COMPUTATION TIMES OF TEN TASKS IN FIGURE 1 ON THREE

PROCESSORS, P1 , P2 , AND P3 .

P1 P2 P3

t1 27 21 30

t2 19 15 18

t3 35 21 27

t4 17 12 26

t5 11 18 14

t6 19 32 28

t7 26 15 31

t8 22 22 20

t9 22 31 22

t10 16 19 24
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Fig. 2. A schedule for the task graph in Figure 1 on three processors. The
makespan of the schedule is 153.

is narrowed down to a very small portion of the solution
space; however, the performance of these algorithms is heavily
dependent on the effectiveness of the heuristics. Therefore,
they are not likely to produce consistent results on a wide
range of problems.

Of all the deterministic approaches, many of them belong to
list scheduling algorithms. The search in list scheduling algo-
rithms is divided into two phases: in the first phase, a priority
value is given to each task according to some criteria; in the
second phase, tasks are assigned to processors in decreasing
order of their priorities. ISH [9], DSH [9], MCP [18], and
CPFD [2] are typical list scheduling approaches to homoge-
neous computing systems, while HEFT [14] and CPOP [14]
are list scheduling algorithms designed for heterogeneous

computing systems. A drawback of list scheduling algorithms
is that the static assignment of task priority is not able to
capture the dynamics in task execution because less important
tasks may be scheduled earlier, causing the delay of execu-
tion of more important tasks. Dynamic approaches, such as
DCP [10], attempt to overcome this problem by overlapping
the phases of task order assignment and task scheduling.

Another group of deterministic algorithms is clustering
algorithms [8], [19]. These algorithms assume that there are
an unlimited number of processors available to task execution.
Clustering algorithms will use as many processors as possible
in order to reduce the makespan of the schedule. If, however,
the number of processors used by a schedule is more than
the number actually available in a given problem, a mapping
process is required to merge the tasks in the proposed schedule
onto the actual number of available processors.

Contrary to deterministic algorithms, non-deterministic al-
gorithms incorporate a combinatoric process in the search
for solutions. Non-deterministic algorithms typically require
sufficient sampling of candidate solutions in the search space
and have shown robust performance on a variety of scheduling
problems. Genetic algorithms [6], [11], [16], [15], [17], simu-
lated annealing [3], [7], [12], and tabu search [13] have been
successfully applied to task scheduling. Non-deterministic
algorithms, however, are less efficient and have much higher
computational cost than deterministic algorithms.

Genetic algorithms have been widely used to evolve so-
lutions for many multiprocessor scheduling problems. These
GA approaches vary in their encoding schemes, the imple-
mentation of genetic operators, and methods for solution
evaluation. However, due to the large solution space that a GA
is required to cover, the search generally incurs considerably
high computational cost. Some GA approaches use specially
designed encoding methods or genetic operators to reduce the
search space, but they may also result in bias during the search
and affect the quality of solutions [1], [6], [4].

III. ALGORITHM DESIGN

The basic idea of our algorithm is to exploit the advantages
of both the evolutionary and heuristic-based algorithms while
avoiding their drawbacks. We restrict the use of GA to per-
form task-to-processor mapping only while using a heuristic
approach to determine the order of tasks assigned to the same
processor.

A. A Genetic Algorithm for Task Mapping

We use a simple genetic algorithm to perform task mapping,
i.e., assign the execution of each task to one of the available
processors. The solution of the GA is encoded with a linear
list of integers, with each integer representing the processor
to which a task is assigned. Suppose there are n tasks and m
available processors. The value of each integer in the solution
ranges from 1 to m, and there are n integers in each solution.
If each task has a unique id (from task 1 to n), the i-th
integer represents the processor to which task i is assigned.
The search space of a GA, therefore, is mn. Figure 3 shows
the corresponding GA individual to the schedule in Figure 2.
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Fig. 3. The individual that encodes the solution in Figure 2. Each integer in
the individual represents the processor that a task is mapped to.

Elements in a simple GA are employed: one-point crossover,
fixed rate mutation, and tournament selection. When an integer
is chosen to be mutated, it is replaced by another randomly
generated integer ranging from 1 to m.

B. A Heuristic-based Algorithm for Task Order Assignment

For each individual in the population, we need to determine
the order of tasks to be executed on each processor and
calculate the makespan of the schedule. We apply a heuristic-
based algorithm for task order assignment. Tasks are assigned
one by one, and in each step, we choose one of the tasks
that are ready for execution. A task is ready if it has no
predecessor or all its predecessor tasks are already scheduled.
Among all ready tasks, the priority is given to the one whose
execution is critical to reduce the makespan of a schedule.
The calculation of the makespan of a schedule on a task level
is based on two aspects: the completion time of the task and
the execution time of all tasks that depend on the execution
of this task. The completion time of a task can be calculated,
but the latter aspect cannot be accurately determined as the
execution order of successor tasks is not known yet. We use
the notion of upward rank to give an estimation. The upward
rank of a task is used in HEFT to determine the priority of
task assignment [14]. The upward rank of a task t, ur(t), can
be calculated recursively with the following equation:

ur (t) =




0 if succ(t) = φ
max(avg(tj) + comm
(t, tj)),∀tj ∈ succ(t) otherwise

(1)

where comm(t, tj) denotes the communication time between
tasks t and tj , and avg(tj) denotes the average execution time
of task tj on all processors. A task that does not have any
successor tasks receives an upward rank of zero, while the
upward rank of all other tasks is the largest of the sum of
the average computation time of its successor task and the
communication time between the task and the successor task.
The upward rank of a task is independent of the processors
to which the task and all its successor tasks are assigned.
Therefore, the upward rank can be calculated before task
mapping. Table II shows the average computation times and
upward ranks of all tasks in Figure 1.

The procedure of task order assignment consists of multiple
phases, and in each phase we assign the execution of one
task. We define Sready to be the set of all ready tasks. In
each phase, we first initialize Sready that includes all tasks
that has no predecessors. Then for each task in Sready , we
calculate its completion time on the designated processor. We
always choose the task whose sum of completion time and
upward rank is the largest. The selected task is appended to
the execution task queue of the processor and removed from
Sready . New ready tasks, if there are any, are added to Sready .

TABLE II

THE AVERAGE COMPUTATION TIMES AND UPWARD RANKS OF TEN TASKS

IN FIGURE 1 ON THREE PROCESSORS, P1 , P2 , AND P3 .

Avg. Computation Time Upward Rank

t1 26 198.67

t2 17.33 137

t3 27.67 149

t4 18.33 83.67

t5 14.33 88.67

t6 26.33 94.67

t7 24 50.67

t8 21.33 27.67

t9 25 36.67

t10 19.67 0

We repeat the above steps until all tasks have been scheduled.
After that, we calculate the makespan of the schedule which
in turn determines the fitness of the GA individual.

C. Algorithm Procedure

Combining both the GA and heuristic-based algorithm, we
show the procedure of the hybrid algorithm as follows:

a) calculate the average execution time
and upward rank of each task

b) initialize GA population
c) for each generation, do

c.1) for each individual, do
c.1.1) map tasks to processors

according to the individual
c.1.2) determine the order of task

execution
c.1.3) calculate the makespan of

the schedule
c.2) perform tournament selection to

produce individuals for the next
generation

c.3) perform crossover and mutation on
selected individuals

d) select the best solution in the final
generation as the solution of the
algorithm

The detailed procedure of determining order of task execu-
tion order (step c.1.2) is:

a) initialize the set of ready tasks
that includes tasks with no
predecessors

b) while the set of ready tasks is not
empty, do
b.1) for each ready task, do

b.1.1) calculate the completion
time of the task on the
assigned processor

b.1.2) calculate the sum of its
completion time and upward
rank

b.2) select the task whose sum is the
largest among all ready tasks and
assign the task to the processor
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b.3) update the set of ready tasks by
removing the scheduled task and
adding new ready tasks

IV. EXPERIMENTS

A. Experimental Design

We evaluate the performance of our algorithm on task
graphs with variable characteristics. We test thirteen groups
of task graphs, with each group having a different commu-
nication to computation ratio (i.e., the ratio of the average
communication time between dependent tasks and the average
computation time of all tasks in a graph) and the density of the
graph (which is given by the average number of outgoing tasks
for a given task). Both the communication to computation
ratio and the average number of outgoing tasks have baseline
settings of 1.0 and range between 0.5 and 2. For each group,
we randomly generate ten task graphs. All task graphs contain
ten tasks to be scheduled on three available processors. The
average computation time of a task on a processor is 20. Both
the computation time of a task and the communication time
of dependent tasks follow Poisson distributions.

We run the GA fifty times for each task graph. For each run,
we calculate the speedup of the solution using the following
equation:

speedup =
serial execution time

makespan
(2)

where serial execution time is the sum of the average com-
putation times of all tasks. We use serial execution time to
approximately calculate the makespan of a schedule if all tasks
are serially assigned to the same processor. The higher the
speedup, the more effective the distribution of task execution
on parallel processors.

For each task graph, we calculate both the average speedup
of solutions over fifty runs with 95% confidence interval (CI)
and the speedup of the best solution found in fifty runs. Then
we calculate the average value of these results for ten task
graphs in each group.

Table III lists the GA parameters used in the experiment,
which exhibits the best performance from a preliminary ex-
periment on various parameter settings.

TABLE III

PARAMETER SETTINGS USED IN THE EXPERIMENT.

Parameter Value

Population Size 200

Number of Generations 200

Crossover Rate 0.9

Mutation Rate 0.01

Selection Scheme Tournament

Tournament Size 2

In addition, we evaluate the performance of HEFT on the
same thirteen groups of task graphs and calculate the average
speedup of solutions for each group. HEFT is a list scheduling
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Fig. 4. The comparison of performance between the hybrid algorithm and
HEFT on task graphs with varying communication to computation ratios. The
result is given by the average speedup of schedules for ten task graphs in each
test case. For the hybrid algorithm, we plot both the highest speedup found
in fifty runs for each task graph and the average speedup of schedules in fifty
runs with 95% confidence interval (CI).

algorithm and the priority of tasks is based on their upward
ranks. As a deterministic algorithm, HEFT is run only once
for each task graph.

B. Experimental Results and Analysis

Figure 4 shows the comparison between the hybrid algo-
rithm and HEFT on task graphs with varying communication
to computation ratios. The average number of outgoing tasks
is fixed at 1.0. For GA runs, we show the average speedup
of both the best solutions and the average solutions (along
with 95% confidence interval) in each test case. The results
indicate that the speedup of schedules decreases quickly as
the communication to computation ratio increases. The hybrid
algorithm performs consistently better than HEFT in all test
cases. The gap on the performance of these two algorithms
is more noticeable in test cases with higher communication to
computation ratios (e.g., with a ratio of 2.0). To schedule a task
graph with a high communication to computation ratio, proper
assignment of dependent tasks on processors is essential to
avoid or reduce high communication costs. The use of the GA
for task mapping enables the hybrid algorithm to search for a
larger solution space than HEFT, so it is more likely to find
better mappings for tasks. Figure 4 also indicates that a better
result can be found if we run the algorithm sufficient number
of times (in our case is fifty runs for each task graph). The
hybrid algorithm is also efficient, with an average execution
time of 0.15 seconds for each run.

Figure 5 shows the comparison between the hybrid algo-
rithm and HEFT on task graphs with varying densities. The
communication to computation ratio is fixed at 1.0. A higher
speedup can be achieved when the density of task graph is
lower (i.e., lower degrees of dependency between tasks). The
hybrid algorithm outperforms HEFT in all test cases. Again,
running the algorithm multiple times allows us to find better
solutions than a single run.

We also study the effectiveness of genetic algorithms by
looking into the progress of search during a GA run. Figure 6
shows the average makespan and the makespan of the best
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Fig. 6. The average makespan of solutions and the makespan of the best
solution in each generation in a typical GA run.

solution found in each generation in a typical GA run. We
observe that the makespan decreases continuously throughout
the run, despite momentary increases in some generations.
This result indicates that the GA search is not likely to be stuck
in local optima, a typical problem for local search approaches.
The best solution, with a makespan of 131, is first found in
generation 160.

We perform additional experiments to evaluate the effec-
tiveness of using GAs in our hybrid algorithm. In the first
experiment, we run the algorithm by turning off crossover
(set the crossover rate to 0 while keep the mutation rate
at 0.01), simulating a hill climbing search process. In the
second experiment, we run the algorithm without mutation
(set the mutation rate to 0 while keep the crossover rate at
0.9). The same thirteen groups of task graphs are used. The
average speedup of solutions with 95% confidence interval
is calculated for the performance study. Tables IV and V
show the performance comparison of these two experiments
and the results from GA runs with the standard parameter
settings in Table III. GA runs with both crossover and mutation
produce consistently better solutions than runs that perform
crossover or mutation only. GAs with both crossover and
mutation also exhibit more stable performance with a smaller

confidence interval within fifty runs. This result indicates to us
that both the exploration and exploitation during the GA search
process are important to reach the high performance of our
hybrid algorithm. Suppressing either of them can deteriorate
the search quality of GA.

V. CONCLUSIONS

We design a hybrid algorithm for scheduling tasks on
heterogeneous processors. This algorithm incorporates a GA-
based search to map tasks to processors while using a
heuristic-based approach to assign the order of task execution
for each processor. As a result, this algorithm can cover a
larger search space than deterministic scheduling approaches
without incurring high computational cost. The experiments
show that this algorithm outperforms HEFT, a widely used
deterministic algorithm for heterogeneous computing systems,
with a higher speedup on task execution. The advantage of this
algorithm is more noticeable if proper assignment of tasks on
processors is critical to locate high quality solutions.

We plan to extend our study with additional experiments
to evaluate the performance of this algorithm. We will test
the algorithm on larger task graphs (i.e., more tasks) and
network systems (more processors), and variable degrees of
heterogeneity among processors and tasks.

Our algorithm can potentially be improved with a different
method for calculating the upward ranks of tasks. In the
current implementation, the calculation of upward ranks is
performed before the GA begins and is independent of the
processor that a task is assigned to. We use the average
computation time of a task in the calculation. Alternatively, we
can calculate the upward rank after task mapping is finished.
As all tasks have been assigned a processor for execution,
we can use the computation time of a task on its assigned
processor when calculating the upward rank. This modification
may result in more accurate estimation of the makespan and
may further improve the quality of solutions.
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