
A starting-time-based approach to production
scheduling with Particle Swarm Optimization

Jacomine Grobler, Andries P. Engelbrecht, Member, IEEE, Johan W. Joubert, Schalk Kok

Abstract— This paper provides a generic formulation for the
complex scheduling problems of Optimatix, a South African
company specializing in supply chain optimization. To ad-
dress the complex requirements of the proposed problem,
various additional constraints were added to the classical job
shop scheduling problem. These include production down-
time, scheduled maintenance, machine breakdowns, sequence-
dependent set-up times, release dates and multiple predecessors
per job. Differentiation between primary resources (machines)
and auxiliary resources (labour, tools and jigs) were also
achieved. Furthermore, this paper applies Particle Swarm
Optimization (PSO), a stochastic population based optimization
technique originating from the study of social behavior of birds
and fish, to the proposed problem. Apart from the significance of
the paper in that the proposed problem has not been addressed
before, the benefit of an improved production schedule can
be generalized to include cost reduction, customer satisfaction,
improved profitability and overall competitive advantage.

I. INTRODUCTION

PRODUCTION scheduling plays an important role in the
current business environment. Customers increasingly

expect to receive the right product, at the right price, at the
right time. In order to meet these requirements, manufactur-
ing companies need to improve their production scheduling
performance.

Optimatix is a South African-based company which spe-
cializes in providing customized software solutions. Re-
cently, changing customer demands have led to an inves-
tigation into the use of more sophisticated solution strategies
for their production scheduling module.

However, research into improved production scheduling
for complex job shop environments is not only critical to the
competitive success of Optimatix, but also holds significant
implications for production research in general. Hoitomt et
al. [1] justify the development of production scheduling
algorithms geared for the job shop environment by the pos-
itive impact that improved production scheduling can have
on production related problems, for example low machine
utilization and excessive work in process. Addressing these

Manuscript received October 31, 2006.
Jacomine Grobler is a student in Industrial Engineering at the Univer-

sity of Pretoria, South Africa (corresponding author to provide e-mail:
jacomine@tuks.co.za).

Andries P. Engelbrecht is with the Department of Computer Science at
the University of Pretoria, South Africa.

Johan W. Joubert is with the Department of Industrial and Systems
Engineering at the University of Pretoria, South Africa.

Schalk Kok is with the Department of Mechanical and Aeronautical
Engineering at the University of Pretoria, South Africa.

problems through improved scheduling can have a significant
impact on cost reduction, customer satisfaction, profitability
and overall competitive advantage.

Scheduling problems in the low-volume-high-variety man-
ufacturing environment has already received considerable
attention in Operations Research literature. The deterministic
job shop scheduling problem has developed a reputation of
being notoriously difficult to solve. However, the business
requirements of Optimatix requires that a much more com-
plex variation of this problem should be addressed. Since the
proposed problem can be considered a direct derivation from
the classical job shop scheduling problem, it is also classified
as NP-hard and sufficient evidence exists to suggest that it
cannot be solved optimally within a reasonable amount of
computation time [2].

PSO has been identified as the solution strategy of choice
for a number of reasons. Firstly, placing emphasis on the
concept of social versus individual learning, PSO is a robust
algorithm which compares favourably with Genetic Algo-
rithms and Tabu Search, which are often utilized to solve
the job shop scheduling problem [3]. Secondly, PSO is one
of the simplest optimization algorithms to implement. This
inherent simplicity simplifies the design and enhances the
user-friendliness of the algorithm [4]. Thirdly, even though
PSO has been the focus of many research studies since its
development, it does not have a rich literature with respect
to scheduling problems [4].

The purpose of this paper is to discuss a starting-time-
based formulation for the scheduling problem geared towards
implementation in Tactix Scheduling, the production schedul-
ing module of Optimatix. It should be noted that although
distinct variations exist between the different production
environments serviced by Optimatix, a number of standard
requirements can be identified. The formulation should be
capable of addressing both the sequencing and allocation
of operations to resources where each operation represents
a production process through which the parts to be manu-
factured have to be routed. The operations are categorized
into jobs for which release dates and due dates are defined.
Each operation can be performed on any machine from a
set of primary resources. Tools and labour may be required
and can be selected from a set of auxiliary resources. The
processing time of an operation includes sequence-dependent
set-up times and is dependent on the resource on which it
is produced. The actual production time for each operation
may also be affected by scheduled maintenance, machine
breakdowns or production calendars.

121

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

In order to address these requirements the formulation was
developed and implemented within a PSO-based algorithm
and tested against test data obtained from Optimatix. Analy-
sis of the algorithm behaviour indicated that the best perfor-
mance was obtained with a Guaranteed Convergence Particle
Swarm Optimization [14] algorithm used in conjunction with
a compression algorithm implemented towards the end of the
optimization process.

This paper is considered significant because no refer-
ence to this specific problem instance have been found in
scheduling literature. Additionally, the complex nature of the
search space and the specific formulation used, result in the
existence of a number of unique optimization challenges,
the most critical of which is handling the production-specific
constraints. Furthermore, the inclusion of a penalty function
requires the judicial handling of multiple objectives.

In terms of the rest of the paper, Section II discusses
the previous work on which this paper builds. Section III
describes the PSO-based algorithm and Section IV discusses
the experimental results. Section V compares the PSO-based
algorithm with an insertion heuristic developed to facilitate
algorithm evaluation. Finally, Section VI concludes the paper.

II. A BRIEF REVIEW OF APPLICABLE LITERATURE

A. The context of the problem within the scheduling litera-
ture

Production scheduling has fascinated researchers since the
1950s and a large number of scheduling problems exist
to address almost every scheduling need. Zandieh et al’s
classification of scheduling systems based on the associated
resource environments is a good starting point to determine
the context of the proposed problem. The models that are
indicated in Fig. 1 range from more generic formulations,
for example the job shop scheduling problem with duplicate
machines, to more specific formulations, for example the
single machine shop problem. The job shop with duplicate

Open shop
Job shop with

duplicate
machines

Job shop

Flow shop

Permutation
flow shop

Single
machine

shop

Hybrid flow
shop

Parallel
machine

shop

Identical routings
defined for each job

Identical routings per
job & single resource
per operation

Single
operation
defined
for each job

Specific routings
defined for each job

Identical routings per job,
single resource per operation
and “no-passing” constraints

Specific identical
routings
defined for each job

Identical routings
defined for each job

Single resource per
operation

Single resource
per operation

Single operation per job &
single resource per operation

Fig. 1. Zandieh et al’s classification of scheduling models based on their
associated resource environments.

machines problem, the parallel machine scheduling problem
and the single machine scheduling problem were identified
as suitable candidates to use as points of departure for

addressing the business requirements of Optimatix. The job
shop with duplicate machines becomes an appropriate choice
as all three of the identified problem instances can easily
be addressed through judicial input parameter selection.
However, it should be noted that Zandieh et al’s classification
only addresses problems on a relatively general level, and
more specialized scheduling requirements necessitate a more
elaborate classification.

An analysis of the variations on the most well-known pro-
duction scheduling problem, the classical job shop schedul-
ing problem (JSSP) result in three variations identified as
applicable to the identified scheduling problem: the ex-
panded job shop scheduling problem (EJSSP), the JSSP
with sequence-dependent set-up times and the JSSP with
precedence constraints.

The EJSSP is more general than the classical JSSP and
incorporates both release dates and due dates. Job starting
times are also restricted by technological planning constraints
or operation enabling conditions [6]. Simply put, all cutting
tools, machines and other resources required for processing
an operation has to be available before the processing of
the operation can start. This has positive implications for the
scheduling of labour and auxiliary resources and implies that
alternative resources can be specified for each operation.

Additional to the precedence constraints occurring be-
tween the various operations of each of the jobs, the JSSP
with precedence constraints incorporates precedence rela-
tions between jobs — a very useful attribute in modeling
assembly processes [7].

Set-up times are defined in literature as the time intervals
between the completion of one operation and the start of
the next operation. Set-up times, one of the most frequent
additional complications in scheduling, is useful in situations
where cleaning operations and tool changes play an impor-
tant role in production [8].

With reference to the above discussion, it can be con-
cluded that the scheduling problem is completely described
by Zandieh’s classification and the three identified JSSP
variations. These problem instances provide a solid basis
for the design of an algorithm capable of addressing the
particular scheduling problem.

B. Popular solution strategies for complex job shop schedul-
ing problems

Due to its extreme intractability, the basic job shop
scheduling problem has been used extensively to test the
performance of a wide range of solution strategies, ranging
from neural networks to mixed integer linear programming.
Extensive reviews have been done by [9] and [2] in this
regard.

At this stage a number of more complex scheduling
problems deserve special mention. Hoitomt et al. [1] solved a
JSSP with a number of additional constraints by means of an
augmented Lagrangian formulation. Bertel and Billaut [17]
developed both a Greedy Algorithm and a Genetic Algorithm
for a hybrid flow shop scheduling problem with reentrance

122

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

and release dates. Hwang and Sun [18] used a dynamic pro-
gramming formulation for a reentrant JSSP with sequence-
dependent set-up times. However, incorporation of auxiliary
resources along with a relatively large number of additional
constraints and problem features, as is the case with the
proposed problem, is not commonly found in literature.

C. Particle Swarm Optimization

PSO can be classified as a stochastic population-based op-
timization technique. Developed from the flocking behaviour
of birds, each potential problem solution is represented by
the position of a particle in multi-dimensional hyperspace.
Throughout the optimization process velocity and displace-
ment updates are applied to each particle to move it to a
different position and therefore a different solution in the
search space. The velocity of particle i in dimension j at
time step t + 1 is given by:

vij(t + 1) =wvij(t) + c1r1j(t)[yij(t) − xij(t)]+
c2r2j(t)[Yj(t) − xij(t)] (1)

where vij(t) represents the velocity of particle i in dimension
j at time t, c1 and c2 are the cognitive and social acceleration
constants, yij(t) and xij(t) respectively denotes the personal
best position (pbest) and the position of particle i in dimen-
sion j during time t. Yj(t) denotes the global best position
(gbest) in dimension j, w refers to the inertia weight and
r1j(t), r2j(t) ∼ U(0, 1).

The displacement of particle i at time t is defined as:

xxxi(t + 1) =xxxi(t) + vvvi(t + 1) (2)

This simultaneous movement of particles towards their own
previous best solutions (pbest) and the best solution found by
the entire swarm (gbest) results in the particles converging
to one or more good solutions in the search space.

A number of authors have managed to solve basic JSSPs
with hybrid PSO algorithms [10]. Other scheduling appli-
cations of PSO include schedule optimization in a flexi-
ble manufacturing system [11], various permutation flow
shop scheduling problems (PFSSPs) [4] and a resource-
constrained project scheduling problem (RCPSP) [12]. One
of the most complex production scheduling applications
of PSO found to date, was performed in [13], where a
Simulated Annealing-PSO (SA-PSO) based hybrid solution
strategy is developed for the flexible job shop scheduling
problem (FJSSP). In this specific implementation, only the
allocation of operations to resources is done by means of
PSO. The actual sequencing of the assigned operations is
performed by a Simulated Annealing (SA) algorithm. Addi-
tionally, multiple objectives are addressed by combining the
relevant objectives into a single weighted sum objective. It is
noteworthy that although the SA-PSO algorithm improved on
current best known FJSSP benchmark values, the algorithm
found a 56 operation problem challenging.

III. THE PSO-BASED ALGORITHM

The proposed algorithm, summarized in Figure 2, uses
an initialization procedure to obtain semi-feasible solutions
which is stored in the form of particle representations.
These particle representations are subsequently converted
to their associated decision variables in order to evaluate
the fitness function. The fitness function is evaluated such
that three standard scheduling objectives (makespan, late-
ness/earliness and queue time) is minimized simultaneously
with the penalty function. This information is passed through
to the optimization algorithm which intelligently updates the
particle representations until a stopping criterion is satisfied.
The rest of this section provides more detailed descriptions
of each of the elements of the algorithm.

Particle
represen-

tation

Objective
function
values

Schedule

Best solution

Yes

Initiali-
zation

algorithm

Penalty
function

Conversion
mechanism

Approxi-
mation

algorithm

Stopping
criteria

satisfied?No

Fig. 2. The PSO-based algorithm.

A. Particle representation

The schedule representation can be loosely defined as
the structure in which the optimization algorithm stores
each of the scheduling solutions. With the emphasis on
completeness it is imperative that both the sequencing and
allocation decisions are addressed. For example, each particle
is represented by 2 × n dimensions, where n denotes the
number of operations to be scheduled. Dimensions 1 to n
addresses the allocation of operations to resources and is
denoted by the decision variables xij which takes on a
value of 1 if operation i is performed on resource j and
is 0 otherwise. The sequencing decision is denoted by ti

123

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

(the starting time of operation i), since the algorithm makes
use of a starting-time-based formulation, and is stored in
dimensions n + 1 to 2n.

B. Initialization

The procedure used to initialize the starting-time variables
consists of sorting the various operations according to the
number of predecessors associated with each operation. The
starting times of all operations with the same number of
predecessors are then randomly initialized within the same
interval. These initialization intervals are chronologically
sequenced to ensure that the initialized solutions satisfy all
precedence constraints.

In contrast, allocation variables are initialized randomly
and subsequently discretized. For each operation, unique
intervals are defined for each resource on which the operation
may be scheduled, such that a resource index (unique integer
number corresponding to each primary resource) can be
assigned to the operation depending on where the allocation
variable is initialized.

C. Conversion from particle representation to decision vari-
ables

The process of deriving the decision variables and prob-
lem parameters from the particle representation provides
an opportunity for the inclusion of production downtime.
Comprising of scheduled maintenance, machine breakdowns
and production calendars, this is the single most complicating
factor in the proposed problem. The production downtime
intervals are incorporated into the processing time of the
operations by distinguishing between a proposed finishing
time and an actual finishing time for each operation. The
proposed finishing time ignores the time intervals where the
required resources are not available. If gi is defined as the
proposed finishing time and si is the set-up time of operation
i, then

gi =ti + bidi
pidi

+ si (3)

and

si =

{
cjiuji if uji > 0
bidi

vidi
otherwise

(4)

where

bidi
=

{
1 if operation i is performed on resource di

0 otherwise
(5)

cji =




1 if operation i is performed immediately after

operation j on resource di

0 otherwise
(6)

where pidi
denotes the processing time and hidi

the de-
fault set-up time of operation i on resource di, and uji

is the sequence-dependent set-up time of operation i if

processed immediately after operation j. Equation (3) allows
the algorithm to make use of default set-up time values
for the first operation processed on each resource as well
as when no sequence-dependent set-up times are defined
in the problem data. Incorporating the downtime intervals
into the total processing time of each operation requires
an analysis of the relationship between the current starting
time of each operation to the downtime intervals associated
with the primary and auxiliary resources on which it is to
be scheduled. If the starting time (qm) and the finishing
time (um) is given for each of the m production downtime
intervals, the actual finishing time of operation i, denoted
by fi, can be determined by the procedure described in
Algorithm 1.

Algorithm 1: The conversion mechanism for the incor-
poration of production downtime into the schedule.

for All operations i do1

for All downtime intervals m do2

if fi ≤ qm or ti ≥ um then3

Interval m is not an intersected downtime4

interval of operation i
end5

end6

for Intersected downtime intervals k of operation i7

to K do
if qk ≤ fi and ti ≤ qk then8

fi = fi + uk − qk9

end10

if qk < ti and ti ≤ uk then11

fi = fi + uk − ti12

end13

end14

for All downtime intervals m from k to M do15

if fi > qm then16

fi = fi + uk − qk17

else18

Break to operation i + 119

end20

end21

end22

D. The penalty function

Successfully addressing the proposed problem requires the
enforcement of a number of scheduling-specific problem
constraints:

Precedence relationships between operations and jobs:
These relationships enforce processing sequences associated
with the product design. In case of violation of Equation (7),
where the set A contains all precedence relationships and
operation i must be completed before processing of operation
j may start, a penalty corresponding to the number of time
units the precedence constraint is violated can be calculated

124

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

for each operation according to Equation (8). Summing over
all precedence relationships in Equation (9) gives the total
penalty value associated with the violation of precedence
relationships.

fi ≤ tj ∀(i, j) ∈ A (7)

p1(i,j) = |min(0, (tj − fi))| ∀(i, j) ∈ A (8)

p1a =
∑

(i,j)∈A

p1(i,j) (9)

Release dates: Constraint (10) ensures that the first op-
eration of job k, defined in set F , is only released on the
production floor after the arrival of the job release date Rk

and the associated penalties are calculated by Equation (11)
and Equation (12).

tk ≥ Rk ∀k ∈ F (10)

p2k = |min(0, (tk − Rk))| ∀k ∈ F (11)

p2a =
∑
k∈F

p2k (12)

No intersecting operations: If operation i and operation
j is performed on the same finite capacity primary resource,
the relationship between fi, fj , ti and tj determines the
value of the penalty assigned. The four mutually exclusive
scenarios which can occur is incorporated into the calculation
of p3(i,j), where Jdi

consists of the set of all operations
performed on resource di and p3a denotes the total penalty
value corresponding to intersecting operations.

p3(i,j) =




fi − ti if ti ≥ tj , fi < fj and zij = 1
∀(i, j) ∈ Jdi

.

fj − ti if ti ≥ tj , fj ≤ fi and zij = 1
∀(i, j) ∈ Jdi

.

fj − tj if tj > ti, fj < fi and zij = 1
∀(i, j) ∈ Jdi

.

fi − tj if tj > ti, fi ≤ fj and zij = 1
∀(i, j) ∈ Jdi

.

(13)

where

zij =

{
0 if fi ≤ tj or fj ≤ ti ∀(i, j) ∈ Jdi

1 otherwise
(14)

p3a =
∑

(i,j)∈Jdi

p3(i,j) (15)

Auxiliary resources: The operation processing time,
which to a certain extent drives the optimization process, is
independent of the auxiliary resource allocation. Therefore
the auxiliary resources do not affect the objective function
and can simply be incorporated as constraints. However,
before the penalty values can be calculated, the algorithm
attempts to obtain feasible auxiliary resource allocations for
all operations. Each operation is allocated to one auxiliary

resource from each set of auxiliary resources required. A
feasible allocation is found if all the specified auxiliary
resources are available throughout the required time period.

The allocation procedure in Algorithm 2, where ml and nl

respectively denote the start and end of scheduled interval l,
provides as output a list of operations for which no feasible
auxiliary resource allocation can be obtained. Since this
implies that insufficient capacity exist to fulfill the processing
requirements for these infeasible operations, the penalties are
calculated in Equation (16) as the operation production times
of infeasible operations

p4a =
∑

i

ai(fi − ti) (16)

where ai is 1 if operation i is infeasible and 0 otherwise.

Algorithm 2: Allocation of operations to auxiliary re-
sources.
for All operations i do1

for All resource sets j do2

if A resource is required from resource set j then3

for All resources k in set j do4

for All scheduled intervals l do5

if fi ≤ ml or ti ≥ nl then6

Operation i will not overlap7

interval l
end8

end9

if Operation i overlaps any intervals10

then
Operation i cannot be scheduled on11

resource k of set j
if k = Kj then12

Operation i is infeasible13

Break to operation i + 114

else15

Break to resource k + 116

end17

else18

Schedule operation i on resource k19

of set j
end20

end21

end22

end23

end24

The total penalty function value, P , for each schedule
can be calculated according to Equation (17). It should be
noted that due to the total per-schedule penalty function value
being calculated as the sum of the penalty values associated
with each set of constraints, the penalization of the objective
function is directly proportional to the extent of infeasibility.

P = p1a + p2a + p3a + p4a (17)

125

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

E. Using PSO for schedule optimization

In order to determine how PSO performs on the pro-
posed problem, the basic PSO algorithm as described by
[3] had to be adapted. To avoid premature algorithm stagna-
tion, the Guaranteed Convergence Particle Swarm Optimiza-
tion (GCPSO) algorithm was used [14]. The GCPSO algo-
rithm applies different velocity and displacement updates,
respectively indicated by Equation (18) and Equation (19),
to the global best particle.

vτj(t + 1) = − xτj(t) + Yj(t) + wvτj(t) + ρ(t)(1 − 2rj(t))
(18)

xτj(t + 1) =Yj(t) + wvτj(t) + ρ(t)(1 − 2rj(t)) (19)

This forces the gbest particle into a random search around
the global best position. The size of the search space is
adjusted on the basis of the number of consecutive successes
or failures of the particle, where success is defined as an
improvement in the objective function value.

IV. IMPROVING THE PSO-BASED ALGORITHM

In order to investigate the behaviour of the GCPSO
algorithm on the problem formulation, a number of exper-
iments were performed. To be able to come to meaningful
conclusions it was necessary to define suitable conditions
under which the PSO-based algorithm should be executed.
Repeated execution of the algorithm with different parameter
values resulted in the values listed in Table I being defined
as suitable for comparison purposes. The number of particles
in the swarm is denoted by ns, δ denotes the fraction of the
domain of each dimension which in turn is used to calculate
Vmax, P is the weighting of the penalty function with respect
to the other fitness functions and a and b denote the interval
size within which the decision variables are initialized.

TABLE I

PARAMETER VALUES USED AFTER COMPLETION OF THE PARAMETER

DERIVATION STUDY

Parameter Value used

c1 2

c2 2

w 0.9

δ 0.25

P 20

a 20000

b 700

ns 30

All experiments were performed on a test problem de-
rived from both customer data and the T-FJSP benchmark
problems developed by [15]. This data is available from the
authors upon request. However, it should be noted that the
algorithm does not converge for any of the experimental
results. Tests with regards to the convergence discovered
that convergence is not even obtained at 10000 iterations.

The algorithm simply progresses through different stages of
exploration and exploitation depending upon whether any
of the particles have found a better solution. Therefore, the
results obtained from the experiments performed in this and
the next section (indicated in Tables II, III and IV) is not
an indication of how well PSO solves the proposed problem,
but rather of the best solutions which can be obtained within
the time constraints provided by the client.

During initial phases of algorithm development, the best
results obtained, measured in hours, was recorded in Table II.
Upon closer inspection, it became clear that the schedule
incorporated a large amount of slack time, where slack time
is defined as the amount of queue time, which can not
be attributed to the unavailability of resources. Including
slack time into the schedule was an effective means for the
algorithm to obtain feasible schedules with minimal effort.
Although queue time was used as an objective function, the
simultaneous minimization of the four objective functions
ensured that not enough emphasis could be placed on this
objective to completely avoid slack time.

TABLE II

RESULTS OBTAINED DURING INITIAL PHASES OF ALGORITHM

DEVELOPMENT

Performance measurement Answer obtained

Makespan 10229

Lateness/earliness 27849

Queue time 9304

Aggregated objective function 46930

Penalty function 0

Time to solution 117.29s

A. Removing slack time from the schedule

The simplest way to remove slack time from the schedule
is through the use of a compression algorithm. The com-
pression algorithm functions similar to a local search. This
algorithm determines whether any of the operations can be
scheduled at an earlier time without violating the problem
constraints and reschedules these operations by removing
the slack time. The experiments focused on the timing of
the compression algorithm and best results (Table III) were
obtained when particles were allowed more time to roam
throughout the search space before being pulled towards the
nearest optimum by the compression algorithm.

B. Improving the optimization of multiple objectives

In the previous experiments, the multiple objectives were
handled by means of goal programming. This approach
assigns target values to each of the fitness functions and
attempts to minimize the sum over all the fitness functions of
the deviation between the actual values obtained and the set
targets. The second experiment focused on the development
of a more involved approach to addressing the multiple

126

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

TABLE III

THE RESULTS OBTAINED FROM THE INCLUSION OF A COMPRESSION ALGORITHM TOWARDS THE END OF THE OPTIMIZATION PROCESS

Objective function Makespan Earliness/Lateness Queue time Total function

Mean 3160 10108 7354 20142

Standard deviation 197 1198 1490 2626

Sample size 30 30 30 30

Upper bound of 5% confidence interval 3230 10536 7887 21081

Lower bound of 5% confidence interval 3089 9679 6821 19202

objectives. In order to address issues of scalability between
the various fitness function coefficients, these coefficients
were normalized and the aggregated fitness function was
changed to the following:

f(ttt, bbb) = max
i

{ki} + kp (20)

where ki denotes the normalized deviation between the target
and actual value obtained of fitness function i and kp denotes
the deviation between the target and actual value of the
penalty function.

As the results in Table IV indicate, these improvements
did not have a significant influence on algorithm perfor-
mance. Depending upon which fitness function performed
the poorest, this method excludes the other fitness functions
from the fitness calculation. Even though the penalty function
was always included within the fitness function evaluation,
elimination of queue time had a definite impact on the
results obtained. In a formulation where excessive queue time
remains a problem, queue time should never be excluded
from the optimization process. Furthermore, the percentage
of feasible schedules generated decreased from close to
100% to 93.3% over 30 algorithm runs. The results for
the remaining 28 algorithm executions which did produce
feasible schedules are indicated in Table IV.

V. BENCHMARKING AGAINST AN ALTERNATIVE

SOLUTION STRATEGY

Due to the non-existence of benchmark problems and
alternative optimization algorithms for the proposed problem,
an insertion heuristic was developed and used to obtain
an objective comparison of algorithm performance. In the
past, Optimatix has had significant success with rules-based
heuristics applied to less complex problems.

The insertion heuristic aims to exploit the structure of
the problem to a greater extent than can be done by rules-
based heuristics. Starting off with a priority-based sequence
of operations, the operations are scheduled by means of an
iterative process which attempts to insert each operation into
its best possible position in the schedule.

The results obtained (Table V), are significantly better
than the PSO-based algorithm results. This suggests that
there exists significant room for improvement and another
experiment was subsequently conducted to investigate how
the underlying concepts of the insertion heuristic could be
used to obtain improved algorithm results.

A. Initializing the PSO-based algorithm with the insertion
heuristic

The rationale behind this experiment was that if the PSO
algorithm could start off with higher quality information at
the start of the optimization process, the algorithm would
be able to find better solutions more quickly. The results
obtained indicated that the PSO algorithm was unable to
improve on the initial solution since the gbest particle was
never updated. This can be directly attributed to the fact that
the insertion heuristic makes use of the problem’s structure
to generate solutions which tend to be local optima. Since
the search space consists of a large number of local optima
surrounded by infeasible space, it is very difficult for the
PSO algorithm to improve upon this initial solution.

However, the apparent failure of this final experiment
should not lead to the conclusion that PSO cannot be used
to solve complex production scheduling problems. Improved
integration of the insertion heuristic within the PSO-based
algorithm might be all that is needed to produce significantly
better results.

VI. CONCLUSION AND FUTURE WORK

This paper discussed the application of Particle Swarm
Optimization to a starting-time-based formulation of a com-
plex variation on the classical job shop scheduling problem.
The best results were obtained by a GCPSO algorithm used
in conjunction with a compression algorithm.

Although the PSO-based algorithm results do not compare
as favourably to the insertion heuristic as the authors would
have liked, the conclusion that PSO cannot be used to
solve complex production scheduling problems should not be
made. This paper merely addresses one formulation of the
proposed problem. The use of alternative formulations will
result in different challenges and opportunities than those
faced with the starting-time-based formulation. Two of the
most obvious alternatives to consider include a priority-based
formulation and the application of a binary optimization
algorithm to [16]’s adaptation of the disjunctive graph repre-
sentation. Furthermore, due to the computational advantages
associated with the starting-time-based formulation, future
research should also investigate the application of alternative
solution strategies to this formulation.

Eliciting both commercial and academic interest, the pro-
posed problem is a prime example of a real-world optimiza-

127

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

TABLE IV

THE RESULTS OBTAINED FROM NORMALIZATION OF THE FITNESS FUNCTION COEFFICIENTS

Objective function Makespan Earliness/Lateness Queue time Total function

Mean 3136 10325 7774 20755

Standard deviation 199 1108 1693 2648

Sample size 28 28 28 28

Upper bound of 5% confidence interval 3209 10735 8401 21736

Lower bound of 5% confidence interval 3062 9914 7147 19774

TABLE V

INSERTION HEURISTIC RESULTS

Objective function Makespan Earliness/Lateness Queue time

Mean 2164 4390 539

Standard deviation 63 401 310

Sample size 100 100 100

Upper bound of 5% confidence interval 2176 4469 599

Lower bound of 5% confidence interval 2152 4312 478

tion problem. Finding an effective solution strategy for this
extremely intractable problem still remains a challenge.

REFERENCES

[1] D. J. Hoitomt, P. B. Luh, and K. R. Pattipati, “A practical approach to
job-shop scheduling problems,” IEEE Transactions on Robotics and
Automation, vol. 9, no. 1, pp. 1–13, February 1993.

[2] A. S. Jain and S. Meeran, “Deterministic job-shop scheduling: past,
present and future,” European Journal of Operational Research, vol.
113, pp. 390–434, 1999.

[3] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence. Morgan
Kaufmann Publishers, 2001.

[4] Z. Lian, X. Gu, and B. Jiao, “A similar particle swarm optimization
algorithm for permutation flowshop scheduling to minmize makespan,”
Applied Mathematics and Computation, vol. 175, no. 1, pp. 773–785,
2006.

[5] M. Zandieh, S. M. T. F. Ghomi, and S. M. M. Husseini, “An immune
algorithm approach to hybrid flow shop scheduling with sequence-
dependent setup times,” Applied Mathematics and Computation, 2006,
forthcoming.

[6] H. Yu and W. Liang, “Neural network and genetic algorithm-based
approach to expanded job-shop scheduling,” Computers and Industrial
Engineering, vol. 39, pp. 337–356, 2001.

[7] P. Brucker, Scheduling Algorithms, 4th ed. Springer, 2004.
[8] A. G. Lockett and A. P. Muhlemann, “A scheduling problem involving

sequence dependent changeover times,” Operations Research, vol. 20,
no. 4, pp. 895–902, 1972.

[9] J. Blazewicz, W. Domschke, and E. Pesch, “The job shop scheduling
problem: conventional and new solution techniques,” European Jour-
nal of Operational Research, vol. 93, pp. 1–33, 1996.

[10] Z. W. Xia Weijun, Wu Zhiming and Y. Genke, “A new hybrid opti-
mization algorithm for the job-shop scheduling problem,” Proceeding
of the 2004 American Control Conference, pp. 5552–5557, 2004.

[11] J. Jerald, P. Asokan, G. Prabaharan, and R. Saravanan, “Scheduling
optimisation of flexible manufacturing systems using particle swarm
optimisation algorithm,” Springer-Verlag, pp. 964–971, August 2004.

[12] H. Zhang, X. Li, H. Li, and F. Huang, “Particle swarm optimization-
based schemes for resource-constrained project scheduling,” Automa-
tion in Construction, vol. 14, no. 2005, pp. 393–404, 2004.

[13] W. Xia and Z. Wu, “An effective hybrid optimization approach for
multi-objective flexible job-shop scheduling problems,” Computers
and Industrial Engineering, vol. 48, pp. 409–425, 2005.

[14] A. P. Engelbrecht, Fundamentals of computational swarm intelligence.
Wiley, 2005.

[15] I. Kacem, S. Hammadi, and P. Borne, “Pareto-optimality approach for
flexible job-shop scheduling problems: hybridization of evolutionary
algorithms and fuzzy logic,” Mathematics and Computers in Simula-
tion, vol. 60, pp. 245–276, 2002.

[16] P. Ivens and M. Lambrecht, “Extending the shifting bottleneck pro-
cedure to real-life applications,” European Journal of Operational
Research, vol. 90, pp. 252–268, February 1996.

[17] S. Bertel and J. C. Billaut, “A genetic algorithm for an industrial
multiprocessor flow shop scheduling problem with recirculation,”
European Journal of Operational Research, vol. 159, pp. 651–662,
2004.

[18] H. Hwang and J. U. Sun, “Production sequencing problem with reen-
trant work flows and sequence-dependent set-up times,” Computers
and Industrial Engineering, vol. 33, pp. 773–776, 1997.

128

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

