
Scheduling Coupled-Tasks on a Single Machine

Haibing Li and Hairong Zhao

Abstract—In this paper, we consider the coupled-task
scheduling problem, to schedule n jobs on a single machine.
Each job consists of two coupled tasks which have to be
processed in a predetermined order and at exactly a specified
interval apart. The objective is to minimize the makespan. The
problem was shown to be NP-hard in the strong sense even for
some special cases. We analyze some heuristics with worst-case
bounds for some NP-hard cases. In addition, we present a tabu
search meta-heuristic for solving the general case.
Computational results show that the meta-heuristic is efficient
to solve the problem in terms of solution quality and running
time.

I. INTRODUCTION

E consider the coupled-task scheduling problem

which is stated as follows. There are n jobs to be

scheduled on a single machine. Each job consists of two

distinct tasks (operations) which have to be processed in a

predetermined order and at a specified interval (or delay)

apart. For convenience, each job j is denoted by a triple (aj,

Lj, bj), which represents the first task (also its processing

time), the fixed interval (also its length) between the two

tasks, and the second task (also its processing time),

respectively. It is important that for each job j, task bj must

be scheduled exactly Lj after the completion of task aj.

Without loss of generality, we assume that during the

interval Lj between aj and bj, the machine can process the

tasks of other jobs. However, at any time the machine can

process at most one task and no preemption is allowed. We

are interested in minimizing the total schedule length of the

jobs, i.e., the makespan Cmax. Following the same notation in

[7], we denote the problem as .
max1| Coup-Task | C

The problem arises from some practical applications such

as radar system [7, 10]. Unfortunately, this problem is

known to be NP-hard [9]. In fact, Orman and Potts [7]

showed that even the special cases of this problem, i.e.,

are all strongly NP-hard. Finally, the very restricted case

 has also shown to be strongly

NP-hard [6, 11].

max max

max max

1| Coup-Task, = = | , 1| Coup-Task, = , = | ,

1| Coup-Task, = , = | , 1| Coup-Task, = , = | ,

j j j j j

j j j j

a b L C a a L l C
b b L l C a a b b C

max1| Coup Task, = = 1|j ja b C

All the above negative results show that the problem is

very hard in terms of complexity. Nevertheless, Orman and

Potts [7] showed that, three other special cases, i.e.,

and , are solvable in

time. They raised an open problem for the

complexity of

Haibing Li is with Lehman Brothers Inc., New York City, NY 10019,

USA. (hl27@njit.edu).

Hairong Zhao is with the Department of Mathematics, Computer Science

& Statistics, Purdue University Calumet, Hammond, IN 46323, USA.

(corresponding author to provide phone: 1-219-989-3181, e-mail:

hairong@calumet.purdue.edu).

max max1| Coup-Task, = = | , 1| Coup-Task, = = |j j j ja L p C b L p C

max1| Coup-Task, = = , = |j j ja b b L l C

()O n
max1| Coup Task, = , = , = |j j ja a L l b b C . Very

recently, Ahr et al. [1] presented for this problem an exact

algorithm using dynamic programming, which runs in

21O nr time
1ar a . This algorithm is not

polynomial in terms of a and l. Thus, the actual complexity

of this problem still remains open.

While the general problem and its special cases have been

analyzed in depth from a complexity point of view, analysis

of algorithms for the problem is not much. Shapiro [10]

gave three simple heuristics whose performance is analyzed

based on experimental results. Leung and Zhao [6] showed

that a greedy heuristic, which schedules the jobs in

increasing order of Lj, is a 3-approximation algorithm for

both the problem and

the problem . When a =

b, the approximation bound is improved to 5/2. If a = b = 1,

the approximation bound is further improved to 2. Recently,

Ageev and Kononov [2] analyzed a 2.5-approximation

algorithm for the case as well as a

3.5-approximation algorithm for the general case.

max1| Coup-Task, = , = , > |j ja a b b a b C

max1| Coup-Task, = , = , < |j ja a b b a b C

max1| Coup Task, |j ja b C

A related problem was studied by Kern and Nawijn [4],

and Leung and Zhao [6] in which the delay between the

operations of a job was assumed to be minimum instead of

exact. They showed that the problem is NP-hard in the

ordinary sense. Gupta [3] showed that this problem is

strongly NP-hard, and compared several greedy heuristics

by experimental approach. Reizebos, Gaalman, and Gupta

[8] generalized the problem to multiple (not just two)

operations per job and developed heuristics to solve it.

In this paper, we are interested in the design and analysis

of algorithms for the coupled-task scheduling problem and

its NP-hard special cases. For the NP-hard special cases, we

present some algorithms that promise good approximation

bounds. For the general case, while it is hard to obtain a

good approximation algorithm, we design a tabu search

meta-heuristic.

The remainder of the paper is organized as follows. In the

next section, we give some preliminary results that will be

used in later sections. In Section III, we present and analyze

approximation algorithms for several NP-hard special cases.

W

137

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

In Section IV, we develop a tabu search algorithm for the

general problem. In Section V, we analyzed the performance

of the algorithms using an experimental approach. Finally,

we give some concluding remarks in Section VI.

II. PRELIMINARIES

In this section, we give some definitions and present some

preliminary results that will be used in later sections.

We first define two specific terms for this problem,

namely nesting and interleaving. Given a schedule, a job j is

said to be nested within job k if their tasks are finished in the

order of ak, aj, bj, bk. A job j is said to be interleaved with

job k if their tasks are finished in the order of aj, ak, bj, bk or

in the order ak, aj, bk, bj. A schedule is a permutation
schedule if no job is nested in another job. Usually, nesting

and/or interleaving should be applied to obtain an optimal

schedule for an instance of the problem.

Given an instance of our problem, a job j is called a

singleton job if both nesting and interleaving are not

possible for j. That is, for any other job k, j can not be nested

within k, nor k can be nested within j, nor j can be

interleaved with k. It is intuitive to observe the following

property for an instance having singleton jobs.

Observation 1 (Singleton Job) If an instance of the
problem

max1 -Coup Task C has singleton jobs, then an optimal

schedule can be obtained by first finding the optimal
schedule for the non-singleton jobs, then concatenating all
singleton jobs one after another at the end of the schedule.

As a result of the above observation, if in an instance

every job is a singleton, then concatenating all the jobs in

arbitrary order produces an optimal schedule.

Lemma 2 (Reverse Equivalence [7]) The problem

max1 - , , ,j j jCoup Task a L b C and its reverse

max1 - , , ,j j jCoup Task b L a C are equivalent.

Let A, B be the total processing time of the first and

second operation of all jobs, respectively, i.e.

1

n
jj

A a ,
1

n
jj

B b . We have the following

lower bounds for the optimal makespan .
*

maxC

Lemma 3 (Lower bound) For any instance of the problem

max1 -Coup Task C , we have

*

max ,C A B (1)

*

max
1

,max j j j
j n

C a L b (2)

*

max
1

,min j
j n

C A L (3)

*

max
1

.min j
j n

C B L

)/2

(4)

Proof: The first bound holds since all the first and second

operations have to be processed on the single machine. The

second bound says that the makespan is at least the length of

any job, in particular the longest job, which is obviously

true. The third bound comes from the relaxed problem

where for all j. And the last bound comes from the

relaxed problem where for all j.
= 0jb

= 0ja

III. APPROXIMATION ALGORITHMS FOR

NP-HARD SPECIAL CASES

In this section, we focus on the design and analysis of

some approximation algorithms for a variety of strongly NP-

hard cases of the coupled-task scheduling problem.

The first strongly NP-hard case we consider is

. We have the

following observation for any schedule.

max1| Coup-Task, = = = |j j j ja b L p C

Observation 4 In any schedule for an instance of
, any two distinct jobs j

and k can not be interleaved unless .
max1 | Coup-Task, = = = |j j j ja b L p C

=j kp p

Given an instance of this problem, it is easy to see that the

total length of the idle intervals of any schedule with no

forced idle time is at most
=1

= = (
n

jj
L L A B , which

is at most *

max
2C due to (1) in Lemma 3. Thus, we have

Lemma 5 The makespan of any schedule with no forced
idle time for is at most
3/2 times the optimal.

max1| Coup-Task, = = = |j j j ja b L p C

Now let us consider another strongly NP-hard case

max1| Coup Task, = , = |j jb b L l C . We start with the following

observation:

Observation 6 No nesting is possible for the problem
. In other words, for any

instance of , every feasible
schedule is a permutation schedule.

max1| Coup-Task, = , = |j jb b L l C

max1| Coup-Task, = , = |j jb b L l C

Theorem 7 One can find a schedule for the problem
max1| Coup Task, = , = |j jb b L l C in linear time whose

makespan is at most 3 times the optimal.

Proof: We consider 3 cases.

Case 1:
1max jj n a b , i.e. for any 1ja b j n .

We show the makespan of any schedule with no forced idle

time is at most 2 times the optimal.

Let be an arbitrary schedule with no forced idle time.

Suppose the jobs are scheduled in the order of 1, .

S
2,...,n

138

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

Then it must be true that either or is scheduled

immediately after , see Fig. 1. for an illustration. To

analyze the makespan of , we divide the schedule into

blocks so that if and are in the same block, then

 is scheduled immediately after with no idle time.

Suppose a block consists of jobs . Then the

following must be true:

1ja
1jb

jb
S

j 1j

1jb jb
, 1,...,i i j

By definition of block, , , ..., are scheduled

one after another with no idle time.

ib
1ib jb

Since j and 1j are in different blocks, is

followed immediately by with no idle time.

jb

1ja
For , we have by

assumption. The idle time after is .

<i k j 1 b

1

l

1
0 < <ka

ka
1

0 <kb a b
 If , the idle time after is strictly less than

because otherwise will be in the same block as

; if , the idle time after is at most .

j n ja b
1j

j =j n na l
Thus the total idle time is the sum of the lengths of those

intervals after , 1 . From the above analysis, the

length of the idle interval after is at most for

 and the length of idle interval after is at

most . Thus the total length of the idle intervals is at most

. Therefore, the makespan of the

schedule is at most

ja j n

ja b
1 j n na

l
(1) <n b l B

*

max
() < 2A B B l C by Equation (1)

and (4).

Case 2:
1

min j n ja b b, i.e, for any

. We show any schedule with no forced idle time

has makespan at most 2 times the optimal.

ja
1 j n

Let be an arbitrary schedule with no forced idle time.

Suppose the jobs area scheduled in the order of 1, .

Now instead of analyzing the makespan of , we analyze

the makespan of a new scheduled that greedily

schedules the jobs in the same order as but subject to the

condition that

S
2,..., n

S
S

S
1ja is scheduled either immediately after

or immediately after , see Fig. 2. for an illustration. With

the additional constraint, it is obvious that S

ja

jb
 has a larger

makespan than that of .S

0 2 5 6 7 11 15 1 7 2 1 2 2 26 30 3 1 3 6 4 0

Fig. 1. Illus tration of an arbitrary schedule of case1-ins tance in Theorem 7. The

jobs are (2, 5, 4), (1, 5, 4), (2, 5, 4), (4, 5, 4), (1, 5, 4).

block 1 block 2 block 3

a1 a2 b1 a3 b2 a4 a5 b3 b4 b5S

a1 a2 b1 b2 a3 a4 b3 b4 a5 b5

S’

0 2 6 7 8 10 11 1 2 1 4 1 5 16 1 9 20 2 1

a1 a2 b1 a3b2 a4 b4b3 b5

0 2 6 7 8 11 1 2 1 4 16 1 9 20 2 1 2 2 2 3

a5

Fig. 2. Illus tration of an arbitrary schedule of case2-ins tance in Theorem 7. The
jobs are (2, 5, 1), (4, 5, 1), (2, 5, 1), (2, 5, 1), (4, 5, 1).

To analyze the makespan of , we divide the schedule

into blocks so that if and are in the same block,

then

S
j 1j

1ja is scheduled immediately after . Suppose a

block consists of jobs

ja
, 1,...i i j . Then the following must

be true:

By definition of block, , , ... are scheduled

one after another with no idle time.

ia
1ia ja

Since and j 1j are in different blocks, is

followed immediately by with no idle time.

jb
1ja

For 1 <i k j , the length of the idle interval before

 is kb 0 ka b a< k since by assumption

0 < kb a .

If i belongs to the last block, the idle time before is

at most ; otherwise the idle time before is at

most

ib
=il l ib

1ja since
1ja can not fit into the interval.

Thus the total length of idle time is the sum of the lengths of

those intervals before . By the above analysis, the length

of the idle interval before is at most , and the length

of the idle interval before is at most . So the total

length of idle intervals is at most

jb

jb ja

nb l
1

=1
<

n
ji

a l A l . The

makespan is at most *

max
() 2A B A l C by Equation (1)

and (3).

Case 3: We divide the jobs into two groups: the first

group contains jobs such that a ; the second group

contains those jobs such that . Arbitrarily schedule

j b
>ja b

139

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

each group and concatenate them. Using 1
A , 1

B to denote

the sum of the first and second operations of the jobs in the

first group, respectively. Similarly we define 2
A and 2

B .

The total makespan is at most:

1 1 1 2 2 2

*

1 2 m

() (

= () () < 3
ax

)

,

A B B l A B A l

A B B l A l C
due to the lower bounds in (1), (4) and (3).

Finally it is easy to see that our algorithm takes linear time

in all cases.

By Lemma 2 and Theorem 7, we immediately have the

following corollary.

Corollary 8 One can find a schedule for
 in linear time whose

makespan is at most 3 times the optimal.
max1| Coup Task, = , = |j ja a L l C

IV. A META-HEURISTIC FOR THE GENERAL CASE

Needless to say, the general problem would be harder in

terms of theoretical analysis of algorithm than the NP-hard

special cases that we studied in the previous section. In this

section, We develop a tabu search algorithm. For an

introduction to tubu search, the reader is referred to Glover

[13, 14]. Since a schedule for the general case is not

necessarily a permutation schedule, this brings in some

difficulties for generating neighborhoods for local searches,

which would better be sequences. To resolve this problem,

we use a heuristic, which is called Construct-Schedule-from-
Sequence (CSFS), to construct a schedule from a given

sequence of jobs
1 2

= , ,..., nS j j j . Thus, it maps a sequence

to a non-permutation schedule whose makespan can be

determined accordingly. We describe the heuristic in detail

as the following pseudo-code.

Algorithm . Let S be the sequence ()CSFS S
1 2
, ,..., nj j j . Start job

1j at time 0. For each index

, scheldue job = 2,3,...,i n ij at the ealiest possible time in

the partial schedule. Return the makespan of the constructed

schedule .

Essentially, to schedule a job at the earliest possible time

in the partial schedule, the algorithm tries to apply nesting,

interleaving, and appending in a greedy way. It should be

noted that, combinations of different greedy sequencing

rules with the above algorithm result in different heuristics.

For example, we can order the jobs using the SPT rule or

LPT rule on Lj, and feed the obtained sequence into the

above heuristic. However, such fixed sequences could

produce very bad schedules. Therefore, in what follows, we

use a tabu search algorithm to explore the sequence space.

Hopefully, this could find some good schedules in the search

procedure.

Let us first consider a neighborhood generating

mechanism, which is a necessity for the local search

procedure. Given a sequence
1 2

= , ,..., nS j j j (accordingly

implies a schedule mapped to by algorithm CSFS) and a

parameter K, we generate a neighborhood using the

following procedure:

Neighborhood (S, K). 1) Let the neighbohood be empty,

i.e., = . 2) For each position in

sequence and each length , move the

subseuqence

= 1,2,...,i n
S = 1,2,...,k K

1, ,...,i i i kj j j 1
 to each position in the set

1, 2,..., 1, , 1,...,i i k i k n , to obtain a new

schedule S . Add S into . 3) Return which

contains all such new scheduleds constructed in step 2).

Now we are ready to give a tabu search algorithm. The

algorithm use a problem instance I as feed, and starts search

from a randomly generated sequence. When it terminates, a

sequence mapped to a best schedule is returned. To prevent

the algorithm from re-exploring those sequences that have

been visited already, ideally we can store such explored

sequences into memory as a tabu list. However, storing such

sequences would require much memory. To resolve this

problem, we map a sequence
1 2

= , , , nS j j j to a structure

which is an ordered small sequence with only five items:

1 /3 2 /3
() = , , , , ()nn nM S j j j j CSFS S . We name this as tabu

structure. With such a structure, we keep the tabu structure

in memory in the life time of tabu search. If two different

sequences share a same tabu structure, we simply treat two

sequences as the same and assumes that they are mapped to

the same schedule. If indeed there exists two different

sequences share the same tabu structures, both will be

prohibited from re-exploring. Thus, this tabu structure

would prevent the local search from being trapped into local

optima. We describe the tabu search algorithm as follows. In

the algorithm, the notation is defined as follows:

: Tabu list;

bS : Best sequence searched so far;

bC : The makespan of the schedule constructed from

by ;

bS
()bCSFS S

Algorithm TabuSearch ()I . 1) Randomly generate a

sequence for instance S I . Set tabu list = , ,

; Configure the value of . 2) Search in

 the best neighbor

=bS S
= (bC CSFS S) K

(,)Neighborhood S K S such that

()M S is not in the tabu list . If no such S exists,

randomly generate a new sequence S . If

() < bCSFS S C , let ,=bS S = (bC CSFS S) . 3) Let

= { ()}M S =S S, , repeat 2) until the predefined

stopping condition is met. 4) Return the schedule

140

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

constructed by .()bCSFS S

In the above algorithm, the stopping condition is

configurable. A typical stopping condition could be a fixed

number of non-improving iterations (denoted as). For

example, if has not been updated for 1000 iterations,

then the algorithm terminates. We will use such stopping

criterion in our experiments later.

bS

V. COMPUTATIONAL RESULTS

To test our metaheuristic, we need some problem

instances. Since no one has reported experimental results for

the problem and no benchmark instances are available, we

generate problem instances of different characteristics. For

each , we generate 20 instances. For

each instance in each group, the 's, 's and 's are

randomly chosen in the range [1 subject to uniform

distribution.

= 50,100,200,500n

ja jb jL
,100]

The algorithms are implemented in C++. The running

environment is based on the Windows 2000 operating

system; the PC used was a notebook computer (Pentium III

900Mhz plus 384MB RAM).

For configurable control parameters, in addition to the

non-improving iterations which is set to 500, 1000, 2000,

we also set .= 3,6,10K
Since it is unlikely that the optimal solution can be

obtained by an exact algorithm very quickly, we compare

the heuristic results with a lower bound of the optimal

solution which can be computed easily using lemma 3. Let

be the metaheuristic result and be the lower

bound for the optimal result which is denoated as C
()maxC H LBC

OPT. We

define

()
() = .max

LB

C Hr H
C

Obviously,

()
() 1.max

OPT

C Hr H
C

TABLE I

THE AVERAGE OF C TO C
max H LB AND AVERAGE RUNNING TIME OVER THE GENERATED INSTANCES

r H s H (in seconds)n K
 =500 =1000 =5000 =500 =1000 =5000

3 1.193 1.155 1.134 0.004 0.027 0.089

6 1.133 1.098 1.056 0.009 0.061 0.20650

10 1.115 1.051 1.049 0.013 0.362 0.753

3 1.387 1.295 1.216 0.015 0.059 0.271

6 1.204 1.135 1.099 0.076 0.257 0.515100

10 1.187 1.130 1.112 0.252 0.713 1.972

3 1.452 1.335 1.308 0.077 0.174 0.489

6 1.359 1.301 1.195 0.362 0.718 1.376200

10 1.320 1.267 1.209 0.750 1.233 3.572

3 1.538 1.502 1.411 0.290 0.981 3.745

6 1.479 1.445 1.386 0.799 2.990 6.790500

10 1.408 1.358 1.339 0.750 5.119 12.843

Thus, if is close to 1, it means that the metaheuristic

result is close to the lower bound. Hence, it would be even

closer to the optimal cost. Therefore, to some extent, the

ratio indicates how good our metaheuristic is when it

is applied to solve the problem instances.

()r H

()r H

For each instance generated, we run the tabu search

algorithm with configured and on it to produce a

schedule. In addition, the value of is computed using

lemma 3. With these, we compute for this instance.

K
LBC

()r H
Due to the space constraints, we only show the statistic

results obtained from the experiments. Table 1 shows the

average of and average running time (in seconds) on

the 20 instances for each combination of

,

()r H

= 50,100, 200,500n = 500,1000,2000 , and

. In the table,= 3,6,10K ()r H and ()s H denote the

average ratio and average running time, respectively. From

Table 1, we have the following observations:

When is small, and n K are large, ()r H is close

to . When increases, 1 n ()r H also increases if

and

K
are fixed. This implies that the search is more

efficient for small .n
When and are fixed, n K ()r H decreases when

increases. This implies that the solution quality is

dependent on the stopping criterion. However, the

difference of the results between = 1000 and

= 2000 is not too much.

When and n are fixed, ()r H decreases

when increases. This implies that the

solution quality is dependent on the

neighborhood size. The larger the

neighborhood size, the better the searched

K

141

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

schedule. However, the difference of the

results between and is not too

much.

= 6K = 10K

The running time is closely related to all

and and

n
K , it increases if one of these

parameters increases.

VI. CONCLUDING REMARKS

In this paper we analyzed approximation algorithms for

some strongly NP-hard case of the coupled-task scheduling

problem for the objective of minimizing makespan. We also

proposed a tabu search approach for solving the general

case, by exploring the structure of a valid schedule for the

problem.

The tabu search algorithm was implemented to have

experimental analysis. The observations on the experimental

results reveal that they can produce in practice solutions that

are very close to optimal with configurable parameters.

REFERENCES

[1] D. Ahr, J. Békési, G. Galambos, M. Oswald and G. Reinelt, “An

exact algorithm for scheduling identical coupled tasks,” Mathematical
Methods of Operations Research, vol.59, pp. 93–203, 2004.

[2] A. A. Ageev and A. V. Kononov, “Approximation Algorithms for

Scheduling Problems with Exact Delays,” Working paper, Sobolev

Institute of Mathematics, Novosibirsk, Russia, 2006.

[3] J. N. D. Gupta, “Comparative evaluation of heuristic algorithms for

the single machine scheduling problem with two operations per job

and time-lags,” Journal of Global Optimization, vol. 9, pp. 239–250,

1996.

[4] W. Kern, and W. M. Nawijn, “Scheduling multi-operation jobs with

time lags on a single machine,” Proceedings 2nd Twente Workshop
on Graphs and Combinatorial Optimization, U. Faigle and C. Hoede

(eds.), Enschede, 1991.

[5] J. K. Lenstra, Private communication, 1991.

[6] J.Y-T. Leung and H. Zhao, “Minimizing sum of completion times and

makespan in master-slave systems,” IEEE Transactions on
Computers, vol. 55, pp. 985–999, 2006.

[7] A. J. Orman, and C. N. Potts, “On the complexity of coupled-task

scheduling,” Discrete Applied Mathematics, vol. 72, pp. 141–154,

1997.

[8] J. Riezebos, G. Gaalman, and J. N. D. Gupta, “Flowshop scheduling

with multiple operations and time-lags,” Journal of Intelligent
Manufacturing, vol. 6, pp. 105–115, 1995.

[9] A. H. G. Rinnooy Kan, Machine Scheduling Problems, Martinus

Nijhoff, The Hague.

[10] R. D. Shapiro, “Scheduling Coupled Tasks,” Naval Research Logistics
Quarterly, vol. 20, pp. 489–498, 1980.

[11] W. Yu, H. Hoogeveen and J. K. Lenstra, “Minimizing makespan in a

two-machine flow shop with delays and unit-time operations is NP-

hard,” Journal of Scheduling, vol.7, pp. 333–348, 2004.

[12] F.Glover, “Tabu Search - Part I,” ORSA Journal on Computing, vol.

1, pp. 190–206, 1989.

[13] F.Glover, “Tabu Search - Part II,” ORSA Journal on Computing, vol.

2, pp. 4–32, 1990.

142

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

