
A Genetic Algorithm for Scheduling Parallel
Non-identical Batch Processing Machines

Shubin Xu and James C. Bean

Abstract— In this paper, we study the scheduling problem of
minimizing makespan on parallel non-identical batch processing
machines. We formulate the scheduling problem into an integer
programming model. Due to the difficulty of the problem,
it is hard to solve the problem with standard mathematical
programming software. We propose a genetic algorithm based on
random keys encoding to address this problem. Computational
results show that this genetic algorithm consistently finds a
solution in a reasonable amount of computation time.

I. INTRODUCTION

BATCH processing machines can process a number of jobs
at the same time. The rationale for batching is simple:

it may be economically efficient to process jobs in batches
than to process them individually. Applications of batching in
industry include heat treatment operations in metalworking,
diffusion or burn-in operations in semiconductor fabrication. In
this paper, we focus on the scheduling problem of burn-in test
operations in semiconductor fabrication. There are four major
steps in large scale integrated circuits (IC) manufacturing [1]:
wafer fabrication, wafer probe, assembly or packaging, and
final testing. Burn-in test operations take place in the final
testing step. The processing times of burn-in operations are
generally extremely long compared to those of other testing
operations (e.g., 120 hours vs. 4–5 hours) [2]. Therefore, the
burn-in operation is frequently the bottleneck process in the
final testing step and because it occurs at the end of the
manufacturing process, it plays a vital role in the commitment
of on-time delivery of finished products. Effective scheduling
of these operations is of great importance to the overall
performance of a company.

In the burn-in operation, different kinds of IC chips are
loaded onto boards and then placed into an oven for burn-in
test. The oven is maintained at a constant high temperature for
a period of time. The burn-in time and temperature for each
IC chip are determined by the product test specification and
thus are known a priori. The idea for burn-in test is to expose
the IC chips to thermal stress so that any chip out of test
specification can be sorted out. Due to the limited capacity
of the burn-in oven, the IC chips must be sub-grouped into
batches. To ensure the quality of the product, the processing

Manuscript received October 31, 2006.
Shubin Xu is with the School of Mechanical Engineering, Shanghai Jiao

Tong University, Shanghai 200030 China. He is now visiting to Charles H.
Lundquist College of Business, University of Oregon, Eugene, OR 97403
USA (e-mail: sxu@uoregon.edu).

James C. Bean is with the Charles H. Lundquist College of Business,
University of Oregon, Eugene, OR 97403 USA (corresponding author, phone:
541-346-3300; fax: 541-346-3331; e-mail: jcbean@uoregon.edu).

time of a batch is determined by the longest processing time
of all the jobs contained in the batch. A chip can be kept in
the oven longer than its pre-specified burn-in time, but not
taken out from the oven before the pre-specified burn-in time
has elapsed. Once the processing of a batch initiates, it cannot
be preempted and no job can be removed from or introduced
to the oven until the processing of the batch is finished. The
readers are referred to [2], [3] for more details about burn-in
oven test.

In this research, we consider parallel burn-in ovens with
non-identical capacities. All jobs are assumed to be ready at
time zero. We model burn-in oven test operations as parallel
batch processing machines with non-identical capacities. The
performance measure to be optimized is makespan, Cmax,
defined as the time to finish all jobs. We seek to minimize
makespan so that the finished products can be shipped to
customer as soon as possible. Following the three-field α |β | γ
notation of Graham et al. [4], we denote this scheduling
problem as Rm | batch |Cmax. The problem of minimizing
makespan on a single batch processing machine with non-
identical job sizes is proven to be NP-hard [5], so the
scheduling problem of parallel non-identical batch processing
machines with non-identical job sizes under study is also
NP-hard. It is inefficient, or impossible, to solve this kind
of problem with standard mathematical tool. Therefore, we
suggest a genetic algorithm (GA) to solve this problem in a
reasonable amount of computation time.

The remainder of this paper is organized as follows. In Sec-
tion II, we survey previous related work on scheduling batch
processing machines. In Section III, we present a mathematical
formulation for the batching problem and try to solve the
problem with standard mathematical programming software.
Due to the difficulty of the problem, we propose a genetic
algorithm to solve the problem in Section IV. Computational
results are given in Section V. Finally, conclusions and future
research directions are discussed in Section VI.

II. PREVIOUS RELATED WORK

Many researchers have dedicated their efforts to the problem
of scheduling batch processing machines. Early work on batch
scheduling can be traced back to Ikura and Gimple [6] who
study a single batch processing machine with identical job
processing times and identical job sizes. They propose an
O(n2) algorithm to minimize makespan. Since then, much
research has been done in this area. For an excellent review
of scheduling with batching, see [7]. The literature reviewed

143

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

in that paper shows that batch scheduling problems are often
addressed by heuristics or dynamic programming.

Lee et al. [2] first study the problem of scheduling
semiconductor burn-in oven. They present efficient dynamic
programming-based algorithms for minimizing a number of
different performance measures such as maximum tardiness,
the number of tardy jobs, on a single batch processing ma-
chine.

Chandru et al. [8] study the problem of minimizing total
completion time on single and parallel identical batch process-
ing machines. They propose an exact branch-and-bound algo-
rithm for the single machine scheduling problem and heuristics
for the parallel machines scheduling problem. Chandru et
al. [9] also propose a dynamic programming algorithm for
minimizing total completion time on a single batch processing
machine.

Uzsoy [5] studies a problem of scheduling a single batch
processing machine with non-identical job sizes. He develops
branch-and-bound algorithm as well as heuristics to minimize
total completion time.

Uzsoy [3] studies another problem of scheduling batch
processing machines with incompatible job families, where
jobs from different families cannot be grouped into the same
batch. He develops several algorithms to minimize makespan,
maximum lateness, and total weighted completion time for
single and parallel identical batch processing machines.

Mehta and Uzsoy [10] study the problem of minimizing to-
tal tardiness on a batch processing machine with incompatible
job families. They provide a dynamic programming algorithm
that has polynomial time complexity when the number of job
families and the capacity of the batch processing machine
are fixed. They also examine a number of heuristics that
can provide near optimal solutions in a reasonable amount
of computation time.

Lee and Uzsoy [11] consider the scheduling problem of
minimizing makespan on a single batch processing machine
with dynamic job arrivals. They provide polynomial and
pseudo-polynomial time algorithms for several special cases.
They also develop efficient heuristics and evaluate their per-
formance through computational experiments.

Sung and Choung [12] study the scheduling problem to
minimize makespan for a single burn-in oven. They analyze a
static problem in which all jobs are ready at time zero, and also
investigate a dynamic problem with different job ready times.
They propose a branch-and-bound algorithm and a number of
heuristics to solve the scheduling problem.

Chang et al. [13] propose a simulated annealing approach
to minimize makespan for parallel identical batch processing
machines.

All the papers discussed above study either a single batch
processing machine or parallel identical processing machines.

III. PROBLEM DEFINITION

The batch scheduling problem under study involves assign-
ing jobs to batches and determining the batch sequence on the
machines so as to minimize the makespan.

We make the following assumptions about our scheduling
problem:

1. There are n jobs to be processed by m parallel non-
identical batch processing machines. All the data, such
as job processing times, job sizes, and machine capacities
are deterministic and known a priori.

2. All jobs are ready to be processed at time zero.
3. The machines are continuously available.
4. The setup times of the machines, compared with the

processing times, are negligible.
5. The processing time of a batch is represented by the

longest processing time of all the jobs contained in the
batch. The size of the batch cannot exceed the capacity
of the machine.

6. Once a batch is processed by a machine, it cannot be
interrupted, i.e., no preemption is allowed. No jobs can
be introduced or removed from a batch while the batch
is being processed.

7. All the jobs are considered equal in importance.
8. The performance measure for the scheduling system is

makespan. Our objective is to minimize the makespan.

The scheduling problem can be formulated into an integer
programming model. Here is a list of notation for the mathe-
matical model.

Problem parameters:

j index of job, j ∈ {1, 2, . . .}.
b index of batch, b ∈ {1, 2, . . .}.
m index of machine, m ∈ {1, 2, . . .}.
J set of all jobs.
B set of all batches.
M set of all machines.
pj processing time of job j.
sj size of job j.
Km capacity of machine m.

Problem decision variables:

Xjbm binary, 1 if job j is assigned to batch b and
processed by machine m, 0 otherwise.

Ybm binary, 1 if batch b is open on machine m,
0 otherwise.

Pbm batch processing time of batch b processed by
machine m, ∈ <+.

Cmax makespan, ∈ <+.

The integer programming model can be formulated as
follows:

Minimize Cmax (1)

subject to: ∑
b∈B

∑
m∈M

Xjbm = 1 ∀ j ∈ J (2)

∑
m∈M

Ybm 6 1 ∀ b ∈ B (3)

144

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

∑
j∈J

sjXjbm 6 KmYbm ∀ b ∈ B,m ∈M (4)

Pbm > pjXjbm ∀ j ∈ J, b ∈ B,m ∈M (5)

Cmax >
∑
b∈B

Pbm ∀m ∈M (6)

Xjbm ∈ {0, 1} ∀ j ∈ J, b ∈ B,m ∈M (7)

Ybm ∈ {0, 1} ∀ b ∈ B,m ∈M (8)

The objective (1) minimizes the makespan. Constraint (2)
ensures that job j is assigned to exactly one batch and
processed on one machine. Constraint (3) ensures that batch
b can only be opened on one machine at most. Constraint
(4) specifies that for each machine m, the capacity of the
machine cannot be exceeded when jobs are assigned to a
batch. It also enforces that a job can only be assigned to batch
machine combinations that are open. Constraint (5) determines
the processing time of a batch. The processing time of a
batch is represented by the longest processing time of all
the jobs contained in the batch. Constraint (6) determines the
makespan. The makespan is equivalent to the completion time
of the last batch to leave the system. Constraints (7) and (8)
are binary constraints.

We try to solve this integer program with mathematical
programming software ILOG CPLEX 10.1. Preliminary ex-
periments show with some small problem sets (10 jobs, two
parallel non-identical batch processing machines), CPLEX can
find an optimal solution within half an hour. If we increase the
number of jobs to 50, CPLEX cannot find an optimal solution
within two hours, which is of little practical value. Due to the
limit of the mathematical programming software, we propose
a GA to address this problem.

IV. A GENETIC ALGORITHM APPROACH

A. Genetic Algorithm

The origins of genetic algorithms (GAs) can be traced back
to the 1950s when a number of biologists used computers
to perform simulations of genetic systems [14]. However, the
work done by John Holland and his students and colleagues
in the 1960s and 1970s at the University of Michigan led to
GAs as they are known to us today [15]. GAs are adaptive
search algorithms which apply the concepts from biological
systems to a mathematical context. The underlying strategy is
to start with randomly generated solutions and evolve these
solutions according to the principle of natural selection, i.e.,
survival-of-the-fittest. Over many generations, the solutions in
the population evolve until the best of the population is near
optimal. For additional information about GAs, we refer to
standard text [14].

GAs have been applied to scheduling problems by a number
of researchers during the past three decades. There have been a
lot of research on job shop and other types of scheduling prob-
lems using GAs as the optimization methods. We refer to [16]–
[21] for an overview of applications of scheduling with GAs in
business and industry. However, Applications of GAs in batch

scheduling do not seem to have been studied extensively. Wang
and Uzsoy [22] combine dynamic programming algorithm
with a genetic algorithm to minimize maximum lateness on
a batch processing machine in the presence of dynamic job
arrivals. Koh et al. [23] study the problems of scheduling
parallel identical batch processing machines with arbitrary
job sizes and incompatible job families. They consider three
kinds of problems whose performance measures are makespan,
total completion time, and total weighted completion time,
respectively. They devise a number of heuristics and use
genetic algorithms to solve the problems. Koh et al. [24] study
the same problems of scheduling a single batch processing
machines using GAs. Damodaran et al. [25] propose a GA
to minimize makespan on a single batch processing machine
with non-identical job sizes. Balasubramanian et al. [26]
and Mönch et al. [27] use GAs to minimize total weighted
tardiness on parallel identical batch processing machines. We
are unaware of any published literature studying the problem
of scheduling parallel non-identical batch processing machines
using GAs.

To apply GA to a scheduling problem, a suitable encoding
or representation for the problem must be devised. The chro-
mosomal encoding of the scheduling problem may take many
forms and have a direct impact on the performance of the
GA. A common problem in applying GAs is that some genetic
operations may create feasibility problems, e.g., crossing over
two feasible solutions does not result in a feasible solution as
an offspring. Given a scheduling problem, often the hardest
part in applying a GA is to encode the solutions as strings so
that crossovers of feasible solutions result in feasible ones.

A Random Keys Genetic Algorithm (RKGA), introduced by
Bean [28], differs from traditional GAs most notably in the
representation of the solution. The random keys representation
encodes a solution with random numbers. These numbers
are served as sort keys to decode the solution. Chromoso-
mal encodings are constructed to represent solutions. These
encodings are evaluated in the fitness evaluation function in
a way that avoids the feasibility problem. RKGA has been
successfully applied to various scheduling problems, vehicle
routing problems, resource allocation problems, and other
optimization problems [22], [28]–[34].

We use RKGA as the principal method for our scheduling
problem. The RKGA operates in two spaces, the chromosome
space C and the schedule building space S. Random numbers
are typically sampled from [0, 1]n. These random numbers in
the chromosome space are used as tags to represent solutions.
The RKGA searches the chromosome space as a surrogate for
the schedule building space. Points in the chromosome space
are mapped to the schedule building space based on the sorted
random key values.

As an example, consider a five-job, single machine schedul-
ing problem. Begin by generating a uniform (0, 1) random
number for each job. This would result in a chromosome with
five genes

(0.28, 0.15, 0.64, 0.92, 0.73).

145

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

Sorting the random keys in ascending order would result in
the job sequence

2→ 1→ 3→ 5→ 4.

If our objective is to minimize makespan, this sequence can
be evaluated by fitness evaluation function for calculating the
makespan. During the running of the RKGA program, jobs
that should be early in the sequence evolve small keys and
jobs that should be later develop large keys.

The random keys encoding has the advantage over a lit-
eral encoding, that all crossovers produce feasible offspring.
Crossovers are executed on the chromosomes, the random
keys, not on the job sequences. Therefore the offspring always
contain random keys that can be sorted into an ordered set.
Since any ordered set of random keys can be interpreted as a
job sequence, all offspring are feasible solutions. The random
keys simply serve as tags that the crossover operator uses to
rearrange jobs.

There are many variations of genetic operators that may be
used for a GA [14], [35]. The algorithm described in this paper
uses elitist reproduction, Bernoulli crossover, immigration, and
post-tournament selection, as the operators described in [28],
[30], to move from one generation to the next.

Elitist reproduction is accomplished by copying the best
individuals from one generation to the next. In [14], this is
called elitist strategy. This method has the advantage over
traditional probabilistic reproduction in that the best solution is
monotonically improving. However, the potential downside is
that the population may prematurely converge to local optima.
This is overcome by introducing high mutation rates.

Bernoulli crossover (called parameterized uniform crossover
in [36]) is used in place of the traditional one-point or two-
point crossover. Two chromosomes are selected randomly from
the current population as parents. Let P1 = (p11, p12, . . . , p1n)
and P2 = (p21, p22, . . . , p2n) be the two parent chromo-
somes with n random key alleles. Let ∆ = (δ1, δ2, . . . , δn)
be n independent uniform (0, 1) random variables and Pc

be the probability of crossover for each gene. Let O1 =
(o11, o12, . . . , o1n) and O2 = (o21, o22, . . . , o2n) be the two
offspring that will be produced from the crossover of the two
parent chromosomes. Determine each allele in O1 and O2 as
follows:{

o1i = p1i and o2i = p2i if δi 6 Pc,
o1i = p2i and o2i = p1i if δi > Pc.

Pc is usually selected not equal to 0.5 to bias selection toward
one parent. Experiments have shown that Pc = 0.7 works well
for our scheduling problem.

Implementing a mutation operator for a real coded GA is
difficult [30]. As a result, rather than the traditional gene-
by-gene mutation with very small probability (on the order
of 1/1000), we use immigration as described in [28]. That
is, at each generation, one or more new members of the
population are randomly generated, as immigrants, from the
same distribution as the original generation. Immigration plays
a secondary role in RKGA. However, it is indispensable in that

it diversifies the search space and protects from loss of genetic
material which can be caused by reproduction and crossover.

A post-tournament selection [30] is used with Bernoulli
crossover to fill the next generation. The two offspring chro-
mosomes O1 and O2 , generated by crossover of two parent
chromosomes P1 and P2, are evaluated, and only the one with
better fitness value is allowed to enter the next generation. The
other offspring is discarded.

B. Schedule Generation Procedure

In order to apply RKGA to the batch scheduling problem,
we now extend the RKGA encoding technique to the multiple
machines setting, using the method described in [28]. Consider
the n job, m non-identical parallel machine scheduling prob-
lem to minimize makespan. Each job is encoded as a gene.
Thus a chromosome for n jobs contains n genes. To obtain the
gene for each job, generate an integer randomly in {1, . . . ,m}
and add a uniform (0, 1) random variable. This real number
serves as the random key. In the mapping, the integer part of
any random key is interpreted as the machine assignment for
that job and the fractional parts of all the random keys are
sorted to provide the job sequence on each machine. For each
machine, form batches from the job sequence on that machine
such that the total size of all the jobs in the batch is less than
or equal to the capacity of the machine. The processing time
of a batch is determined by the longest processing time of all
the jobs contained in the batch, as described in Section III.
Assuming that batches are processed at their earliest possible
time, a schedule can then be constructed and evaluated for
makespan.

To generalize, given a chromosome with n genes (random
keys), this chromosome is mapped to the schedule building
space by decoding. A schedule can be constructed and the
fitness (makespan in our problem) for this schedule can be
evaluated in the fitness evaluation function. The procedure
for schedule generation and fitness evaluation is formalized
as follows.

Procedure SCHED GEN
1. Sort the n genes (random keys) that correspond to the n

jobs in ascending order.
2. Determine the machine assignment for each job and the

job sequence on each machine.
3. For each machine, form batches from the job sequence

on the machine such that the capacity of the machine is
not exceeded.

4. Determine the batch processing times.
5. Determine the start and complete times for each batch.
6. Calculate the makespan.

C. The Pseudo-code for the RKGA

After discussed the random keys encoding, the operators
used in the RKGA, and the schedule generation procedure, a
pseudo-code for the RKGA is listed in Fig. 1.

Computational experiments of the proposed algorithm have
been very successful. The results are reported in the next
section.

146

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

V. COMPUTATIONAL RESULTS

In order to evaluate the performance of the proposed RKGA
for the batch scheduling problem, we conducted a number of
computational experiments using randomly generated problem
instances. The parameters we need to specify are the number
of jobs, the number of machines, and the distribution of job
processing times, job sizes, and machine capacities.

Choose parameters for the program:
maximum number of generations to be run (Nmax),
population size (Npop), number of chromosomes copied
to next generation (Nc), number of immigrants (Nm).

Determine a stopping criterion for the program:
an objective value bound or Nmax.

for each chromosome of the population do
generate random keys;
evaluate fitness based on Procedure SCHED GEN;

end for
stop← 0;
count← 0;
while stop = 0 do

count← count + 1;
rank old population by fitness;
copy Nc best chromosomes to the new generation;
for remainder of the population do

randomly choose two parents from old population;
perform Bernoulli crossover;
evaluate fitness of the two offspring;
include the better offspring in the new generation;
discard the other offspring;

end for
replace Nm worst chromosomes with immigrants;
if the stopping criterion is met then

stop← 1;
end if

end while

Fig. 1. Pseudo-code for the RKGA

Three levels of the number of jobs were selected to indicate
the different sizes of the scheduling problem: small (15 jobs),
medium (50 jobs), and large (100 jobs). After specifying the
number of jobs for a problem instance, the processing time
pj of each job j, was randomly generated from DU [1, 10],
where DU [a, b] denotes a discrete uniform distribution within
[a, b]. Two levels of job sizes were selected to test the effect of
small jobs (DU [1, 4]), and small to large jobs (DU [2, 8]). Two
levels of the number of machines were considered, i.e., two
and four machines. For each machine m, the capacity, Km,
was randomly generated from DU [8, 12]. Totally, there are 12
unique design factor combinations. Table I summarizes these
factors and their levels and values used in the experiments.

TABLE I
FACTORS AND LEVELS USED IN THE EXPERIMENTS

Factors Levels Values

Number of jobs, |J | 3 15, 50, 100
Processing time, pj 1 DU [1, 10]

Job size, sj 2 DU [1, 4], DU [2, 8]

Number of machines, |M | 2 2, 4
Machine capacity, Km 1 DU [8, 12]

We grouped our experiments into six sets of randomly
generated problems based on the machine setting (two or four
machines) and the number of jobs in the problem. For each
machine setting, there are three sets of randomly generated
problems of different sizes: small (15 jobs), medium (50 jobs),
and large (100 jobs). Each set contains 10 problem instances.
Totally, there are 60 different problem instances.

The RKGA was coded in C++ and run on a desktop com-
puter with a Pentium III 997 MHz CPU and 512 MB RAM.
For each problem instance, 10 replications of RKGA were
executed with different random seeds. Population size of 1000
was used for all the small, medium, and large problems. In all
the tests, RKGA was allowed to run up to 500 generations.
All the problem instances were also solved in ILOG CPLEX
10.1 on the same computer.

Preliminary experiments indicated that for some problem
instances, after two hours of run, CPLEX did not end up
with optimal solutions or with very little improvements in the
solutions. Therefore, it was decided to run CPLEX up to one
hour, i.e., 3600.00 seconds, for all the problem instances. In
this case, we may call the method we are using as CPLEX
heuristic, or simply CPLEX-H.

Table II and III present the computational results from
the RKGA and CPLEX-H on 60 different problem instances.
Table II shows the computational results for two parallel
machines while Table III for four parallel machines. In the
tables, column 1 indicates the code for the problem instances.
Initials s, m, and l stand for small, medium, and large
problems, respectively. In Column 2, a triplet (Jµ, sν ,Mω),
where µ ∈ {1, 2, 3}, ν ∈ {1, 2}, and ω ∈ {1, 2}, is used
to denote the size of the problem. For example, (J3, s2,M1)
specifies that the number of jobs is generated at level 3 (100
jobs), the job sizes at level 2 (DU [2, 8]), and the number
of machines at level 1 (two machines). Columns 3–8 report
the results from RKGA in terms of the Cmax and the run
time (in seconds) for the test. For each problem instance, the
RKGA was run 10 times, using a different random seed for
each run. The minimum, median, and maximum values over
the 10 different random seeds are reported. The minimum
and maximum values provide best and worst case of the
performance measures (here, Cmax and run time). The median
is used rather than the mean in order to reduce the influence
of extreme minimum and maximum values. Columns 9 and
10 report the results at which generation the best solution
(Cmax) was first found and the seconds required to get this
solution. The results are averaged over 10 different random

147

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

TABLE II
COMPUTATIONAL RESULTS FOR RANDOMLY GENERATED PROBLEMS WITH TWO MACHINES

Problem Size RKGA† CPLEX-H‡ Improv.

Cmax Seconds Best Soln. Cmax Seconds RKGA
vs.

CPLEX-H
(%)Min. Med. Max. Min. Med. Max. Gen. Sec.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

sa1 (J1, s1, M1) 20 20 20 7.80 7.88 8.19 10 0.19 20* 3600.00 0.00
sa2 (J1, s1, M1) 12 12 12 7.72 7.77 7.88 11 0.19 12 24.42 0.00
sa3 (J1, s1, M1) 13 13 13 7.70 7.78 7.98 4 0.08 13* 3600.00 0.00
sa4 (J1, s1, M1) 16 16 17 7.99 8.08 8.19 27 0.47 16* 3600.00 0.00
sa5 (J1, s1, M1) 14 14 14 7.66 7.82 8.13 11 0.20 14 249.24 0.00
sa6 (J1, s2, M1) 17 17 17 8.14 8.27 8.44 18 0.32 17* 3600.00 0.00
sa7 (J1, s2, M1) 26 26 26 8.54 8.61 9.04 14 0.26 26* 3600.00 0.00
sa8 (J1, s2, M1) 26 26 26 8.64 8.77 9.06 8 0.16 26* 3600.00 0.00
sa9 (J1, s2, M1) 23 23 23 8.12 8.27 8.56 15 0.27 23* 3600.00 0.00
sa10 (J1, s2, M1) 29 29 29 8.57 8.65 8.82 5 0.10 29* 3600.00 0.00
ma1 (J2, s1, M1) 31 32 33 29.95 30.10 30.39 120 7.35 34* 3600.00 8.82
ma2 (J2, s1, M1) 33 34 35 30.22 30.49 31.25 118 7.37 36* 3600.00 8.33
ma3 (J2, s1, M1) 36 38 39 31.16 31.43 31.96 164 10.51 42* 3600.00 14.29
ma4 (J2, s1, M1) 36 38 39 30.51 30.74 31.56 135 8.49 42* 3600.00 14.29
ma5 (J2, s1, M1) 37 38 38 30.28 30.61 31.29 132 8.19 41* 3600.00 9.76
ma6 (J2, s2, M1) 88 88 90 32.11 32.52 33.28 185 12.34 97* 3600.00 9.28
ma7 (J2, s2, M1) 72 74 76 32.61 33.09 34.68 144 9.72 83* 3600.00 13.25
ma8 (J2, s2, M1) 70 70 71 31.90 32.33 32.57 188 12.39 84* 3600.00 16.67
ma9 (J2, s2, M1) 61 62 63 32.28 32.41 34.40 154 10.25 77* 3600.00 20.78
ma10 (J2, s2, M1) 75 76 77 32.18 32.40 32.88 187 12.39 88* 3600.00 14.77
la1 (J3, s1, M1) 76 78 79 66.55 67.56 68.50 268 36.32 96* 3600.00 20.83
la2 (J3, s1, M1) 76 77 77 66.85 67.33 68.53 262 35.73 97* 3600.00 21.65
la3 (J3, s1, M1) 66 68 69 65.82 66.56 68.19 317 42.50 87* 3600.00 24.14
la4 (J3, s1, M1) 76 77 78 66.67 66.97 68.81 285 38.65 96* 3600.00 20.83
la5 (J3, s1, M1) 86 87 89 67.26 67.46 69.67 294 40.05 111* 3600.00 22.52
la6 (J3, s2, M1) 125 126 129 70.24 70.72 72.33 271 38.75 160* 3600.00 21.88
la7 (J3, s2, M1) 121 122 124 69.06 69.34 71.75 322 45.27 150* 3600.00 19.33
la8 (J3, s2, M1) 154 154 157 70.77 71.18 73.83 235 34.03 194* 3600.00 20.62
la9 (J3, s2, M1) 142 144 146 69.96 70.37 71.32 265 37.61 174* 3600.00 18.39
la10 (J3, s2, M1) 143 145 146 70.51 70.80 73.56 260 37.49 172* 3600.00 16.86
† Computational effort over 10 different random seeds for each problem instance.
‡ Since CPLEX is an optimal algorithm, we may call it CPLEX heuristic or simply CPLEX-H when we shut off CPLEX at 3600.00 seconds.
* Results reported after 3600.00 seconds. CPLEX did not report it had found the optimal solution.

seeds. Columns 11 and 12 report the Cmax and run times from
CPLEX-H. Column 13 presents the improvements realized
through RKGA over CPLEX-H in terms of the Cmax. The per-
centage improvements are calculated by [Cmax(CPLEX-H)−
Cmax(RKGA)]/Cmax(CPLEX-H).

As seen in Table II and III, RKGA requires less compu-
tation times compared with CPLEX-H for all the problem
instances. In the mean time, RKGA obtains the same (for small
problems) or better (for medium and large problems) Cmax

compared with CPLEX-H. For some of the small problems,
e.g., sa2, sa5, sb1, sb2, sb4, sb8, and sb9, CPLEX-H
can optimally solve them within 3600.00 seconds. For these
problems, the same optimal solutions can also be achieved by

RKGA, but with less computation times. It demonstrates that
for these small problems RKGA achieves an improvement over
CPLEX-H in that RKGA solves the problems with same or
better solutions in shorter computation times. The improve-
ment in computation time is more pronounced for medium
and large problems. For these medium and large problems,
RKGA can find better solutions in shorter computation times.
Also note that all large problems, medium problems, and even
some of the small problems could not be optimally solved by
CPLEX-H, typically due to the extra long run times and lack of
the memory storage of the computer if we wanted to solve the
problems optimally. Another important thing is that within the
same problem set (small, medium, or large), the computation

148

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

TABLE III
COMPUTATIONAL RESULTS FOR RANDOMLY GENERATED PROBLEMS WITH FOUR MACHINES

Problem Size RKGA† CPLEX-H‡ Improv.

Cmax Seconds Best Soln. Cmax Seconds RKGA
vs.

CPLEX-H
(%)Min. Med. Max. Min. Med. Max. Gen. Sec.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

sb1 (J1, s1, M2) 10 10 10 8.80 8.90 9.20 1 0.03 10 487.90 0.00
sb2 (J1, s1, M2) 10 10 10 8.79 8.90 9.32 1 0.03 10 164.90 0.00
sb3 (J1, s1, M2) 11 11 11 8.85 8.92 9.10 32 0.61 11* 3600.00 0.00
sb4 (J1, s1, M2) 10 10 10 8.63 8.80 8.94 7 0.15 10 46.41 0.00
sb5 (J1, s1, M2) 11 11 12 8.90 9.05 9.52 35 0.68 11* 3600.00 0.00
sb6 (J1, s2, M2) 15 15 15 9.42 9.51 9.72 12 0.24 15* 3600.00 0.00
sb7 (J1, s2, M2) 13 14 14 9.33 9.48 10.39 53 1.11 13* 3600.00 0.00
sb8 (J1, s2, M2) 10 10 11 9.05 9.33 9.57 80 1.54 10 538.37 0.00
sb9 (J1, s2, M2) 10 10 11 9.16 9.33 9.66 24 0.48 10 50.69 0.00
sb10 (J1, s2, M2) 15 15 16 9.38 9.57 9.86 34 0.69 15* 3600.00 0.00
mb1 (J2, s1, M2) 18 19 19 33.75 33.97 35.44 128 8.95 20* 3600.00 10.00
mb2 (J2, s1, M2) 21 21 22 34.01 34.33 34.80 136 9.58 23* 3600.00 8.70
mb3 (J2, s1, M2) 17 18 19 33.31 33.61 34.46 131 8.97 21* 3600.00 19.05
mb4 (J2, s1, M2) 21 22 23 33.63 34.20 34.56 168 11.68 25* 3600.00 16.00
mb5 (J2, s1, M2) 17 17 18 33.70 33.88 35.53 119 8.26 19* 3600.00 10.53
mb6 (J2, s2, M2) 37 38 39 36.41 37.17 38.44 172 12.98 44* 3600.00 15.91
mb7 (J2, s2, M2) 38 39 40 36.42 36.57 37.77 163 12.22 41* 3600.00 7.32
mb8 (J2, s2, M2) 39 41 42 36.24 36.66 37.99 181 13.63 46* 3600.00 15.22
mb9 (J2, s2, M2) 30 31 32 35.95 36.18 38.19 176 13.11 37* 3600.00 18.92
mb10 (J2, s2, M2) 31 31 32 35.83 36.07 36.49 183 13.44 35* 3600.00 11.43
lb1 (J3, s1, M2) 36 37 39 72.84 73.20 75.78 284 42.07 47* 3600.00 23.40
lb2 (J3, s1, M2) 39 40 42 73.37 73.88 75.44 288 42.96 56* 3600.00 30.36
lb3 (J3, s1, M2) 35 36 38 72.67 73.26 75.45 250 37.07 46* 3600.00 23.91
lb4 (J3, s1, M2) 37 38 39 73.21 73.99 77.01 291 43.51 57* 3600.00 35.09
lb5 (J3, s1, M2) 32 34 34 72.30 73.21 74.46 237 34.93 40* 3600.00 20.00
lb6 (J3, s2, M2) 68 69 71 77.52 78.31 79.65 290 45.71 92* 3600.00 26.09
lb7 (J3, s2, M2) 87 88 89 77.99 78.64 80.73 325 51.63 120* 3600.00 27.50
lb8 (J3, s2, M2) 72 73 74 77.15 77.86 79.58 316 49.57 91* 3600.00 20.88
lb9 (J3, s2, M2) 84 87 88 77.84 78.78 79.56 312 49.36 124* 3600.00 32.26
lb10 (J3, s2, M2) 69 71 72 76.96 77.65 79.41 334 52.16 88* 3600.00 21.59
† Computational effort over 10 different random seeds for each problem instance.
‡ Since CPLEX is an optimal algorithm, we may call it CPLEX heuristic or simply CPLEX-H when we shut off CPLEX at 3600.00 seconds.
* Results reported after 3600.00 seconds. CPLEX did not report it had found the optimal solution.

times of different problem instances for RKGA are consistent,
whereas the computation times for CPLEX-H are inconsistent
and the ranges of the computation times are unpredictable.
For example, look at problems sa1-10 in Table II, all the
computation times for RKGA are around 8–9 seconds. For
CPLEX-H, the computation time for sa2 is 24.42 seconds,
sa5 249.24 seconds, and others more than 3600.00 seconds.

The computational results also demonstrate two important
merits of RKGA. First, computation time increases in a
reasonable manner as problem size increases. Second, RKGA
produces consistent results across different random seeds. The
RKGA appears to be very robust for the batch scheduling
problem.

VI. CONCLUSIONS AND FUTURE WORK

We propose a genetic algorithm that uses the random keys
encoding to solve the scheduling problem of minimizing
makespan on parallel non-identical batch processing machines.
Computational experiments indicate that the RKGA found
solutions to all the randomly generated problems under the
predefined conditions. The solutions and run times from
RKGA were compared with those from CPLEX-H. It shows
that RKGA outperformed CPLEX-H in terms of solutions
and computation times, especially for larger problems. It
was also observed that RKGA was very robust. The RKGA
produced consistent solutions across different random seeds in
reasonable computation times. We shall point out, however, for

149

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

some of the test problems (especially for medium and large
problems), we do not know the optimal solution and hence
cannot verify the quality of the RKGA solution.

A number of directions for future research exist. A tight
value bound will not only reduce the CPU time for RKGA
(e.g., RKGA may be terminated when a solution within five
percent of the value bound is discovered), but also serve as a
benchmark for evaluating the proposed algorithms. Though a
genetic algorithm is explored in this study, the possibility of
using other heuristics may be examined. Finally, extensions of
the RKGA methodology to other problem complexities will
be explored. Here we list three possible extensions. The first
extension relaxes the assumption that all jobs are ready at
time zero. This relaxation says the jobs have non-zero ready
times, which is more reasonable in the real world. The second
extension is relaxing the assumption that the setup times
of the machines are negligible. We will consider sequence-
dependent setup times. The third extension is to include other
performance measures such as total tardiness. The results will
be reported elsewhere.

ACKNOWLEDGMENT

The authors would like to thank the two anonymous referees
whose comments improved the quality of this manuscript.
Shubin Xu also wishes to thank Charles H. Lundquist College
of Business at the University of Oregon for providing excellent
research resources during his visit.

REFERENCES

[1] R. Uzsoy, C. Y. Lee, and L. A. Martin-Vega, “A review of produc-
tion planning and scheduling models in the semiconductor industry
Part I: System characteristics, performance evaluation and production
planning,” IIE Trans., vol. 24, pp. 47–60, 1992.

[2] C. Y. Lee, R. Uzsoy, and L. A. Martin-Vega, “Efficient algorithms for
scheduling semiconductor burn-in operations,” Oper. Res., vol. 40, pp.
764–775, 1992.

[3] R. Uzsoy, “Scheduling batch processing machines with incompatible job
families,” Int. J. Prod. Res., vol. 33, pp. 2685–2708, 1995.

[4] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy
Kan, “Optimization and approximation in deterministic sequencing and
scheduling: A survey,” Ann. Discrete Math., vol. 5, pp. 287–326, 1979.

[5] R. Uzsoy, “Scheduling a single batch processing machine with noniden-
tical job sizes,” Int. J. Prod. Res., vol. 32, pp. 1615–1635, 1994.

[6] Y. Ikura and M. Gimple, “Efficient scheduling algorithms for a single
batch processing machine,” Oper. Res. Lett., vol. 5, pp. 61–65, 1986.

[7] C. N. Potts and M. Y. Kovalyov, “Scheduling with batching: a review,”
Eur. J. Oper. Res., vol. 120, pp. 228–249, 2000.

[8] V. Chandru, C. Y. Lee, and R. Uzsoy, “Minimizing total completion
time on batch processing machines,” Int. J. Prod. Res., vol. 31, pp.
2097–2121, 1993.

[9] ——, “Minimizing total completion time on a batch processing machine
with job families,” Oper. Res. Lett., vol. 13, pp. 61–65, 1993.

[10] S. V. Mehta and R. Uzsoy, “Minimizing total tardiness on a batch
processing machine with incompatible job families,” IIE Trans., vol. 30,
pp. 165–178, 1998.

[11] C. Y. Lee and R. Uzsoy, “Minimizing makespan on a single batch
processing machine with dynamic job arrivals,” Int. J. Prod. Res., vol. 37,
pp. 219–236, 1999.

[12] C. S. Sung and Y. I. Choung, “Minimizing makespan on a single burn-in
oven in semiconductor manufacturing,” Eur. J. Oper. Res., vol. 120, pp.
559–574, 2000.

[13] P. Y. Chang, P. Damodaran, and S. Melouk, “Minimizing makespan
on parallel batch processing machines,” Int. J. Prod. Res., vol. 42, pp.
4211–4220, 2004.

[14] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, MA: Addison-Wesley, 1989.

[15] D. Dasgupta and Z. Michalewicz, “Evolutionary algorithms — an
overview,” in Evolutionary Algorithms in Engineering Applications,
D. Dasgupta and Z. Michalewicz, Eds. Berlin, Germany: Springer-
Verlag, 1997.

[16] R. Cheng, M. Gen, and Y. Tsujimura, “A tutorial survey of job-shop
scheduling problems using genetic algorithms, part I: Representation,”
Comput. Ind. Eng., vol. 30, pp. 983–997, 1996.

[17] ——, “A tutorial survey of job-shop scheduling problems using genetic
algorithms, part II: Hybrid genetic search strategies,” Comput. Ind. Eng.,
vol. 36, pp. 343–364, 1999.

[18] C. R. Reeves, “Genetic algorithms for the operations researcher,” IN-
FORMS J. Comput., vol. 9, pp. 231–250, 1997.

[19] A. S. Jain and S. Meeran, “Deterministic job-shop scheduling: Past,
present and future,” Eur. J. Oper. Res., vol. 113, pp. 390–434, 1999.

[20] C. Dimopoulos and A. M. S. Zalzala, “Recent developments in evo-
lutionary computation for manufacturing optimization: Problems, solu-
tions, and comparisons,” IEEE Trans. Evol. Comput., vol. 4, pp. 93–113,
July 2000.

[21] H. Aytug, M. Khouja, and F. E. Vergara, “Use of genetic algorithms to
solve production and operations management problems: a review,” Int.
J. Prod. Res., vol. 41, pp. 3955–4009, 2003.

[22] C. S. Wang and R. Uzsoy, “A genetic alogrithm to minimize maximize
lateness on a batch processing machine,” Comput. Oper. Res., vol. 29,
pp. 1621–1640, 2002.

[23] S. G. Koh, P. H. Koo, J. W. Ha, and W. S. Lee, “Scheduling parallel
batch processing machines with arbitrary job sizes and incompatible job
families,” Int. J. Prod. Res., vol. 42, pp. 4091–4107, 2004.

[24] S. G. Koh, P. H. Koo, D. C. Kim, and W. S. Hur, “Scheduling a single
batch processing machine with arbitrary job sizes and incompatible job
families,” Int. J. Prod. Econ., vol. 98, pp. 81–96, 2005.

[25] P. Damodaran, P. K. Manjeshwar, and K. Srihari, “Minimizing makespan
on a batch-processing machine with non-identical job sizes using genetic
algorithms,” Int. J. Prod. Econ., vol. 103, pp. 882–891, 2006.

[26] H. Balasubramanian, L. Mönch, J. Fowler, and M. Pfund, “Genetic
algorithm based scheduling of parallel batch machines with incompatible
job families to minimize total weighted tardiness,” Int. J. Prod. Res.,
vol. 42, pp. 1621–1638, 2004.

[27] L. Mönch, H. Balasubramanian, J. W. Fowler, and M. E. Pfund, “Heuris-
tic scheduling of jobs on parallel batch machines with incompatible job
families and unequal ready times,” Comput. Oper. Res., vol. 32, pp.
2731–2750, 2005.

[28] J. C. Bean, “Genetic algorithms and random keys for sequencing and
optimization,” ORSA J. Comput., vol. 6, pp. 154–160, 1994.

[29] B. A. Norman and J. C. Bean, “Random keys genetic algorithm for job
shop scheduling,” Eng. Des. Autom., vol. 3, pp. 145–156, 1997.

[30] ——, “A genetic algorithm methodology for complex scheduling prob-
lems,” Nav. Res. Logist., vol. 46, pp. 199–211, 1999.

[31] ——, “Scheduling operations on parallel machine tools,” IIE Trans.,
vol. 32, pp. 449–459, 2000.

[32] M. E. Kurz and R. G. Askin, “Scheduling flexible flow lines with
sequence-dependent setup times,” Eur. J. Oper. Res., vol. 159, pp. 66–82,
2004.

[33] J. F. Gonçalves, J. J. de Magalhães Mendes, and M. G. C. Resende, “A
hybrid genetic algorithm for the job shop scheduling problem,” Eur. J.
Oper. Res., vol. 167, pp. 77–95, 2005.

[34] L. Snyder and M. Daskin, “A random-key genetic algorithm for the
generalized traveling salesman problem,” Eur. J. Oper. Res., vol. 174,
pp. 38–53, 2006.

[35] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, 3rd ed. New York, NY: Springer-Verlag, 1996.

[36] W. M. Spears and K. A. De Jong, “On the virtues of parameterized
uniform crossover,” in Proc. Fourth Int. Conf. Genetic Algorithms, San
Diego, CA, July 13–16, 1991, pp. 230–236.

150

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

