

Abstract — Oil refineries are one of the most important
examples of multiproduct continuous plants, that is, a
continuous processing system that generates a number of
products simultaneously. A refinery processes various crude oil
types and produces a wide range of products. It is a complex
optimization problem, mainly due to the number of different
tasks involved and different objective criteria. In addition,
some of the tasks have precedence constraints that require other
tasks to be scheduled first. In this paper the refinery scheduling
problem is addressed using genetic algorithms and cooperative
coevolution. A simple refinery, with commonly found types of
equipments, tasks and constraints of a real refinery, was
created. Three test scenarios were designed with different sizes,
demands and constraints. In all of them, the results obtained
were far better than the ones obtained through random search.

I. MOTIVATION

IL refineries are one of the most important examples of
multiproduct continuous plant, in other words, a

continuous processing system which generates multiple
products. The optimization of the refinery scheduling is
considered a complex problem due to the number and
diversity of tasks and objectives. Moreover, it is a problem
with precedence constraints: the scheduling of some tasks
depends that other tasks were scheduled first.

We can list a number of reasons why this problem should
be solved and studied, as follows:

• Daily costs in a refinery are very high and if they
can be minimized, it is worth the efforts;

• The scheduler needs to act quickly whenever an
new and unexpected situation arises (equipment
maintenance, for example) and the scheduling must
be changed as quick as possible to avoid losses;

• Today, there is no tool on the market that optimizes
this problem and satisfies all the refinery scheduler
needs;

• Scheduling problems are well known and very hard
to solve in reasonable time;

Manuscript received January 15, 2007.
Leonardo M. Simão is with the Chemtech – A Siemens Company, Rua

da Quitanda, 50/21º. andar, Centro, Rio de Janeiro, RJ, Brasil, 20011-030
(e-mails: leonardo.simao@{gmail.com, chemtech.com.br}).

Douglas M. Dias, is with Pontifícia Universidade Católica do Rio de
Janeiro, Rua Marquês de São Vicente, 225, Gávea, Rio de Janeiro, RJ,
Brasil, 22453-900 (e-mail: douglasm@ele.puc-rio.br).

Marco Aurélio C. Pacheco, is with Pontifícia Universidade Católica do
Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea, Rio de Janeiro,
RJ, Brasil, 22453-900 (e-mail: marco@ele.puc-rio.br).

II. INTRODUCTION

In general, a refinery processes one or more type of crude
oil, producing a number of derived products, as the LPG
(Liquefied Petroleum Gas), naphtha, kerosene and the diesel
oil [1].

 We can separate the production control on a refinery
into three levels: Planning, Scheduling and Operation. Figure
1 shows this structure.

 The schedule defines how each product should be
produced considering the following:

• A production preview defined by the planning
(products, prices, dates and quantities);

• Quantities and qualities of the raw material;
• Price, quantity, and quality of intermediary products

(actual inventory);
• Restriction on storages and pipeline paths (topology

of a plant);
• How the finished products are delivered.

 Everyday, the production scheduler defines the tasks to
be performed by each equipment, during a time frame, in
order to make the best of the planned production. In other
words, the final result of the schedule is a daily set of tasks to
be executed in the refinery.

 The objective of this paper is to show the applicability
and performance of the evolutionary computation in the

Refinery Scheduling Optimization using Genetic Algorithms and
Cooperative Coevolution

Leonardo M. Simão, Douglas M. Dias and Marco Aurélio C. Pacheco

O

Fig. 1. The Refining Process.

151

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

optimization of an oil refinery scheduling, considering
different refining stages. In particular, this work finds a
system capable to deal with the problems as a whole,
considering every stage of refining and the objectives to be
optimized.

III. EVOLUTIONARY COMPUTATION AND COEVOLUTION

The Evolutionary Computation is the optimization
algorithm based on Darwinian’s theory of the species
evolution and in genetics. The probabilistic algorithm gives a
parallel and adaptive search mechanism based on the
survival criteria of the most apt and on the reproduction of
species. The mechanism is obtained from a population of
individuals (solutions), represented by chromosomes (binary
words, vectors, matrixes etc), each one associated to an
aptitude (evaluation of the solution in the problem), which
go through several cycles of an evolution process (selection,
reproduction, crossing and mutation).

 The cooperative coevolution was inspired in the
symbiosis concept, where two or more species interact and
collaborate with each other’s evolution. The evolution of
each species happens in its niche or specialty. Therefore,
their union can collaborate to the evolution of the ecosystem
as a whole. As in nature, the species are genetically isolated;
the individuals can only reproduce with other individuals of
the same species which belongs to different populations. The
species only interact with one another through a shared
domain and their relation is only of cooperation.

 The developed model to deal with refining optimization
is presented in section V.

IV. RELATED WORKS

Scheduling problems have been investigated intensively in
the areas of operations research and artificial intelligence.
Traditionally, scheduling research has focused on methods
for obtaining optimal solutions to simplified problems, for
example, with integer programming or branch-and-bound
algorithms. In order to determine an optimal solution,
different restrictions were imposed on the problem domain,
for example, on the number of jobs or machines, which made
the application of the results to more complex problems very
difficult or even impossible.

Due to the difficulty of the scheduling domain, in many
real-world scheduling environments the objective is the
determination of a feasible schedule in reasonable time,
which need not necessarily be an optimal schedule, but
should, of course, be as good as possible [7].

Operations research methods for scheduling are described
in more detail in [8].

V. COEVOLUTIONARY MODEL FOR THE SCHEDULING
OPTIMIZATION

The model suggested to solve this problem is a
cooperative coevolutionary model [2] composed by two

species.
To solve a problem using cooperative coevolution, the

most common approach is to decompose the problem into
subcomponents. Each subcomponent is then associated to a
species or population. The evolution of each species is
independent, except on evaluation. As each individual of one
species represents only part of the whole solution,
individuals from the other species must be selected, using
some criteria, to allow the evaluation of the complete
solution. This is called collaboration. Figure 2 shows how
this architecture works.

In our model, the first species will decide which task is to

be planned, whereas the second one will decide which
resources will execute the task. We decided to decompose
the problem this way because when we represent the
complete solution in one species these two aspects – when to
schedule a task and with which resource – are often

Fig. 2. Coevolutionary model of three species shown from the
perspective of each in turn [2].

152

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

conflicting.

A. Representation
The representation chosen for this work deals with two

species, which have a parallel evolution of various aspects of
the problem and collaborate for the solution of the problem.

 The first species is called Allocation on Time and deals
with two structures: the priority list and the precedence
graph:

• The priority list has the priority of each task.
• The graph has the precedence relationships of the

tasks, i.e. which tasks should be schedule before
the others.

Figure 3 shows the two structures comprising the
representation of the Allocation on Time species. The
priority list is the chromosome where the genetic operators
will act. Next, in Figure 4, a fragment of the algorithm to
select the tasks to be scheduled from the chromosome of
species 1 is presented.

It is important to notice that the algorithm shows how the
system uses the priority list, using the precedence graph, to
select the tasks to be scheduled respecting the precedence
constraints.

The second species is called Resource Allocation and
deals with a vector list. Each position of a vector is
associated to a task, whereas each list has the resources that

can execute the task. The algorithm tries to allocate the first
available resource following their position on the list. Figure
5 shows this structure.

For example, if the task “A” is Distillation Unit Feeding,
the tanks labeled 5, 1 and 8 are the only ones that can feed
the unit (probably reflecting the topology of the plant). And,
in this chromosome (fig. 5), tank 5 will be selected to feed
the unit unless it violates any other constraints.

B. Decoding
The chromosome’s decoding is performed by combining

the information of each species. Figure 4 below, shows the
essence of the algorithm.

Note that to decode the chromosome and to build a
complete solution it is necessary to chose one individual of
each species or collaborator, as we mentioned earlier. There
are several methods for the selection of collaborators.

Wiegand et al [3] identifies three attributes when choosing
a collaboration model:

• Collaborator selection pressure – The degree of
greediness of choosing a collaborator;

• Collaboration pool size – The number of
collaborators per subpopulation to use for a given
fitness evaluation;

• Collaboration credit assignment – The method of
assigning a fitness value given multiple
collaboration-driven objective function results;

And there are three options for credit assignment:
• Optimistic – The more traditional method of

assigning an individual a fitness score equal to

Fig. 3. The representation of the Allocation on Time species.

procedure Task scheduling
graph � priority graph;
while (size(graph)>0)
 if every vertex has precedent then
 invalid graph;
 exit;
 else

 v � vertex with higher priority
between the ones with no precedent;

schedule v;
remove v from the graph and

every connection that come from it;
 end if
end while

Fig. 4. Algorithm to schedule tasks from species 1.

procedure Decode
begin
 chromossome1 � Time individual selected;
 chromossome2 � Resources individual
selected;
 while (there are tasks to schedule)
 begin
 select task using chromosome1;
 select resource for task using
chromosome2;
 schedule task;
 end while
end

Fig. 6. Decoding Algorithm.

Fig. 5. The representation of the Resource Allocation species.

153

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

the value of its best collaboration.
• Hedge – Assign an individual a fitness score

equal to the average value of its collaborations as
is generally done in competitive coevolution.

• Pessimistic – Assigning an individual a fitness
score equal to the value of its worst
collaboration.

The results shown in this paper are using the optimistic
method, where the individual receives as its fitness score the
evaluation of its best collaboration, because they presented
better results than the other ones in almost all experiments.

C. Evaluation
The objective function must incorporate each scheduling

objective:
• Fulfill the demand for products. The items for sale

or shipping must be supplied with no delay;
• Minimize the production costs. Minimize raw

material cost and minimize operational cost. Raw
material cost can be calculated from the quantities
of certain oil that will be distilled during the
schedule. Operational costs, on the other hand, are
related to how the plant operates, avoiding frequent
changes of process units’ operational modes and
avoiding switch of tanks during an activity;

• Assure products on spec. The properties of
commercialized derived products must be within the
minimal and maximum limits specified;

 The cost for failing to attend the demand can be
quantified by a penalty delivery delay of finished products.
In order to make this cost proportional to the importance of
the delay in relation to other deliveries, we calculated the
price based on the share of the delayed item:

ii
IVi

AD eliveredvolumenotdpriceproductC *�
∈

= (1)

Where IV is the set of finished products to be delivered

during the scenario.
To calculate the cost of raw material, we only need to

multiply the price of crude oil spent on distillation by the
quantity processed:

� �
∈ ∈

=
UDAj Ci

jiiMP olumeprocessedvpriceC ,* (2)

Where UDA is the set of distillation units and C is the set

of crude oil types used by the refinery.
The operational costs considered in this work include only

the number of storage (tank or sphere) switches during a task
(transfer, arrival of crude or deliver of product). We
admitted that the number of Unit Operation Mode changes is
fixed by scenario according to planning decisions and these
changes are known a priori. Therefore this cost can be
described as:

tswitchingtchesstorageswiC
ATi

iOP cos*#�
∈

= (3)

Where AT is the set of transferring activities and the

switching cost is arbitrary, representing the cost of switching
a tank during a transfer.

The cost for having products out of specification is
handled by removing their share on the revenues. An out of
spec product has no value. Therefore, we consider that all
volume stored will be a cost on the scheduling.

ii
IVi

DE olumeoutofspecvpriceproductC *�
∈

= (4)

In the end, the objective function (FO) to be minimized

where wi represents the weight of each cost:

DEOPMPAD CwCwCwCwFO 4321 +++= (5)

This objective function was never proposed by other
researchers that we know of and is a direct way to compose
all objectives. It allowed us to test how much importance
each cost has on the overall evolution in the case study
scenarios.

D. Operators

The operators applied to the individuals of both species
are typically used in sequencing problems (as the traveling
salesman problem). It is important to notice that, in the
Resource Allocation species, the operators act in the allele of
the genes that means (see Fig. 3), in the list of resources of
each activity, but not among activities.

We employed the following crossover operators: Order
Crossover (OX), Partially Mapped Crossover (PMX) and
Cycle Crossover (CX). The ones used in mutations were
Swap (SM) and Position Inversion (PI). They are presented
and discussed in more detail by Michalewicz [4].

E. Time Representation

As exposed in [5], time is an important variable for
scheduling problems. For example, if the scheduling time
span is of seven days, during this entire time frame the
distillation unit must have been fed with oil at a certain flow.
How many different transfers (from different tanks) to this
process unit will take place?

 Usually, time slices with an equal duration are defined
throughout the scheduling horizon, as in the approach
presented in [6], with number and duration of time slices
arbitrarily defined. Relevant decisions may happen in the
boundary between two time slices. It means that depending
on the granularity of the problem, a big number of time slices
can be generated, and the search for an optimal solution may
become almost impossible.

 We decided not to split the time in fixed time slices, but
to split the quantities transferred by each task. A parameter

154

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

called maximum transferred volume was created to allow the
algorithm to split the transfers of material. This parameter
decides the maximum volume for each transfer piece. This
solution allows the user to choose task size according to the
type of the task.

Fig. 8. Planning information used in test scenarios.

Fig. 7. Refinery used in the case study.

TABLE I

REFINERY INITIAL STATE

Storage Current
Volume

Composition Density
(g/cm2)

Sulphur
(%m)

TQ01 45000 70% Crude 1
20% Crude 2
10% Crude 3

0.8927 0.4963

TQ02 60000 100% Crude 2 0.9290 0.5500
TQ03 30000 20% Crude 2

80% Crude 3
0.9130 0.6695

TQ04 1550 Naphtha 0.7100 0.0015
TQ05 6500 Naphtha 0.7100 0.0015
TQ06 10000 Naphtha 0.7100 0.0015
TQ07 1510 Kerosene 0.8230 0.1300
TQ08 1510 Kerosene 0.8230 0.1300
TQ09 11000 Kerosene 0.8230 0.1300
TQ10 2010 Diesel 0.8800 0.4500
TQ11 2010 Diesel 0.8300 0.3100
TQ12 7000 Diesel 0.8670 0.4000
TQ13 12000 Diesel 0.8900 0.5000
TQ14 95 Diluent 0.8500 0.1300
TQ22 95 Diluent 0.8500 0.1300
TQ23 26000 Diluent 0.9200 0.7500
EF01 110 LPG 0.5500 -
EF02 1600 LPG 0.5600 -

155

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

VI. CASE STUDY

A. Prototype Refinery

The refinery plant we chose for this work is a simple plant
presented in [6], which represents all types of equipment and
constraints present in a real-life refinery (Figure 7).

Scenarios with different planning information were
studied, such as process unit operational mode changes and
maintenance scheduling. The number of days in the scenario
(scheduling horizon) has also varied to show the behavior of
the algorithm due to the increasing number of activities.

 The refinery initial state (content of the refinery tanks
and spheres) is shown on Table I.

In this plant two operational modes for the distillation unit
were considered. The objective of the first one (Normal) is
the production of aviation kerosene. The second one (Qcap)
is used to produce asphalt diluents. For each distillation unit
operational mode, the outlet streams for each crude oil fed
(volumetric fractions and property values for each output
product) were defined.

In figure 8, we can see the scenarios created for the
evaluation of the coevolutionary algorithm performance. The
longer scenario has a total duration of five days and is able to
evaluate the algorithm in a schedule that has a number of
activities similar to the number of activities present in a real-
life situation. The scenarios were defined according to
examples from [6].

VII. RESULTS

A. Performance Analysis

We made ten experiments with each scenario. The
performance charts are the average results for scenario 3.

It is important to mention that the random search here
uses basically the same structures as the genetic algorithm,
except the genetic operators. So it does not generate
unfeasible solutions. For example, it uses the precedence
graph and the scheduling algorithms mentioned above.

 To demonstrate how difficult this problem is, the random
search, in ten experiments with 6.000 individuals (each with
5.600s or 1h34min), was never able to find a solution that
would deliver finished products in spec without delay.

 Next, the performance charts: objective function
(Figure 9) and separated objectives (Figures 10 to 13).

As each one of the aspects is separately examined, it
seems that the random search is working as good as or even
better than the evolutionary algorithm. However, as each one
of the objectives is combined, it becomes clear that the
solutions achieved by the random search are inferior to the
ones presented by the genetic algorithm (Fig. 9). The
evolution of the objectives in the random search has a greedy
behavior by trying to meet the objectives that are at the same

Fig. 9. Performance of the genetic algorithm versus random search.

Fig. 10. Cost of delivering delays.

Fig. 12. Number of storage switches during transfers.

Fig. 11. Raw material (Crude) cost.

Fig. 13. Cost for delivering out of spec products.

156

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

time easy (with the minimum combination possible) and with
a huge wide impact in the objective function. In the genetic
algorithm, however, the convergence occurs in a different
way, more gradually, taking into consideration every
objective: first by making a more global search in the space
of the solutions and less greedy for, then, when close to the
best solutions, make a local search in more subtle objectives,
like the storage switching minimization.

By observing these charts, we can see that the genetic
algorithm, in average, had a much more superior
performance than the random search. It is important to
mention that even in greater scenarios than these, the
processing time does not make the use of algorithm
impracticable as in most of the approaches for scheduling
problems of the real world.

 Table II shows the results of one of the best solutions
found in 60 generations of 100 individuals for the
coevolutionary genetic algorithm, for each scenario.

The maximum volume parameter can be changed to vary
the number of activities that will be generated by the
algorithm thus affecting overall performance. It’s because in
this representation, the number of genes of the chromosome
of both species is dependent on the number of activities. For
example, setting the maximum volume to 12000 m3 (volume
slice) for process unit feeding create tasks with duration of
eight hours (feeding and transferring outlet streams), which
is not usually too much for a daily work on a refinery. Then
there is a chance to reduce the process time for longer
scenarios.

B. Schedule Generation

A fragment of a schedule generated by the system can be
seen on Figure 14. It corresponds roughly to the task list
used by the operation personnel at the refinery.

VIII. CONCLUSIONS

The objective of this work was to show the applicability of
a cooperative coevolutionary model in the global
optimization of refinery scheduling.

A cooperative coevolutionary model was adopted to
analyze the problem and to favor the performance of the
system. The decoder implemented to generate a feasible
schedule from a chromosome used two species to schedule
the tasks in time and with a specific resource, always
respecting precedence constraints (solved by the graph of the
first species) and the other operational plant constraints, such
as: maintenance, preparation time of products, among others.
By using this approach, there is need to penalize, correct, or

get rid of invalid individuals, which makes the evolution
much more efficient. The evaluation function was conceived
by incorporating several important objectives of the refinery
scheduling problem.

The cases we studied were represented by a refinery with
all types of activities and constraints found on the daily
operation of a real-life refinery. We validated and evaluated
the performance of the model developed using these cases.

The results proved the efficiency of the coevolutionary
algorithm, if compared to the random search or even if
evaluated as high-quality feasible solutions, generated in
acceptable time.

The impacts of the number of generated activities on the

1/1/2003 08:00:00 - 2/1/2003 08:00:00 -> Operation Mode 'Normal (01/01/03 - 02/01/03)' on the 'UDA' Process Unit.
1/1/2003 08:00:00 - 1/1/2003 12:00:00 -> Feeding Unit 'UDA' from storage 'TQ01' at a flow rate of 1500 m3/h (Volume = 6000 m3).
1/1/2003 08:00:00 - 1/1/2003 12:00:00 -> Delivering Item 'GLP-1' from storage 'EF02' to pipeline 'DT01' at a flow rate of 112.5 m3/h (Volume = 450
m3).
1/1/2003 08:00:00 - 2/1/2003 04:00:00 -> Delivering Item 'QAV' from storage 'TQ09' to pipeline 'DT03' at a flow rate of 300 m3/h (Volume = 6000 m3).
1/1/2003 08:00:00 - 2/1/2003 04:00:00 -> Delivering Item 'NPTQ' from storage 'TQ05' to pipeline 'DT02' at a flow rate of 250 m3/h (Volume = 5000
m3).
1/1/2003 08:00:00 - 1/1/2003 12:00:00 -> Sending (Gas Processing) from 'UDA' to 'CAFOR' at a flow rate of 1.8 m3/h (Volume = 7.2 m3).
1/1/2003 08:00:00 - 1/1/2003 12:00:00 -> Sending (Store LPG) from 'UDA' to 'EF01' at a flow rate of 39 m3/h (Volume = 156 m3).
1/1/2003 08:00:00 - 1/1/2003 12:00:00 -> Sending (Store Naptha) from 'UDA' to 'TQ04' at a flow rate of 207 m3/h (Volume = 828 m3).
1/1/2003 08:00:00 - 1/1/2003 12:00:00 -> Sending (Store Gasoil) from 'UDA' to 'TQ23' at a flow rate of 766.2 m3/h (Volume = 3064.8 m3).
1/1/2003 08:00:00 - 1/1/2003 12:00:00 -> Sending (Split Kerosene) from 'UDA' to 'SP01' at a flow rate of 174 m3/h (Volume = 696 m3).
1/1/2003 08:00:00 - 1/1/2003 12:00:00 -> Sending (Store Kerosene) from 'SP01' to 'TQ07' at a flow rate of 174 m3/h (Volume = 696 m3).

Fig. 14. Fragment of a generated task list.

TABLE II
PERFORMANCE OF ONE OF THE BEST SOLUTIONS FOUND

Parameter Scenario 1 Scenario 2 Scenario 3
Generations 60 60 60
Population 100 100 100
Max Vol – Crude (m3) 6000 6000 6000
Max Vol – Feed (m3) 6000 6000 12000
Number of generated tasks 83 86 228
Time (s) 122 187 1463
Non delivered prods(US$) 0,00 0,00 0,00
Raw material cost (US$) 4,880,400.00 4,880,400.00 25,156,357.89
Nr. of Storage Switches 4 6 32
Out-of-spec (US$) 0,00 0,00 0,00
Evaluation 492,040.00 492,040.00 2,547,635.79

157

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

performance of the algorithm were evaluated too, and it
shows that we need to implement a better strategy to define
the size of the time slices.

Finally, this work shows the application of evolutionary
computation on the optimization of the refinery scheduling
as a possible alternative, practical and efficient in the
solution of this challenging issue.

IX. FUTURE WORK

There is a lot of work yet to be done in this topic. This is
but the start of a promising approach to scheduling
optimization. We can list some improvements to be made in
this model:

• Use a multi-objective optimization technique to
comprise all the objectives of the problem in a more
adequate fashion;

• Application of the model in a real-life refinery
scheduling;

• Usage of more properties like: octane number,
viscosity, etc.;

• Take into account the crude oil blending in the
pipeline when arriving (when two different crudes
arrive in sequence, blending occurs to some extent);

• Allow product transfer between tanks, when really
needed. This may need some heuristics;

• Allow storage to send and receive at the same time,
which can be seen in some refineries;

• Allow two or more storages to feed a process unit at
the same time, blending product in the pipelines.
This is used in many refineries;

• Try to evolve other decision parameters that were
fixed in this model. Maybe as a new species;

• Change the time representation (as seen in section
V – topic E) to a more flexible solution instead of
fixed time slices, in order to allow a reduction in the
number of scheduled tasks.

REFERENCES
[1] A.C. Hax and D. Candea, Production and inventory management,

Prentice-Hall, Englewood Cliffs, EUA, 1984.
[2] M. A. Potter and K. A. DeJong, “Cooperative coevolution: An

architecture for evolving coadapted subcomponents”, Evol.
Computation, vol. 8, no. 1, pp. 1--29, Spring, 2000.

[3] R. P. Wiegand, W. C. Liles and K. A. De Jong, “An Empirical
Analysis of Collaboration Methods in Cooperative Coevolutionary
Algorithms”, Proceedings of the Genetic and Evolutionary
Conference, Morgan Kaufmann Publishers, 2001.

[4] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, 2nd Edition, Springer-Verlag, New York, USA, 1994.

[5] L. F. L. Moro, “Técnicas de Otimização Mista Inteira para o
Planejamento e Programação de Produção em Refinarias de Petróleo”,
PhD thesis, Escola Politécnica da Universidade de São Paulo, São
Paulo, Brasil, 2000. [in Portuguese]

[6] P. Smania and J.M.Pinto, “Mixed Integer Nonlinear Programming
Techniques for the Short Term Scheduling of Oil Refineries”,
Proceedings of the 8th International Symposium on Process Systems
Engineering, China, 2003.

[7] T. Bäck, D. B. Fogel and Z. Michalewicz, Handbook of Evolutionary
Computation. IOP Publishing Ltd and Oxford University Press, 1997.

[8] J. Blazewicz, K. H. Ecker, G. Schmidt, and J. Weglarz, Scheduling in
Computer and Manufacturing Systems. 2nd ed., Springer, Berlin,
1994.

158

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

