
 
 

 

  

Abstract — Oil refineries are one of the most important 
examples of multiproduct continuous plants, that is, a 
continuous processing system that generates a number of 
products simultaneously. A refinery processes various crude oil 
types and produces a wide range of products.  It is a complex 
optimization problem, mainly due to the number of different 
tasks involved and different objective criteria.  In addition, 
some of the tasks have precedence constraints that require other 
tasks to be scheduled first.  In this paper the refinery scheduling 
problem is addressed using genetic algorithms and cooperative 
coevolution.  A simple refinery, with commonly found types of 
equipments, tasks and constraints of a real refinery, was 
created. Three test scenarios were designed with different sizes, 
demands and constraints.  In all of them, the results obtained 
were far better than the ones obtained through random search. 

I. MOTIVATION 

IL refineries are one of the most important examples of 
multiproduct continuous plant, in other words, a 

continuous processing system which generates multiple 
products. The optimization of the refinery scheduling is 
considered a complex problem due to the number and 
diversity of tasks and objectives. Moreover, it is a problem 
with precedence constraints: the scheduling of some tasks 
depends that other tasks were scheduled first. 

We can list a number of reasons why this problem should 
be solved and studied, as follows: 

• Daily costs in a refinery are very high and if they 
can be minimized, it is worth the efforts; 

• The scheduler needs to act quickly whenever an 
new and unexpected situation arises (equipment 
maintenance, for example) and the scheduling must 
be changed as quick as possible to avoid losses; 

• Today, there is no tool on the market that optimizes 
this problem and satisfies all the refinery scheduler 
needs; 

• Scheduling problems are well known and very hard 
to solve in reasonable time;  
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II. INTRODUCTION 

In general, a refinery processes one or more type of crude 
oil, producing a number of derived products, as the LPG 
(Liquefied Petroleum Gas), naphtha, kerosene and the diesel 
oil [1]. 

 We can separate the production control on a refinery 
into three levels: Planning, Scheduling and Operation. Figure 
1 shows this structure. 

 The schedule defines how each product should be 
produced considering the following:  

• A production preview defined by the planning 
(products, prices, dates and quantities);  

• Quantities and qualities of the raw material; 
• Price, quantity, and quality of intermediary products 

(actual inventory); 
• Restriction on storages and pipeline paths (topology 

of a plant); 
• How the finished products are delivered. 
 

 Everyday, the production scheduler defines the tasks to 
be performed by each equipment, during a time frame, in 
order to make the best of the planned production. In other 
words, the final result of the schedule is a daily set of tasks to 
be executed in the refinery. 

 The objective of this paper is to show the applicability 
and performance of the evolutionary computation in the 
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Fig. 1.  The Refining Process. 
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optimization of an oil refinery scheduling, considering 
different refining stages. In particular, this work finds a 
system capable to deal with the problems as a whole, 
considering every stage of refining and the objectives to be 
optimized. 

III. EVOLUTIONARY COMPUTATION AND COEVOLUTION 

The Evolutionary Computation is the optimization 
algorithm based on Darwinian’s theory of the species 
evolution and in genetics. The probabilistic algorithm gives a 
parallel and adaptive search mechanism based on the 
survival criteria of the most apt and on the reproduction of 
species. The mechanism is obtained from a population of 
individuals (solutions), represented by chromosomes (binary 
words, vectors, matrixes etc), each one associated to an 
aptitude (evaluation of the solution in the problem), which 
go through several cycles of an evolution process (selection, 
reproduction, crossing and mutation). 

 The cooperative coevolution was inspired in the 
symbiosis concept, where two or more species interact and 
collaborate with each other’s evolution. The evolution of 
each species happens in its niche or specialty. Therefore, 
their union can collaborate to the evolution of the ecosystem 
as a whole. As in nature, the species are genetically isolated; 
the individuals can only reproduce with other individuals of 
the same species which belongs to different populations. The 
species only interact with one another through a shared 
domain and their relation is only of cooperation.  

 The developed model to deal with refining optimization 
is presented in section V.  

IV. RELATED WORKS 

Scheduling problems have been investigated intensively in 
the areas of operations research and artificial intelligence. 
Traditionally, scheduling research has focused on methods 
for obtaining optimal solutions to simplified problems, for 
example, with integer programming or branch-and-bound 
algorithms. In order to determine an optimal solution, 
different restrictions were imposed on the problem domain, 
for example, on the number of jobs or machines, which made 
the application of the results to more complex problems very 
difficult or even impossible.   

Due to the difficulty of the scheduling domain, in many 
real-world scheduling environments the objective is the 
determination of a feasible schedule in reasonable time, 
which need not necessarily be an optimal schedule, but 
should, of course, be as good as possible [7]. 

Operations research methods for scheduling are described 
in more detail in [8]. 

V. COEVOLUTIONARY MODEL FOR THE SCHEDULING 
OPTIMIZATION 

The model suggested to solve this problem is a 
cooperative coevolutionary model [2] composed by two 

species.  
To solve a problem using cooperative coevolution, the 

most common approach is to decompose the problem into 
subcomponents. Each subcomponent is then associated to a 
species or population. The evolution of each species is 
independent, except on evaluation. As each individual of one 
species represents only part of the whole solution, 
individuals from the other species must be selected, using 
some criteria, to allow the evaluation of the complete 
solution. This is called collaboration. Figure 2 shows how 
this architecture works. 

 
In our model, the first species will decide which task is to 

be planned, whereas the second one will decide which 
resources will execute the task. We decided to decompose 
the problem this way because when we represent the 
complete solution in one species these two aspects – when to 
schedule a task and with which resource – are often 

 
Fig. 2.  Coevolutionary model of three species shown from the 
perspective of each in turn [2]. 
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conflicting. 

A. Representation 
The representation chosen for this work deals with two 

species, which have a parallel evolution of various aspects of 
the problem and collaborate for the solution of the problem.   

 The first species is called Allocation on Time and deals 
with two structures: the priority list and the precedence 
graph: 

• The priority list has the priority of each task.  
• The graph has the precedence relationships of the 

tasks, i.e. which tasks should be schedule before 
the others. 

Figure 3 shows the two structures comprising the 
representation of the Allocation on Time species. The 
priority list is the chromosome where the genetic operators 
will act. Next, in Figure 4, a fragment of the algorithm to 
select the tasks to be scheduled from the chromosome of 
species 1 is presented. 

It is important to notice that the algorithm shows how the 
system uses the priority list, using the precedence graph, to 
select the tasks to be scheduled respecting the precedence 
constraints. 

The second species is called Resource Allocation and 
deals with a vector list.  Each position of a vector is 
associated to a task, whereas each list has the resources that 

can execute the task. The algorithm tries to allocate the first 
available resource following their position on the list. Figure 
5 shows this structure. 

For example, if the task “A” is Distillation Unit Feeding, 
the tanks labeled 5, 1 and 8 are the only ones that can feed 
the unit (probably reflecting the topology of the plant). And, 
in this chromosome (fig. 5), tank 5 will be selected to feed 
the unit unless it violates any other constraints.  

B. Decoding 
The chromosome’s decoding is performed by combining 

the information of each species. Figure 4 below, shows the 
essence of the algorithm.  

Note that to decode the chromosome and to build a 
complete solution it is necessary to chose one individual of 
each species or collaborator, as we mentioned earlier. There 
are several methods for the selection of collaborators. 

Wiegand et al [3] identifies three attributes when choosing 
a collaboration model: 

• Collaborator selection pressure – The degree of 
greediness of choosing a collaborator; 

• Collaboration pool size – The number of 
collaborators per subpopulation to use for a given 
fitness evaluation; 

• Collaboration credit assignment – The method of 
assigning a fitness value given multiple 
collaboration-driven objective function results; 

And there are three options for credit assignment: 
• Optimistic – The more traditional method of 

assigning an individual a fitness score equal to 

 
Fig. 3.  The representation of the Allocation on Time species. 
 

procedure Task scheduling  
graph � priority graph;  
while (size(graph)>0) 
    if every vertex has precedent then 
       invalid graph;  
       exit; 
    else  

    v � vertex with higher priority 
between the ones with no precedent;       

schedule v; 
remove v from the graph and 

every connection that come from it; 
    end if 
end while 

 
Fig. 4.  Algorithm to schedule tasks from species 1. 

procedure Decode  
begin 
    chromossome1 � Time individual selected;  
    chromossome2 � Resources individual 
selected; 
    while (there are tasks to schedule) 
    begin 
        select task using chromosome1;  
        select resource for task using 
chromosome2;  
        schedule task; 
    end while 
end 

 
Fig. 6.  Decoding Algorithm. 
 

 
Fig. 5.  The representation of the Resource Allocation species. 
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the value of its best collaboration. 
• Hedge – Assign an individual a fitness score 

equal to the average value of its collaborations as 
is generally done in competitive coevolution. 

• Pessimistic – Assigning an individual a fitness 
score equal to the value of its worst 
collaboration. 

The results shown in this paper are using the optimistic 
method, where the individual receives as its fitness score the 
evaluation of its best collaboration, because they presented 
better results than the other ones in almost all experiments.  

C. Evaluation 
The objective function must incorporate each scheduling 

objective:  
• Fulfill the demand for products. The items for sale 

or shipping must be supplied with no delay;  
• Minimize the production costs. Minimize raw 

material cost and minimize operational cost. Raw 
material cost can be calculated from the quantities 
of certain oil that will be distilled during the 
schedule. Operational costs, on the other hand, are 
related to how the plant operates, avoiding frequent 
changes of process units’ operational modes and 
avoiding switch of tanks during an activity; 

• Assure products on spec. The properties of 
commercialized derived products must be within the 
minimal and maximum limits specified; 

 The cost for failing to attend the demand can be 
quantified by a penalty delivery delay of finished products. 
In order to make this cost proportional to the importance of 
the delay in relation to other deliveries, we calculated the 
price based on the share of the delayed item: 
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IVi

AD eliveredvolumenotdpriceproductC *�
∈

=    (1) 

 
Where IV is the set of finished products to be delivered 

during the scenario. 
To calculate the cost of raw material, we only need to 

multiply the price of crude oil spent on distillation by the 
quantity processed: 
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Where UDA is the set of distillation units and C is the set 

of crude oil types used by the refinery.  
The operational costs considered in this work include only 

the number of storage (tank or sphere) switches during a task 
(transfer, arrival of crude or deliver of product). We 
admitted that the number of Unit Operation Mode changes is 
fixed by scenario according to planning decisions and these 
changes are known a priori. Therefore this cost can be 
described as: 

 

tswitchingtchesstorageswiC
ATi

iOP cos*#�
∈

=   (3) 

 
Where AT is the set of transferring activities and the 

switching cost is arbitrary, representing the cost of switching 
a tank during a transfer.   

The cost for having products out of specification is 
handled by removing their share on the revenues. An out of 
spec product has no value. Therefore, we consider that all 
volume stored will be a cost on the scheduling. 

 

ii
IVi

DE olumeoutofspecvpriceproductC *�
∈

=    (4) 

 
In the end, the objective function (FO) to be minimized 

where wi represents the weight of each cost: 
 

DEOPMPAD CwCwCwCwFO 4321 +++=     (5) 

This objective function was never proposed by other 
researchers that we know of and is a direct way to compose 
all objectives. It allowed us to test how much importance 
each cost has on the overall evolution in the case study 
scenarios. 

D. Operators 

The operators applied to the individuals of both species 
are typically used in sequencing problems (as the traveling 
salesman problem). It is important to notice that, in the 
Resource Allocation species, the operators act in the allele of 
the genes that means (see Fig. 3), in the list of resources of 
each activity, but not among activities. 

We employed the following crossover operators: Order 
Crossover (OX), Partially Mapped Crossover (PMX) and 
Cycle Crossover (CX). The ones used in mutations were 
Swap (SM) and Position Inversion (PI). They are presented 
and discussed in more detail by Michalewicz [4]. 

E. Time Representation 

As exposed in [5], time is an important variable for 
scheduling problems.  For example, if the scheduling time 
span is of seven days, during this entire time frame the 
distillation unit must have been fed with oil at a certain flow. 
How many different transfers (from different tanks) to this 
process unit will take place?  

 Usually, time slices with an equal duration are defined 
throughout the scheduling horizon, as in the approach 
presented in [6], with number and duration of time slices 
arbitrarily defined. Relevant decisions may happen in the 
boundary between two time slices. It means that depending 
on the granularity of the problem, a big number of time slices 
can be generated, and the search for an optimal solution may 
become almost impossible. 

 We decided not to split the time in fixed time slices, but 
to split the quantities transferred by each task. A parameter 
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called maximum transferred volume was created to allow the 
algorithm to split the transfers of material. This parameter 
decides the maximum volume for each transfer piece. This 
solution allows the user to choose task size according to the 
type of the task. 

 

 

 
Fig. 8.  Planning information used in test scenarios. 

 

 
Fig. 7.  Refinery used in the case study. 

 
TABLE I 

REFINERY INITIAL STATE 

Storage Current 
Volume 

Composition Density 
(g/cm2) 

Sulphur 
(%m) 

TQ01 45000 70% Crude 1 
20% Crude 2 
10% Crude 3 

0.8927 0.4963 

TQ02 60000 100% Crude 2 0.9290 0.5500 
TQ03 30000 20% Crude 2 

80% Crude 3 
0.9130 0.6695 

TQ04 1550 Naphtha  0.7100 0.0015 
TQ05 6500 Naphtha 0.7100 0.0015 
TQ06 10000 Naphtha  0.7100 0.0015 
TQ07 1510 Kerosene  0.8230 0.1300 
TQ08 1510 Kerosene  0.8230 0.1300 
TQ09 11000 Kerosene  0.8230 0.1300 
TQ10 2010 Diesel 0.8800 0.4500 
TQ11 2010 Diesel 0.8300 0.3100 
TQ12 7000 Diesel 0.8670 0.4000 
TQ13 12000 Diesel 0.8900 0.5000 
TQ14 95 Diluent 0.8500 0.1300 
TQ22 95 Diluent 0.8500 0.1300 
TQ23 26000 Diluent 0.9200 0.7500 
EF01 110 LPG 0.5500 - 
EF02 1600 LPG 0.5600 - 
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VI. CASE STUDY 

A. Prototype Refinery 

The refinery plant we chose for this work is a simple plant 
presented in [6], which represents all types of equipment and 
constraints present in a real-life refinery (Figure 7). 

Scenarios with different planning information were 
studied, such as process unit operational mode changes and 
maintenance scheduling. The number of days in the scenario 
(scheduling horizon) has also varied to show the behavior of 
the algorithm due to the increasing number of activities.  

 The refinery initial state (content of the refinery tanks 
and spheres) is shown on Table I. 

In this plant two operational modes for the distillation unit 
were considered. The objective of the first one (Normal) is 
the production of aviation kerosene. The second one (Qcap) 
is used to produce asphalt diluents. For each distillation unit 
operational mode, the outlet streams for each crude oil fed 
(volumetric fractions and property values for each output 
product) were defined.    

In figure 8, we can see the scenarios created for the 
evaluation of the coevolutionary algorithm performance. The 
longer scenario has a total duration of five days and is able to 
evaluate the algorithm in a schedule that has a number of 
activities similar to the number of activities present in a real-
life situation. The scenarios were defined according to 
examples from [6]. 

VII. RESULTS 

A. Performance Analysis 

We made ten experiments with each scenario. The 
performance charts are the average results for scenario 3. 

It is important to mention that the random search here 
uses basically the same structures as the genetic algorithm, 
except the genetic operators. So it does not generate 
unfeasible solutions. For example, it uses the precedence 
graph and the scheduling algorithms mentioned above. 

 To demonstrate how difficult this problem is, the random 
search, in ten experiments with 6.000 individuals (each with 
5.600s or 1h34min), was never able to find a solution that 
would deliver finished products in spec without delay. 

 Next, the performance charts: objective function 
(Figure 9) and separated objectives (Figures 10 to 13). 

As each one of the aspects is separately examined, it 
seems that the random search is working as good as or even 
better than the evolutionary algorithm. However, as each one 
of the objectives is combined, it becomes clear that the 
solutions achieved by the random search are inferior to the 
ones presented by the genetic algorithm (Fig. 9). The 
evolution of the objectives in the random search has a greedy 
behavior by trying to meet the objectives that are at the same 

 
Fig. 9.  Performance of the genetic algorithm versus random search. 
 

 
Fig. 10.  Cost of delivering delays. 
 

 
Fig. 12.  Number of storage switches during transfers. 

 
Fig. 11.  Raw material (Crude) cost. 
 

 
Fig. 13.  Cost for delivering out of spec products. 
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time easy (with the minimum combination possible) and with 
a huge wide impact in the objective function. In the genetic 
algorithm, however, the convergence occurs in a different 
way, more gradually, taking into consideration every 
objective: first by making a more global search in the space 
of the solutions and less greedy for, then, when close to the 
best solutions, make a local search in more subtle objectives, 
like the storage switching minimization. 

By observing these charts, we can see that the genetic 
algorithm, in average, had a much more superior 
performance than the random search. It is important to 
mention that even in greater scenarios than these, the 
processing time does not make the use of algorithm 
impracticable as in most of the approaches for scheduling 
problems of the real world.  

 Table II shows the results of one of the best solutions 
found in 60 generations of 100 individuals for the 
coevolutionary genetic algorithm, for each scenario. 

The maximum volume parameter can be changed to vary 
the number of activities that will be generated by the 
algorithm thus affecting overall performance. It’s because in 
this representation, the number of genes of the chromosome 
of both species is dependent on the number of activities. For 
example, setting the maximum volume to 12000 m3 (volume 
slice) for process unit feeding create tasks with duration of 
eight hours (feeding and transferring outlet streams), which 
is not usually too much for a daily work on a refinery. Then 
there is a chance to reduce the process time for longer 
scenarios. 

B. Schedule Generation 

A fragment of a schedule generated by the system can be 
seen on Figure 14. It corresponds roughly to the task list 
used by the operation personnel at the refinery. 

VIII. CONCLUSIONS 

The objective of this work was to show the applicability of 
a cooperative coevolutionary model in the global 
optimization of refinery scheduling.   

A cooperative coevolutionary model was adopted to 
analyze the problem and to favor the performance of the 
system. The decoder implemented to generate a feasible 
schedule from a chromosome used two species to schedule 
the tasks in time and with a specific resource, always 
respecting precedence constraints (solved by the graph of the 
first species) and the other operational plant constraints, such 
as: maintenance, preparation time of products, among others. 
By using this approach, there is need to penalize, correct, or 

get rid of invalid individuals, which makes the evolution 
much more efficient. The evaluation function was conceived 
by incorporating several important objectives of the refinery 
scheduling problem.  

The cases we studied were represented by a refinery with 
all types of activities and constraints found on the daily 
operation of a real-life refinery. We validated and evaluated 
the performance of the model developed using these cases.   

The results proved the efficiency of the coevolutionary 
algorithm, if compared to the random search or even if 
evaluated as high-quality feasible solutions, generated in 
acceptable time. 

The impacts of the number of generated activities on the 

 

1/1/2003 08:00:00 - 2/1/2003 08:00:00 -> Operation Mode 'Normal (01/01/03 - 02/01/03)' on the 'UDA' Process Unit. 
1/1/2003 08:00:00 - 1/1/2003 12:00:00 -> Feeding Unit 'UDA' from storage 'TQ01' at a flow rate of 1500 m3/h (Volume = 6000 m3). 
1/1/2003 08:00:00 - 1/1/2003 12:00:00 -> Delivering Item 'GLP-1' from storage 'EF02' to pipeline 'DT01' at a flow rate of 112.5 m3/h (Volume = 450 
m3). 
1/1/2003 08:00:00 - 2/1/2003 04:00:00 -> Delivering Item 'QAV' from storage 'TQ09' to pipeline 'DT03' at a flow rate of 300 m3/h (Volume = 6000 m3). 
1/1/2003 08:00:00 - 2/1/2003 04:00:00 -> Delivering Item 'NPTQ' from storage 'TQ05' to pipeline 'DT02' at a flow rate of 250 m3/h (Volume = 5000 
m3). 
1/1/2003 08:00:00 - 1/1/2003 12:00:00 -> Sending (Gas Processing) from 'UDA' to 'CAFOR' at a flow rate of 1.8 m3/h (Volume = 7.2 m3). 
1/1/2003 08:00:00 - 1/1/2003 12:00:00 -> Sending (Store LPG) from 'UDA' to 'EF01' at a flow rate of 39 m3/h (Volume = 156 m3). 
1/1/2003 08:00:00 - 1/1/2003 12:00:00 -> Sending (Store Naptha) from 'UDA' to 'TQ04' at a flow rate of 207 m3/h (Volume = 828 m3). 
1/1/2003 08:00:00 - 1/1/2003 12:00:00 -> Sending (Store Gasoil) from 'UDA' to 'TQ23' at a flow rate of 766.2 m3/h (Volume = 3064.8 m3). 
1/1/2003 08:00:00 - 1/1/2003 12:00:00 -> Sending (Split Kerosene) from 'UDA' to 'SP01' at a flow rate of 174 m3/h (Volume = 696 m3). 
1/1/2003 08:00:00 - 1/1/2003 12:00:00 -> Sending (Store Kerosene) from 'SP01' to 'TQ07' at a flow rate of 174 m3/h (Volume = 696 m3). 

 
Fig. 14.  Fragment of a generated task list. 
 

TABLE II 
PERFORMANCE OF ONE OF THE BEST SOLUTIONS FOUND 

Parameter Scenario 1 Scenario 2 Scenario 3 
Generations 60 60 60 
Population 100 100 100 
Max Vol – Crude (m3) 6000 6000 6000 
Max Vol – Feed (m3) 6000 6000 12000 
Number of generated tasks  83 86 228 
Time (s) 122 187 1463 
Non delivered prods(US$) 0,00 0,00 0,00 
Raw material cost (US$) 4,880,400.00 4,880,400.00 25,156,357.89 
Nr. of  Storage Switches 4 6 32 
Out-of-spec (US$) 0,00 0,00 0,00 
Evaluation  492,040.00 492,040.00 2,547,635.79 
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performance of the algorithm were evaluated too, and it 
shows that we need to implement a better strategy to define 
the size of the time slices. 

Finally, this work shows the application of evolutionary 
computation on the optimization of the refinery scheduling 
as a possible alternative, practical and efficient in the 
solution of this challenging issue. 

IX. FUTURE WORK 

There is a lot of work yet to be done in this topic. This is 
but the start of a promising approach to scheduling 
optimization. We can list some improvements to be made in 
this model: 

• Use a multi-objective optimization technique to 
comprise all the objectives of the problem in a more 
adequate fashion; 

• Application of the model in a real-life refinery 
scheduling; 

• Usage of more properties like: octane number, 
viscosity, etc.; 

• Take into account the crude oil blending in the 
pipeline when arriving (when two different crudes 
arrive in sequence, blending occurs to some extent); 

• Allow product transfer between tanks, when really 
needed. This may need some heuristics; 

• Allow storage to send and receive at the same time, 
which can be seen in some refineries; 

• Allow two or more storages to feed a process unit at 
the same time, blending product in the pipelines. 
This is used in many refineries; 

• Try to evolve other decision parameters that were 
fixed in this model. Maybe as a new species; 

• Change the time representation (as seen in section 
V – topic E) to a more flexible solution instead of 
fixed time slices, in order to allow a reduction in the 
number of scheduled tasks. 
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