
Abstract—We examine a complex, multi-objective
semiconductor manufacturing scheduling problem involving
two batch processing steps linked by a timer constraint. This
constraint requires that any job completing the first processing
step must be started on the succeeding second machine within
some allowable time window; otherwise, the job must repeat its
processing on the first step. We present a random keys
implementation of NSGA-II for our problem of interest and
investigate the efficacy of different batching policies in terms of
the number of approximate efficient solutions that are
produced by NSGA-II over a wide range of experimental
problem instances. Experimental results suggest a full batch
policy can produce superior solutions as compared to greedy
batching policies under the experimental conditions examined.

I. INTRODUCTION

HE problem addressed in this paper is motivated by an

application in semiconductor manufacturing. We focus

on a flexible flow shop with four machines, as pictured in

Figure 1. Machine A is capable of processing up to six jobs

simultaneously as a batch. It feeds the three parallel

downstream machines: B, C and D, each of which has a

batching capacity of its own. Between machine A and the

downstream machines, there is a timer. A job that completes

processing on machine A must begin processing on the next

machine in its route before a fixed time period. If the queue

time at the downstream machine exceeds that time limit, the

job must be processed again on machine A. This is referred

to as recirculation. The goal is to prevent this recirculation,

if possible, to avoid additional congestion in the system.

There are three types of jobs: B, C and D. All jobs are

processed on machine A. But due to machine eligibility

restrictions, jobs must be processed on a particular

downstream machine. Type B jobs are processed by

machine A, and then processed by machine B. Likewise,

type C and D jobs are processed by machine A and then by

machines C and D, respectively. Machine eligibility

restrictions are denoted by Mj, where Mj is the set of

machines that can process job j. Additionally, each job has

two batch identification (ID) codes associated with it. The

Manuscript received October 31, 2006.

Scott J. Mason and Letitia M. Pohl are with the University of Arkansas,

Fayetteville, AR 72701 USA (479-575-5521; e-mail: mason@uark.edu and

lpohl@uark.edu)

Mary E. Kurz is with Clemson University, Clemson, SC 29634 USA (e-

mail: mkurz@clemson.edu)

Michele E. Pfund and John W. Fowler are with Arizona State University,

Tempe, AZ 85287 USA (e-mail: michele.pfund@asu.edu and

john.fowler@asu.edu)

upstream batch ID identifies the processing time on machine

A, while the downstream batch ID identifies the eligible

downstream machine (B, C or D) and the downstream

processing time. The upstream machine uses a compatible

batching concept. In compatible batching, jobs of different

types and batch IDs can be processed together, with the

batch processing time being equal to the longest individual

processing time of the jobs in the batch. The downstream

machines use an incompatible batching concept. Not only do

batched jobs have to be of the same type, but they also must

share the same ID code. Jobs that have different ID codes

are considered incompatible and cannot be batched together.

Machine

A

Machine

C

A3

B1

Max Batch Size =

6 jobs

Machine

B

Machine

D

Max Batch

Size =

6 jobs

Max Batch

Size =

2 jobs

Max Batch

Size =

1 job

Downstream MachinesUpstream Machine

Timer

Jobs that time-out recirculate through m/c A

A2

C3

A1

D2

A2

D2

A1

B1

A1

B3

A1

C2

A2

C3

Ready Jobs

Machine

A

Machine

C

A3

B1

A3

B1

Max Batch Size =

6 jobs

Machine

B

Machine

D

Max Batch

Size =

6 jobs

Max Batch

Size =

2 jobs

Max Batch

Size =

1 job

Downstream MachinesUpstream Machine

Timer

Jobs that time-out recirculate through m/c A

A2

C3

A2

C3

A1

D2

A2

D2

A1

B1

A1

B1

A1

B3

A1

B3

A1

C2

A1

C2

A2

C3

A2

C3

Ready Jobs

Fig. 1. Job Routing With Batching in a Flexible Flow Shop

The goal of our analysis is to develop heuristic

approaches to improve on-time delivery, reduce cycle time

variation, and reduce violation of the timer to minimize

recirculation. The achievement of these goals is dependent

on how effectively the jobs are batched at both the upstream

and downstream machines. Clearly, the timer plays an

important part in determining how batches are formed, as

the downstream queue length and/or downstream processing

times can cause timer violations.

Each job, denoted by j, has several parameters associated

with it. It has priority or weight jw , ready time jr , due date

jd , a batch ID code for the upstream machine and a batch

ID code for the downstream machine. The upstream batch

ID determines the upstream job processing time jp1 .

Likewise, the downstream batch ID determines the

downstream job processing time jp2 .

In practically motivated problems it is typical to have

Multi-Objective Semiconductor Manufacturing Scheduling:
A Random Keys Implementation of NSGA-II

Scott J. Mason, Mary E. Kurz, Michele E. Pfund, John W. Fowler, Member, IEEE, Letitia M. Pohl

T

159

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

multiple objectives. In this scenario, we seek to minimize

three objectives: 1) Total Weighted Tardiness (

j
jjTw),

where job j’s tardiness)0,max(jjj dCT , with jC

denoting job j’s completion time; 2) Cycle Time Variation,

where cycle time j j jF C r and

j
jj FnF

n
FVar 22

1

1
)(; and 3) Cumulative

Timer Violation

0,max 12 jjjj
jj

j pspCV , where

the job start time on the downstream machine is jj pC 2 ,

the job completion time on the upstream machine is

jj ps 1 and the timer length is . Generally, one solution

will not simultaneously minimize our objectives. The

concept of efficient solutions is used to identify solutions

that may be desirable to a decision maker. A solution is

weakly efficient (with respect to the criteria of interest, here

called 1z and 2z , which are to be minimized) if there is no

other solution
'
 such that)()(

'

11 zz and

)()(
'

22 zz . A solution is efficient if it is weakly

efficient and at least one of the previous relations holds as a

strict inequality. We then say that solution
'
 dominates

solution . These definitions are easily extendable to the

multi-criteria case.

The use of GAs in finding the set of efficient solutions

seems especially desirable because GAs evolve sets of

solutions and multi-criteria problem solvers may want the

entire set of efficient solutions. Since it is not guaranteed

that any heuristic will find optimal solutions to NP-hard

single criterion optimization problems, GAs can only find

approximately efficient solutions (AES) to multi-criteria

optimization problems. Using the scheduling problem

classification scheme of Lawler et al. [1], our problem is

leincompatibcompatiblebatchpMrFF jj ,,,,2

jjjj VFVarTw),(, . Pinedo [2] shows through

reduction of the 3-PARTITION problem that jjTw1 is

strongly NP-hard. Since our problem can be thought of as a

special case of the single machine problem, jjTw1

reduces to our problem and we can conclude that its

complexity is at least strongly NP-hard. Therefore, in this

paper, we implement NSGA-II [3] using a random keys

chromosome representation as an initial step in our analysis,

placing our primary focus on the generation of

approximately efficient solutions to this multi-objective

scheduling problem.

II. PREVIOUS RESEARCH

A. Batching Heuristics

Previous research has concentrated on the batch machine

dispatching problem. The minimum batch size (MBS) rule

was proposed by Neuts [4]. MBS rules specify that an

incomplete load can be processed once the queue size

reaches a specified minimum. Techniques have been

proposed to optimize that minimum value. The MBS rule is

considered a theoretical standard used to evaluate the

performance of other batch dispatching rules [5]. Batching

heuristics seek to minimize wasted capacity resulting from a

load that is smaller than the machine capacity, while

minimizing machine idle time that may be required to form a

batch.

Glassey and Weng [6] present the dynamic batching

heuristic (DBH) to minimize the average delay at the

batching machine. The next arrival strategic control heuristic

(NACH) was developed by Fowler et al. [7]. The NACH

expands on DBH by implementing a rolling horizon policy,

where only the next arrival is considered. This makes it less

susceptible than DBH to arrival prediction error. A similar

heuristic, the minimum cost rate (MCR) heuristic, was

proposed by Weng and Leachman [8]. The MCR heuristic is

based on minimizing a holding cost per unit time. Finally,

the rolling horizon cost rate (RHCR) heuristic [9] combines

the rolling horizon used in NACH with the cost rate function

used in MCR.

Something that all these batching heuristics (except MBS)

have in common is that they consider upstream information,

or knowledge of future arrivals. Extensions of two of these

heuristics consider downstream information. NACH-setup is

an extension of the NACH policy and takes into account

downstream setup times [5]. Later, decision logic was added

to RHCR that uses information about the state of the serial

machine, in an attempt to further reduce flowtimes [9]. The

objective function in this case was average standardized

flowtime, where the time from job arrival to completion on

the serial machine is divided by the sum of its batch and

serial processing times.

B. Dispatching Rules and Look-Ahead Dispatching Rules

Dispatching rules are used to find reasonably good

solutions is a short period of time, and can therefore be used

for real-time control of job flow. They provide a method to

select the job to be processed next from a set of waiting

jobs. Some traditional dispatching rules typically considered

include earliest due date (EDD, non-decreasing order of

jd), weighted shortest processing time (WSPT, non-

increasing order of
j

j

p
w

), and minimum slack (MS, non-

decreasing order of)0,max(tpd jj for each job).

These rules are known as local dispatching rules because

they only require information about the jobs currently

160

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

waiting at the machine in question. Global, or look-ahead
dispatching rules require information about jobs at other

machines. These look-ahead rules look forward in time and

can consider information either upstream or downstream. A

simple look-ahead rule that takes advantage of downstream

information is shortest queue at the next operation. With this

rule, every time a machine is freed, the job with the shortest

queue at the next machine on its route is selected for

processing [2].

Some look-ahead procedures look one, or even a few

steps ahead in time and evaluate the impact of the current

decision on the objective function. This look ahead in time

can be to access upstream information, downstream

information, or both. The batching rules discussed

previously are a specific type of look-ahead rule. Jang [10]

reviews a number of existing look-ahead procedures that

were developed for problem specific scenarios. Finally,

Holthaus and Ziegler [11] develop a coordinating

dispatching rule called look ahead job demanding (LAJD).

They define a coordination rule as one that requires

coordination of machines, and therefore considers not only

the jobs waiting in queue for the current machine, but also

the states of all the machines preceding the current machine.

III. GENETIC ALGORITHMS

A. NSGA-II

The complexity of the problem precludes the possibility

of building an optimization model without oversimplifying

the problem. For this reason, we implement NSGA-II using

a random keys chromosome representation. NSGA-II was

published by Deb et al. [3] and is considered by many to be

the dominant evolutionary multi-objective optimization

algorithm. A complete description of NSGA-II is in Deb et
al. [3], but we summarize the key points for the convenience

of the reader. We also include an adaptation of Figure 2

from Deb et al. [3] as Figure 2 below.

tP

tQ

tR

Non-dominated

sorting

Crowding

distance

sorting

1F

2F

3F

4F

Rejected

1tP

Fig. 2. Adaptation of Figure 2 from Deb et al. [3]

NSGA-II utilizes the current set of N solutions in

generation t, tP , to build an offspring set of N solutions tQ ,

which are combined to create a larger set of 2N solutions

called tR . The method by which we build tQ differs from

that used by Deb et al. [3], so we delay that discussion until

a later section. Once tR is built, the N “best” solutions are

kept to create the next set of solutions,
1tP . Two steps are

used to find the “best” solutions: non-dominated sorting and

crowding distance sorting.

Non-dominated sorting can be explained as follows.

Consider two objectives,
1

z and
2

z and a set of 2N

solutions, tR , generated in some manner. The solutions in

tR which are not dominated by any other solutions are said

to be in front 1,
1

F . The solutions in tR minus
1

F which

are not dominated by any other solutions in tR minus
1

F

are said to be in front 2,
2

F . There can be at most 2N fronts.

Deb et al. [3] give an O(M(2N)
2
) procedure for identifying

the fronts, where M is the number of objectives under

consideration. In practice we need only identify fronts until

N solutions have been included; if fronts 1 through f-1 have

fewer than N members and fronts 1 through f have N or

more members, we will not retain the remaining members of

tR in
1tP . The members of fF which are retained in

1tP

are selected using crowding distance sorting.

Crowding distance sorting intends to keep a diverse set of

solutions from fF . Figure 3 shows five solutions in an

arbitrary front with two objectives. Consider solution 3. The

crowding distance for solution 3 is

1 1 2 2

distance

1 1 2 2

4 2 2 4
3

5 1 1 5

z z z z

z z z z
. The

crowding distance for solutions 1 and 5 are . In Figure 3,

we see that solution 2 is in a more crowded region of the

front, and solution 4 is in a less crowded region of the front.

Solution 4’s distance metric will be larger than solution 2’s,

so we will retain solution 4 in
1tP before retaining solution

2 in
1tP .

1z

2z

3

1 14 2z z

2

4

2 22 4z z

5

1

Fig. 3. Crowding Distance Sorting Example

We describe the method for an arbitrary front iF of l

161

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

solutions, following Deb et al. [3] closely.

For each solution i,
distance

0i
For each objective m
Sort the solutions in increasing order.

Set the crowding distance of the first and last sorted

solutions:
distance distance

1 l

Set the crowding distance of the rest of the solutions, i=2

to l-1: distance distance

1 1
[] []

1

m m

m m

z i z i
i i

z l z

B. A Random Keys Implementation of NSGA-II

The random keys representation was introduced by Bean

[12] and has been used in numerous applications of

combinatorial optimization ([13], [14], [15]). While the

traditional (binary) GA encoding is well-suited to problems

with real-valued decision variables, combinatorial

optimization problems often have solutions that can be

represented by a permutations. Unfortunately, a direct

permutation encoding combined with traditional genetic

operators can easily lead to chromosomes representing

infeasible solutions, which must then be repaired. The

random keys encoding avoids the problem of infeasible

chromosomes. In our application, each chromosome consists

of one gene per job. The values of the genes are generated

from a uniform distribution [0, 1000]. These genes serve as

sort keys used to determine the order in which jobs are

processed on machine A. The jobs are ordered for machine

A in increasing order of the sort keys. Batches are formed

for machine A using this order and one of two batching

options:

1) Full batching – each batch will contain the maximum

number of jobs allowed by the batch capacity, in this case

maximum batch size is six.

2) Minimum (greedy) batching – the batch will contain as

many jobs as are ready at the time the batch begins

processing (i.e., when the batching machine completes its

current batch and becomes available to process a new

batch), up to the maximum batch size.

Finally, downstream batches are formed using greedy

batching (minimum). These two batching options are

investigated due to their prevalent use in the semiconductor

industry. All parameter settings were chosen empirically to

balance running time and solution quality. The following

text describes our random keys implementation of NSGA-II

in detail.

Initialization—The initial population
0

P of size N is

generated randomly.

Creation of tQ —In contrast to Deb et al. [3], we use the

same mechanism to create the offspring population tQ for

all values of t and we utilize parametric uniform crossover

and immigration (following Bean [12]) to create tQ from

tP . We use parametric uniform crossover to create 60% of

the members of tQ and use immigration (randomly

generating new chromosomes to create 40% of the members

of tQ . Parametric uniform crossover selects two different

parents randomly from tP to create one new member of tQ .

Each gene is selected from parent 1 (designated randomly)

with a 70% probability, otherwise it is selected from parent

2.

Creation of
1tP —Once the chromosomes are decoded,

the total weighted tardiness, cycle time variation and

cumulative timer violations are computed. We faithfully

implement non-dominated sorting and crowding distance

sorting, but we insert a duplicate removal procedure

between those steps. Consider Figure 4, in which two

solutions (3 and 4) have objective functions that map to the

exact same place in the solution space. In combinatorial

problems with integer data, this is anecdotally common. We

assume that the solutions shown are in front fF and that

only 4 solutions will be retained to form
1tP . Table 1

contains data for this example.

If we retain exactly four solutions from this front in
1tP ,

the solutions retained will differ if solution 3 is included for

consideration or not. In the first case, when all 6 solutions

are considered, solutions 1, 6, 5 and 2 or 4 will be retained.

Solutions 2 and 4 have the exact same crowding distance

(54
14 12

) but correspond to different points in the

solution space. In the second case, when solution 3 is not

considered, we see that solutions 1, 6, 5 and 4 will be

retained; solutions 2 and 4 may now be differentiated in

terms of their relative crowding in the front. It is our

contention that not including all duplicates in the solution

space when computing crowding distances better reflects the

intent of the crowding distance metric for diversity

preservation. Therefore, we will strip duplicates in the

solution space from fronts created from tR before

computing the crowding distances.

1z

2z

3, 4

1 14 2z z

2

5

1

6

2 22 4z z

Fig. 4. Creation of
1tP Example

162

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

TABLE 1. DATA FOR EXAMPLE PROBLEM IN FIGURE 4

Solution

i 1z 2z

distancei
(3 and 4

considered)

distancei
(3 not

considered)

1 0 13

2 3 10 0.702 0.702

3 4 8 0.238 --------

4 4 8 0.702 0.940

5 8 3 1.298 1.298

6 14 1

Stopping Criteria—We stop if 400N or more

chromosomes have been evaluated. If fewer than 400N
chromosomes have been evaluated, we go to create the next

offspring population tQ .

IV. EXPERIMENTAL DESIGN

In order to evaluate the performance of our random keys

implementation of NSGA-II, a series of computational

experiments were run using randomly generated test

problems. The experimental factors and their associated

factor levels at both Low and High settings are defined as

follows:

Number of Jobs (n): Low = 60, High = 120

Ready Times ()jr : Low = 0, High = 50% 0, 50%

DU[1,)(max estC], where

ij
i

jDCBi
Aj

ij
jDCBi

Aj
A

pE
b

n
pE

ppE
b

n

estC

,,,

,,,

max

max

,max

max)(

Due Date ()jd : DU
6

,
6

RR
, where

)(max estC (1-T), T: Low = 0.45, High = 0.9, and R:

Low = 0.5, High = 2.5

In all experiments, job weight jw is distributed

according to a discrete uniform distribution over the integer

set [1,10], population size 100N , and timer length

2 . Machines A, B, C, and D have maximum batch

sizes of 6, 6, 2, and 1 jobs, respectively. Further, batch ID

values are randomly assigned so that a job has an equal

probability of 1) having any one of machine A’s three batch

IDs and 2) being assigned to machine B, C, or D for its

second step. Also, a job is equally likely to be assigned any

batch ID corresponding to the tool to which it is assigned.

The process times jp associated with each machine’s batch

IDs are as follows:

Machine A: A1 = 2 hours, A2 = 2.5 hours, A3 = 3 hours

Machine B: B1 = 6 hours, B2 = 8 hours, B3 = 10 hours

Machine C: C1 = 1 hour, C2 = 2 hours, C3 = 3 hours

Machine D: D1 = 0.5 hours, D2 = 0.75 hours, D3 = 1

hour

We generate 10 problem instances for each factor

combination, resulting in a total of 2(2)2(2)10=160 test

cases. Each test case is run through our NSGA-II

implementation a total of 50 times (i.e., 50 different initial

population replications) using both Greedy and Full

batching policies on machine A.

V. ANALYSIS FOR MULTIPLE OBJECTIVES

Consider a test case of our problem of interest. The

primary performance measure reported by our NSGA-II

implementation in the number of approximately efficient

solutions (AES). Let),,(PAES denote the number of

AESs found in replication (50...1) of problem

instance (10...1) using batching policy P

(FullGreedyP ,) for a given test case. Table 2

reports the experimental results in terms of

10

1

50

1

50

),,(

10

1
PAES

AES for a specific

experimental factor of interest. Further, let)(AESSD

denote the standard deviation of the AES values for a

specific experimental factor of interest. For example, the

first row of data in Table 2 depicts the AES and

)(AESSD values for each batching policy P when the

number of jobs factor is at its low level (i.e., 60 jobs)—all

other factors are aggregated in this initial data row.

From Table 2, we note that while the 95% confidence

intervals indeed overlap in all cases for the two machine A

batching policies under consideration, the mean values for

the full batching policy are consistently lower than those for

greedy batching. Further, in the majority of our experimental

cases, the full batching policy also produced a more

consistent number of AESs, as its)(AESSD values are

lower than those for Greedy batching policy.

In terms of required computation time, our NSGA-II

implementation required approximately 35 seconds to

complete 50 replications of each 60-job test case and 65

seconds to complete a 120-job test case replication.

VI. CONCLUSIONS

The problem addressed in this paper is motivated by an

application in semiconductor manufacturing. We examine a

complex, multi-objective semiconductor manufacturing

scheduling problem involving two batch processing steps

163

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

linked by a timer constraint. This constraint requires that any

job completing the first processing step must be started on

the succeeding second machine within some allowable time

window; otherwise, the job must repeat its processing on the

first step.

TABLE 2. COMPUTATION RESULTS

 Machine A Batch Policy

 Greedy Full

Factor Level AES)(AESSD AES)(AESSD

Number Low 77.51 12.74 73.11 11.15

 of Jobs High 84.47 12.61 81.40 10.66

Ready Low 73.43 14.02 73.74 14.03

 Times High 88.55 5.79 80.77 7.14

T Low 77.68 16.17 73.40 13.88

 High 84.30 7.88 81.11 7.06

R Low 78.04 16.51 74.03 14.53

 High 83.94 7.47 80.48 6.37

The complexity of the problem precludes the possibility

of building an optimization model without oversimplifying

the problem. For this reason, we implement NSGA-II [3]

using a random keys chromosome representation. We

investigate two different batching policies on the upstream

machine: 1) Full batching (each batch contains the

maximum number of jobs allowed by the batch capacity)

and 2) Minimum or greedy batching (the batch will contain

as many jobs as are ready at the time the batch begins

processing, up to the maximum batch size).

In this initial step in our experimentation, we are

interested in assessing the number of approximate efficient

solutions that are produced by NSGA-II over a wide range

of experimental problem instances for each batching policy.

Experimental results suggest a full batch policy can produce

superior solutions as compared to greedy batching policies

under the experimental conditions examined. However, this

difference is not statistically significant, as the

corresponding 95% confidence intervals about the mean

values overlap.

Future work is in progress to examine other machine A

batching policies, including an adaptation of NACH for

compatible jobs. In addition, a detailed heuristic analysis is

warranted to assess the true quality of our NSGA-II results

in terms of existing, potentially inferior but definitely more

computationally attractive dispatching rules commonly used

in semiconductor manufacturing practice.

REFERENCES

[1] Lawler, E.L., Lenstra, J.K. and Rinnooy Kan, A.H.G., Recent

developments in deterministic sequencing and scheduling: a survey. In

Deterministic and Stochastic Scheduling, edited by M.A.H. Dempster,

J.K. Lenstra and A.H.G. Rinnooy Kan, (1982), 35–73 (Reidel,

Dordrecht).

[2] Pinedo, (1995) Scheduling: Theory, Algorithms and Systems, Prentice

Hall, NJ.

[3] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan, A

Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE
Transactions On Evolutionary Computation, 6 (2) (2002) 182-197.

[4] M.F. Neuts, A general class of bulk queues with Poisson input. Annals
of Mathematical Statistics, 38 (1967) 759-770.

[5] L. Solomon, J. Fowler, M. Pfund and P. Jensen, The inclusion of

future arrivals and downstream setups into wafer fabrication batch

processing decisions, Journal of Electronics Manufacturing, 11 (2)

(2002), 149-159.

[6] C.R. Glassey and W.W. Weng, Dynamic batching heuristic for

simultaneous processing, IEEE Transactions on Semiconductor
Manufacturing, 14 (2) (1991), 77-82.

[7] J.W. Fowler, D.T. Phillips and G.L. Hogg, Real time control of

multiproduct bulk service semiconductor manufacturing processes,

IEEE Transactions on Semiconductor Manufacturing, 5 (2)

(1992),158-163.

[8] W.W. Weng and R.C. Leachman, An improved methodology for real-

time production decision at batch-process work stations, IEEE
Transactions on Semiconductor Manufacturing, 6 (1993), 219-225.

[9] J.K. Robinson, J.W. Fowler and J.F. Bard, The use of upstream and

downstream information in scheduling semiconductor batch

operations, International Journal of Production Research., 33 (7)

(1995), 1849-1869.

[10] J. Jang, J. Suh, M. Park, and R. Liu, A Look-Ahead Routing

Procedure for Machine Selection in a Highly Informative

Manufacturing System, The International Journal of Flexible
Manufacturing Systems, 13 (2001), 287-308.

[11] O. Holthaus and H. Ziegler, Improving job shop performance by

coordinating dispatching rules, International Journal of Production
Research, 35 (2) (1997), 539-549.

[12] Bean, J.C., Genetic algorithms and random keys for sequencing and

optimization, ORSA Journal on Computing, 6 (1994), 154-160.

[13] Norman, B.A. and Bean, J.C., A genetic algorithm methodology for

complex scheduling problems, Naval Research Logistics, 46 (1999),

199-211.

[14] Wang, C-S. and Uzsoy, R., A genetic algorithm to minimize maximum

lateness on a batch processing machine, Computers & Operations
Research, 29 (2002), 1621-1640.

[15] Kurz, M.E. and Askin, R.G., Scheduling flexible flow lines with

sequence-dependent setup times, European Journal of Operational
Research, 159 (1) (2004), 66-82.

164

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

