
Abstract—We examine a complex, multi-objective 
semiconductor manufacturing scheduling problem involving 
two batch processing steps linked by a timer constraint. This 
constraint requires that any job completing the first processing 
step must be started on the succeeding second machine within 
some allowable time window; otherwise, the job must repeat its 
processing on the first step. We present a random keys 
implementation of NSGA-II for our problem of interest and 
investigate the efficacy of different batching policies in terms of 
the number of approximate efficient solutions that are 
produced by NSGA-II over a wide range of experimental 
problem instances. Experimental results suggest a full batch 
policy can produce superior solutions as compared to greedy 
batching policies under the experimental conditions examined. 

I. INTRODUCTION

HE problem addressed in this paper is motivated by an 

application in semiconductor manufacturing. We focus 

on a flexible flow shop with four machines, as pictured in 

Figure 1. Machine A is capable of processing up to six jobs 

simultaneously as a batch. It feeds the three parallel 

downstream machines: B, C and D, each of which has a 

batching capacity of its own. Between machine A and the 

downstream machines, there is a timer. A job that completes 

processing on machine A must begin processing on the next 

machine in its route before a fixed time period. If the queue 

time at the downstream machine exceeds that time limit, the 

job must be processed again on machine A. This is referred 

to as recirculation. The goal is to prevent this recirculation, 

if possible, to avoid additional congestion in the system. 

There are three types of jobs: B, C and D. All jobs are 

processed on machine A. But due to machine eligibility 

restrictions, jobs must be processed on a particular 

downstream machine. Type B jobs are processed by 

machine A, and then processed by machine B. Likewise, 

type C and D jobs are processed by machine A and then by 

machines C and D, respectively. Machine eligibility 

restrictions are denoted by Mj, where Mj is the set of 

machines that can process job j. Additionally, each job has 

two batch identification (ID) codes associated with it. The 
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upstream batch ID identifies the processing time on machine 

A, while the downstream batch ID identifies the eligible 

downstream machine (B, C or D) and the downstream 

processing time. The upstream machine uses a compatible 

batching concept. In compatible batching, jobs of different 

types and batch IDs can be processed together, with the 

batch processing time being equal to the longest individual 

processing time of the jobs in the batch. The downstream 

machines use an incompatible batching concept. Not only do 

batched jobs have to be of the same type, but they also must 

share the same ID code. Jobs that have different ID codes 

are considered incompatible and cannot be batched together. 
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Fig. 1. Job Routing With Batching in a Flexible Flow Shop 

The goal of our analysis is to develop heuristic 

approaches to improve on-time delivery, reduce cycle time 

variation, and reduce violation of the timer to minimize 

recirculation. The achievement of these goals is dependent 

on how effectively the jobs are batched at both the upstream 

and downstream machines. Clearly, the timer plays an 

important part in determining how batches are formed, as 

the downstream queue length and/or downstream processing 

times can cause timer violations. 

Each job, denoted by j, has several parameters associated 

with it. It has priority or weight jw , ready time jr , due date 

jd , a batch ID code for the upstream machine and a batch 

ID code for the downstream machine. The upstream batch 

ID determines the upstream job processing time jp1 .

Likewise, the downstream batch ID determines the 

downstream job processing time jp2 .

In practically motivated problems it is typical to have 
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multiple objectives. In this scenario, we seek to minimize 

three objectives: 1) Total Weighted Tardiness (

j
jjTw ),

where job j’s tardiness )0,max( jjj dCT , with jC

denoting job j’s completion time; 2) Cycle Time Variation, 

where cycle time j j jF C r  and 

j
jj FnF

n
FVar 22

1

1
)( ; and 3) Cumulative 

Timer Violation 

0,max 12 jjjj
jj

j pspCV , where 

the job start time on the downstream machine is jj pC 2 ,

the job completion time on the upstream machine is 

jj ps 1  and the timer length is . Generally, one solution 

will not simultaneously minimize our objectives.  The 

concept of efficient solutions is used to identify solutions 

that may be desirable to a decision maker. A solution  is 

weakly efficient (with respect to the criteria of interest, here 

called 1z  and 2z , which are to be minimized) if there is no 

other solution 
'
 such that )()(

'

11 zz  and 

)()(
'

22 zz . A solution  is efficient if it is weakly 

efficient and at least one of the previous relations holds as a 

strict inequality. We then say that solution 
'
 dominates 

solution . These definitions are easily extendable to the 

multi-criteria case. 

The use of GAs in finding the set of efficient solutions 

seems especially desirable because GAs evolve sets of 

solutions and multi-criteria problem solvers may want the 

entire set of efficient solutions. Since it is not guaranteed 

that any heuristic will find optimal solutions to NP-hard 

single criterion optimization problems, GAs can only find 

approximately efficient solutions (AES) to multi-criteria 

optimization problems. Using the scheduling problem 

classification scheme of Lawler et al. [1], our problem is 

leincompatibcompatiblebatchpMrFF jj ,,,,2

jjjj VFVarTw ),(, . Pinedo [2] shows through 

reduction of the 3-PARTITION problem that jjTw1 is

strongly NP-hard. Since our problem can be thought of as a 

special case of the single machine problem, jjTw1

reduces to our problem and we can conclude that its 

complexity is at least strongly NP-hard. Therefore, in this 

paper, we implement NSGA-II [3] using a random keys 

chromosome representation as an initial step in our analysis, 

placing our primary focus on the generation of 

approximately efficient solutions to this multi-objective 

scheduling problem. 

II. PREVIOUS RESEARCH

A. Batching Heuristics 

Previous research has concentrated on the batch machine 

dispatching problem. The minimum batch size (MBS) rule 

was proposed by Neuts [4]. MBS rules specify that an 

incomplete load can be processed once the queue size 

reaches a specified minimum. Techniques have been 

proposed to optimize that minimum value. The MBS rule is 

considered a theoretical standard used to evaluate the 

performance of other batch dispatching rules [5]. Batching 

heuristics seek to minimize wasted capacity resulting from a 

load that is smaller than the machine capacity, while 

minimizing machine idle time that may be required to form a 

batch. 

Glassey and Weng [6] present the dynamic batching 

heuristic (DBH) to minimize the average delay at the 

batching machine. The next arrival strategic control heuristic 

(NACH) was developed by Fowler et al. [7]. The NACH 

expands on DBH by implementing a rolling horizon policy, 

where only the next arrival is considered. This makes it less 

susceptible than DBH to arrival prediction error. A similar 

heuristic, the minimum cost rate (MCR) heuristic, was 

proposed by Weng and Leachman [8]. The MCR heuristic is 

based on minimizing a holding cost per unit time. Finally, 

the rolling horizon cost rate (RHCR) heuristic [9] combines 

the rolling horizon used in NACH with the cost rate function 

used in MCR. 

Something that all these batching heuristics (except MBS) 

have in common is that they consider upstream information, 

or knowledge of future arrivals. Extensions of two of these 

heuristics consider downstream information. NACH-setup is 

an extension of the NACH policy and takes into account 

downstream setup times [5]. Later, decision logic was added 

to RHCR that uses information about the state of the serial 

machine, in an attempt to further reduce flowtimes [9]. The 

objective function in this case was average standardized 

flowtime, where the time from job arrival to completion on 

the serial machine is divided by the sum of its batch and 

serial processing times. 

B. Dispatching Rules and Look-Ahead Dispatching Rules 

Dispatching rules are used to find reasonably good 

solutions is a short period of time, and can therefore be used 

for real-time control of job flow. They provide a method to 

select the job to be processed next from a set of waiting 

jobs. Some traditional dispatching rules typically considered 

include earliest due date (EDD, non-decreasing order of 

jd ), weighted shortest processing time (WSPT, non-

increasing order of 
j

j

p
w

), and minimum slack (MS, non-

decreasing order of )0,max( tpd jj  for each job). 

These rules are known as local dispatching rules because 

they only require information about the jobs currently 
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waiting at the machine in question. Global, or look-ahead
dispatching rules require information about jobs at other 

machines. These look-ahead rules look forward in time and 

can consider information either upstream or downstream. A 

simple look-ahead rule that takes advantage of downstream 

information is shortest queue at the next operation. With this 

rule, every time a machine is freed, the job with the shortest 

queue at the next machine on its route is selected for 

processing [2]. 

Some look-ahead procedures look one, or even a few 

steps ahead in time and evaluate the impact of the current 

decision on the objective function. This look ahead in time 

can be to access upstream information, downstream 

information, or both. The batching rules discussed 

previously are a specific type of look-ahead rule. Jang [10] 

reviews a number of existing look-ahead procedures that 

were developed for problem specific scenarios. Finally, 

Holthaus and Ziegler [11] develop a coordinating 

dispatching rule called look ahead job demanding (LAJD). 

They define a coordination rule as one that requires 

coordination of machines, and therefore considers not only 

the jobs waiting in queue for the current machine, but also 

the states of all the machines preceding the current machine. 

III. GENETIC ALGORITHMS

A. NSGA-II

The complexity of the problem precludes the possibility 

of building an optimization model without oversimplifying 

the problem. For this reason, we implement NSGA-II using 

a random keys chromosome representation. NSGA-II was 

published by Deb et al. [3] and is considered by many to be 

the dominant evolutionary multi-objective optimization 

algorithm. A complete description of NSGA-II is in Deb et
al. [3], but we summarize the key points for the convenience 

of the reader. We also include an adaptation of Figure 2 

from Deb et al. [3] as Figure 2 below. 

tP

tQ

tR

Non-dominated 

sorting 

Crowding 

distance 

sorting 

1F

2F

3F

4F

Rejected 

1tP

Fig. 2. Adaptation of Figure 2 from Deb et al. [3] 

NSGA-II utilizes the current set of N solutions in 

generation t, tP , to build an offspring set of N solutions tQ ,

which are combined to create a larger set of 2N solutions 

called tR . The method by which we build tQ  differs from 

that used by Deb et al. [3], so we delay that discussion until 

a later section. Once tR  is built, the N “best” solutions are 

kept to create the next set of solutions, 
1tP . Two steps are 

used to find the “best” solutions: non-dominated sorting and 

crowding distance sorting. 

Non-dominated sorting can be explained as follows. 

Consider two objectives, 
1

z  and 
2

z  and a set of 2N

solutions, tR , generated in some manner. The solutions in 

tR  which are not dominated by any other solutions are said 

to be in front 1, 
1

F . The solutions in tR  minus 
1

F  which 

are not dominated by any other solutions in tR  minus 
1

F

are said to be in front 2, 
2

F . There can be at most 2N fronts. 

Deb et al. [3] give an O(M(2N)
2
) procedure for identifying 

the fronts, where M is the number of objectives under 

consideration. In practice we need only identify fronts until 

N solutions have been included; if fronts 1 through f-1 have 

fewer than N members and fronts 1 through f have N or 

more members, we will not retain the remaining members of 

tR  in 
1tP . The members of fF  which are retained in 

1tP

are selected using crowding distance sorting. 

Crowding distance sorting intends to keep a diverse set of 

solutions from fF . Figure 3 shows five solutions in an 

arbitrary front with two objectives. Consider solution 3. The 

crowding distance for solution 3 is 

1 1 2 2

distance

1 1 2 2

4 2 2 4
3

5 1 1 5

z z z z

z z z z
. The 

crowding distance for solutions 1 and 5 are . In Figure 3, 

we see that solution 2 is in a more crowded region of the 

front, and solution 4 is in a less crowded region of the front. 

Solution 4’s distance metric will be larger than solution 2’s, 

so we will retain solution 4 in 
1tP  before retaining solution 

2 in 
1tP .

1z

2z

3

1 14 2z z

2

4

2 22 4z z

5

1

Fig. 3. Crowding Distance Sorting Example 

We describe the method for an arbitrary front iF  of l
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solutions, following Deb et al. [3] closely. 

For each solution i,
distance

0i
For each objective m
Sort the solutions in increasing order. 

Set the crowding distance of the first and last sorted 

solutions: 
distance distance

1 l

Set the crowding distance of the rest of the solutions, i=2

to l-1: distance distance

1 1
[ ] [ ]

1

m m

m m

z i z i
i i

z l z

B. A Random Keys Implementation of NSGA-II 

The random keys representation was introduced by Bean 

[12] and has been used in numerous applications of 

combinatorial optimization ([13], [14], [15]). While the 

traditional (binary) GA encoding is well-suited to problems 

with real-valued decision variables, combinatorial 

optimization problems often have solutions that can be 

represented by a permutations. Unfortunately, a direct 

permutation encoding combined with traditional genetic 

operators can easily lead to chromosomes representing 

infeasible solutions, which must then be repaired. The 

random keys encoding avoids the problem of infeasible 

chromosomes. In our application, each chromosome consists 

of one gene per job. The values of the genes are generated 

from a uniform distribution [0, 1000]. These genes serve as 

sort keys used to determine the order in which jobs are 

processed on machine A. The jobs are ordered for machine 

A in increasing order of the sort keys. Batches are formed 

for machine A using this order and one of two batching 

options: 

1) Full batching – each batch will contain the maximum 

number of jobs allowed by the batch capacity, in this case 

maximum batch size is six. 

2) Minimum (greedy) batching – the batch will contain as 

many jobs as are ready at the time the batch begins 

processing (i.e., when the batching machine completes its 

current batch and becomes available to process a new 

batch), up to the maximum batch size. 

Finally, downstream batches are formed using greedy 

batching (minimum). These two batching options are 

investigated due to their prevalent use in the semiconductor 

industry. All parameter settings were chosen empirically to 

balance running time and solution quality. The following 

text describes our random keys implementation of NSGA-II 

in detail. 

Initialization—The initial population 
0

P  of size N is 

generated randomly. 

Creation of tQ —In contrast to Deb et al. [3], we use the 

same mechanism to create the offspring population tQ  for 

all values of t and we utilize parametric uniform crossover 

and immigration (following Bean [12]) to create tQ  from 

tP . We use parametric uniform crossover to create 60% of 

the members of tQ  and use immigration (randomly 

generating new chromosomes to create 40% of the members 

of tQ . Parametric uniform crossover selects two different 

parents randomly from tP  to create one new member of tQ .

Each gene is selected from parent 1 (designated randomly) 

with a 70% probability, otherwise it is selected from parent 

2.

Creation of 
1tP —Once the chromosomes are decoded, 

the total weighted tardiness, cycle time variation and 

cumulative timer violations are computed. We faithfully 

implement non-dominated sorting and crowding distance 

sorting, but we insert a duplicate removal procedure 

between those steps. Consider Figure 4, in which two 

solutions (3 and 4) have objective functions that map to the 

exact same place in the solution space. In combinatorial 

problems with integer data, this is anecdotally common. We 

assume that the solutions shown are in front fF and that 

only 4 solutions will be retained to form 
1tP . Table 1 

contains data for this example. 

If we retain exactly four solutions from this front in 
1tP ,

the solutions retained will differ if solution 3 is included for 

consideration or not. In the first case, when all 6 solutions 

are considered, solutions 1, 6, 5 and 2 or 4 will be retained. 

Solutions 2 and 4 have the exact same crowding distance 

( 54
14 12

) but correspond to different points in the 

solution space. In the second case, when solution 3 is not 

considered, we see that solutions 1, 6, 5 and 4 will be 

retained; solutions 2 and 4 may now be differentiated in 

terms of their relative crowding in the front. It is our 

contention that not including all duplicates in the solution 

space when computing crowding distances better reflects the 

intent of the crowding distance metric for diversity 

preservation. Therefore, we will strip duplicates in the 

solution space from fronts created from tR  before 

computing the crowding distances. 

1z

2z

3, 4

1 14 2z z

2

5

1

6

2 22 4z z

Fig. 4. Creation of 
1tP  Example 
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TABLE 1. DATA FOR EXAMPLE PROBLEM IN FIGURE 4

Solution 

i 1z 2z

distancei
(3 and 4 

considered)

distancei
(3 not 

considered)

1 0 13 

2 3 10 0.702 0.702 

3 4 8 0.238 -------- 

4 4 8 0.702 0.940 

5 8 3 1.298 1.298 

6 14 1 

Stopping Criteria—We stop if 400N or more 

chromosomes have been evaluated. If fewer than 400N
chromosomes have been evaluated, we go to create the next 

offspring population tQ .

IV. EXPERIMENTAL DESIGN

In order to evaluate the performance of our random keys 

implementation of NSGA-II, a series of computational 

experiments were run using randomly generated test 

problems. The experimental factors and their associated 

factor levels at both Low and High settings are defined as 

follows: 

Number of Jobs ( n ): Low = 60, High = 120 

Ready Times ( )jr : Low = 0, High = 50% 0, 50% 

DU[1, )(max estC ], where 

ij
i

jDCBi
Aj

ij
jDCBi

Aj
A

pE
b

n
pE

ppE
b

n

estC

,,,

,,,

max

max

,max

max)(

Due Date ( )jd : DU
6

,
6

RR
, where 

)(max estC (1-T), T: Low = 0.45, High = 0.9, and R:

Low = 0.5, High = 2.5 

In all experiments, job weight jw  is distributed 

according to a discrete uniform distribution over the integer 

set [1,10], population size 100N , and timer length 

2 . Machines A, B, C, and D have maximum batch 

sizes of 6, 6, 2, and 1 jobs, respectively. Further, batch ID 

values are randomly assigned so that a job has an equal 

probability of 1) having any one of machine A’s three batch 

IDs and 2) being assigned to machine B, C, or D for its 

second step. Also, a job is equally likely to be assigned any 

batch ID corresponding to the tool to which it is assigned. 

The process times jp  associated with each machine’s batch 

IDs are as follows: 

Machine A: A1 = 2 hours, A2 = 2.5 hours, A3 = 3 hours 

Machine B: B1 = 6 hours, B2 = 8 hours, B3 = 10 hours 

Machine C: C1 = 1 hour, C2 = 2 hours, C3 = 3 hours 

Machine D: D1 = 0.5 hours, D2 = 0.75 hours, D3 = 1 

hour

We generate 10 problem instances for each factor 

combination, resulting in a total of 2(2)2(2)10=160 test 

cases. Each test case is run through our NSGA-II 

implementation a total of 50 times (i.e., 50 different initial 

population replications) using both Greedy and Full 

batching policies on machine A. 

V. ANALYSIS FOR MULTIPLE OBJECTIVES

Consider a test case of our problem of interest. The 

primary performance measure reported by our NSGA-II 

implementation in the number of approximately efficient 

solutions (AES). Let ),,( PAES  denote the number of 

AESs found in replication  ( 50...1 ) of problem 

instance  ( 10...1 ) using batching policy P

( FullGreedyP , ) for a given test case. Table 2 

reports the experimental results in terms of 

10

1

50

1

50

),,(

10

1
PAES

AES  for a specific 

experimental factor of interest. Further, let )(AESSD

denote the standard deviation of the AES  values for a 

specific experimental factor of interest. For example, the 

first row of data in Table 2 depicts the AES  and 

)(AESSD values for each batching policy P when the 

number of jobs factor is at its low level (i.e., 60 jobs)—all 

other factors are aggregated in this initial data row. 

From Table 2, we note that while the 95% confidence 

intervals indeed overlap in all cases for the two machine A 

batching policies under consideration, the mean values for 

the full batching policy are consistently lower than those for 

greedy batching. Further, in the majority of our experimental 

cases, the full batching policy also produced a more 

consistent number of AESs, as its )(AESSD  values are 

lower than those for Greedy batching policy. 

In terms of required computation time, our NSGA-II 

implementation required approximately 35 seconds to 

complete 50 replications of each 60-job test case and 65 

seconds to complete a 120-job test case replication. 

VI. CONCLUSIONS

The problem addressed in this paper is motivated by an 

application in semiconductor manufacturing. We examine a 

complex, multi-objective semiconductor manufacturing 

scheduling problem involving two batch processing steps 
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linked by a timer constraint. This constraint requires that any 

job completing the first processing step must be started on 

the succeeding second machine within some allowable time 

window; otherwise, the job must repeat its processing on the 

first step. 

TABLE 2. COMPUTATION RESULTS

   Machine A Batch Policy 

    Greedy Full 

Factor Level AES )(AESSD AES )(AESSD

Number Low 77.51 12.74 73.11 11.15 

 of Jobs High 84.47 12.61 81.40 10.66 

      

Ready Low 73.43 14.02 73.74 14.03 

 Times High 88.55 5.79 80.77 7.14 

      

T Low 77.68 16.17 73.40 13.88 

 High 84.30 7.88 81.11 7.06 

      

R Low 78.04 16.51 74.03 14.53 

 High 83.94 7.47 80.48 6.37 

The complexity of the problem precludes the possibility 

of building an optimization model without oversimplifying 

the problem. For this reason, we implement NSGA-II [3] 

using a random keys chromosome representation. We 

investigate two different batching policies on the upstream 

machine: 1) Full batching (each batch contains the 

maximum number of jobs allowed by the batch capacity) 

and 2) Minimum or greedy batching (the batch will contain 

as many jobs as are ready at the time the batch begins 

processing, up to the maximum batch size). 

In this initial step in our experimentation, we are 

interested in assessing the number of approximate efficient 

solutions that are produced by NSGA-II over a wide range 

of experimental problem instances for each batching policy. 

Experimental results suggest a full batch policy can produce 

superior solutions as compared to greedy batching policies 

under the experimental conditions examined. However, this 

difference is not statistically significant, as the 

corresponding 95% confidence intervals about the mean 

values overlap. 

Future work is in progress to examine other machine A 

batching policies, including an adaptation of NACH for 

compatible jobs. In addition, a detailed heuristic analysis is 

warranted to assess the true quality of our NSGA-II results 

in terms of existing, potentially inferior but definitely more 

computationally attractive dispatching rules commonly used 

in semiconductor manufacturing practice. 
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