
 
 

 

  

Abstract— This paper studies a multi-objective instance of 
the university exam timetabling problem. On top of satisfying 
universal hard constraints such as seating capacity and no 
overlapping exams, the solution to this problem requires the 
minimization of the timetable length as well as the number of 
occurrences of students having to take exams in consecutive 
periods within the same day. While most existing approaches to 
the problem, as well as the more popular single-objective 
instance, require prior knowledge of the desired timetable 
length, the multi-objective evolutionary algorithm proposed in 
this paper is able to generate feasible solutions even without the 
information. The effectiveness of the proposed algorithm is 
benchmarked against a few recent and established optimization 
techniques and is found to perform well in comparison. 

I. INTRODUCTION 
he exam timetabling problem (ETTP) involves the 
scheduling of exams for a set of university courses to a 

number of periods (or time slots) while satisfying a set of 
constraints. The problem is an annual problem for 
universities and is widely studied by many operational 
research and computational intelligence researchers due to 
its complexity and practicality. While different universities 
have differing criteria for a good exam timetable, it is 
generally accepted that the following two constraints are 
universal to any timetabling problem: 

• No student is to be scheduled to take more than one 
exam at any one time. 

• For each period, there must be sufficient seats for all 
the exams that are scheduled for that period. 

These constraints are usually recognized as hard 
constraints which determine the feasibility of a timetable. 
While hard constraints have to be satisfied at all costs, soft 
constraints are those that are allowed to be violated but 
whose degree of satisfaction determines the quality of a 
timetable. These constraints are usually a consequent of the 
criteria that universities view as qualities of a favorable 
timetable and are used as objectives of the ETTP. These 
constraints include: 

• No student should have to take more than one exam in 
consecutive periods.  

• No student should have to take more than one exam on 
the same day. 

• Large exams should be held earlier in the exam period 
to allow enough time for marking of the scripts. 
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• Some exams can only be held in a limited number of 
periods. 

• All exams should be scheduled in less than a particular 
number of periods. 

While there are many formulations of the ETTP 
considering different sets of constraints in the literature, this 
paper studies a multi-objective instance of the problem 
adapted from the single-objective instance that was first 
formulated by Burke et al. [1] but has since received much 
attention from researchers [2]–[5]. In essence, a solution to 
the original formulation [1] requires complete fulfillment of 
the two mentioned hard constraints, as well as achieving as 
much as possible the single objective of minimizing the 
occurrences of students having to take exams in consecutive 
periods within the same day. Violation of this constraint will 
be referred to as a clash. This constraint is considered with 
the aim of spreading out exams for students and allowing 
them enough time to recover between exams. However, 
several studies in the literature have revealed that the single-
objective formulation is inadequate to model the real-world 
problem. Burke and Newall [6] commented that if a large 
number of periods were allocated, it would most likely be 
the case that the clashes can be eliminated. Burke et al. [7] 
also mentioned that longer timetables are usually required to 
reduce the number of clashes and that a cap has to be 
imposed on the number of periods that can be used, 
otherwise every other period would be empty. These two 
observations clearly show that the ETTP is inherently a 
multi-objective optimization problem and that the 
minimization of the number of periods used by a timetable 
should also be considered as an objective of the problem. As 
such, in minimizing the number of clashes in an exam 
timetable, an algorithm for the ETTP should also ensure that 
the number of periods used is not exceedingly large. There 
are a number of multi-objective formulations of the ETTP in 
the literature [8]–[11], so the main purpose of this paper is 
not to come up with a new multi-objective formulation but 
to propose a multi-objective evolutionary algorithm to tackle 
the complex combinatorial optimization problem. 

A major flaw with most of the existing single-objective-
based approaches [1]–[6] that have been designed to solve 
the single-objective problem is that they assume the 
availability of prior knowledge of the timetable length. The 
number of periods that a timetable can use is then fixed at 
the desired timetable length. To the authors’ knowledge, 
only Wong et al. [8] has attempted a multi-objective 
approach to the ETTP instance that is being considered in 
this paper. Even then, their approach, which is based on a 
hybrid multi-objective evolutionary algorithm, utilizes a 
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population that is divided into partitions, each of which 
contains timetables of a particular length. During the 
evolutionary process, the lengths of the timetables remain 
constant. The approach is equivalent to multiple executions 
of the optimization process, each time using a population 
with a different timetable length. Even though the algorithm 
is multi-objective in nature, it still requires prior timetable 
length information, which is unlikely to be available in the 
real-world problem given the complex nature of the ETTP. 
As such, it is believed that a general algorithm for the ETTP 
should be able to generate feasible timetables even without 
presetting the timetable length, especially when a new 
instance of the problem is first encountered and probably 
only a range of desired timetable lengths is provided by the 
timetable planner. The algorithm should also be able to 
achieve solutions of reasonable quality even without any 
timetable length information. 

In this paper, a multi-objective evolutionary algorithm 
(MOEA) [12], which offers the advantage of not needing 
priori timetable length information, is proposed. Some 
features of the algorithm include a variable-length 
chromosome representation, several graph coloring 
heuristics, goal-based Pareto ranking scheme, and two local 
search operators consisting of a micro-genetic algorithm and 
a hill-climber. These features are further elaborated in 
Section III. 

The effectiveness of the proposed MOEA is benchmarked 
against a few recent and established optimization techniques 
using the Toronto benchmarks [13] and the Nottingham 
instance [1], which are the most widely studied datasets in 
the exam timetabling community. The participating 
algorithms include Burke et al. [1], Merlot et al. [2], Di 
Gaspero and Schaerf [3], Caramia et al. [4], and Wong et al. 
[8]. The interested reader is referred to the relevant 
references for detailed descriptions of the algorithms. 

This paper is organized as follows. Section II gives the 
problem formulation of the multi-objective ETTP instance 
studied. In Section III, the various features of the proposed 
MOEA, as well as the program flow of the algorithm, are 
described. Section IV presents the performance comparison 
results and analysis of the proposed algorithm. Section V 
concludes the paper. 

II. PROBLEM FORMULATION 
It has been explained in the introduction that the single-

objective formulation of the ETTP is inadequate to model 
the real-world problem. The formulation not only leads to 
algorithms requiring priori timetable length information in 
order to be effective, it also results in long timetables so as 
to minimize the number of clashes in the absence of 
timetable length information. As such, this paper studies a 
multi-objective ETTP instance adapted from the popular 
single-objective instance that was first formulated by Burke 
et al. [1].  

In the original formulation [1], there are E exams to be 
scheduled in P periods with S exam seats available for each 
period. There are three periods per weekday and a Saturday 

morning period. No exam is held on Sundays. It is assumed 
that the exam period starts on a Monday. 

The problem can be formally specified by first defining 
the following: 

aip is one if exam i is allocated to period p, zero otherwise. 
cij is the number of students registered for exams i and j. 
si is the number of students registered for exam i. 
The corresponding mathematical formulation is as 

follows: 
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(1) is the objective of minimizing the number of clashes in 

a timetable, which is the solitary objective of the original 
formulation [1]. In order to prevent excessively long 
timetables in the process of achieving (1), the multi-
objective formulation studied in this paper considers the 
minimization of the number of periods used in a timetable as 
the second objective (2). (3) is the constraint that no student 
is to be scheduled to take more than one exam at any one 
time, while (4) states a capacity constraint that for each 
period, there must be sufficient seats for all the exams that 
are scheduled for that period. These two hard constraints 
define a feasible timetable. (5) indicates that every exam can 
only be scheduled once in any timetable. 

III. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM 
Having formulated timetable length as a second objective 

of the ETTP, this section presents the multi-objective 
evolutionary algorithm (MOEA), which is equipped with 
several features that allow it to work on a range of timetable 
lengths and offers the advantage of not needing priori 
timetable length information. The main features of the 
MOEA will first be introduced in turn before describing the 
algorithmic flow. 

A. Variable-Length Chromosome 
Most of the existing approaches in the literature use fixed-

length timetables, which inevitably convert the ETTP to a 
single-objective problem even though it is inherently a 
multi-objective one. Another problem with fixed-length 
timetables is that feasibility cannot be guaranteed since it is 
not always possible to schedule all exams into a fixed-length 

166

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Scheduling (CI-Sched 2007)



 
 

 

timetable without violating any of the hard constraints. 
Special fixing operators have to be designed to ensure that a 
feasible timetable can be found [2], [3], [8]. 
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Fig. 1 Variable-length chromosome representation 
 
In the MOEA, a variable-length chromosome 

representation [12], shown in Fig. 1, is applied such that 
each chromosome encodes a complete and feasible 
timetable, including the number of periods and the exams 
scheduled in each of the periods. Such a representation is 
efficient and allows the number of periods to be manipulated 
and minimized directly for multi-objective optimization in 
the ETTP, avoiding the two problems encountered by fixed-
length timetables. 

B. Day-Exchange Crossover 
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Fig. 2 Illustration of day-exchange crossover 

 
Crossover operators are the way that evolutionary 

algorithms allow good combinations of genes to be passed 
between different members of the population. However, 
most of the existing evolutionary algorithms that have been 
applied to the ETTP do not use any crossover operator [1], 
[6], [8]. Burke and Newall [6] commented that their 
experiments with crossover operators for their algorithm 
have been unfruitful. One criticism that has been leveled 
against the use of standard crossover operators is that they 

ignore the notion that “what is good about any timetable is 
the temporal relationship between exams, rather than their 
absolute times” [7]. In contrast to standard crossover 
operators, the day-exchange crossover operator adopted by 
the MOEA is able to perpetuate favorable temporal 
relationship between exams. The operation of this crossover 
is shown in Fig. 2. 

In the day-exchange crossover, only the best days 
(excluding Saturdays since exams scheduled on Saturdays 
are always clash-free) of chromosomes, selected based on 
the crossover rate, are eligible for exchange. The best day 
consists of three periods and is the day with the lowest 
number of clashes per student. To ensure the feasibility of 
chromosomes after the crossover, duplicated exams are 
deleted. These exams are removed from the original periods 
while the newly inserted periods are left intact. 

From Fig. 2, it can be seen that the timetable lengths for 
the two chromosomes have increased after the crossover 
operation. In order to control the lengths of timetables after 
crossover, a period control operator is applied. For the 
operation, it is assumed that a desired range of timetable 
lengths, in the form of maximum and minimum lengths, is 
provided by the timetable planner. Chromosomes with 
timetable lengths within the desired range remain intact, 
while chromosomes with lengths below the minimum length 
will undergo a period expansion operation and those with 
lengths above the maximum length will undergo a period 
packing operation. The two operations are described below. 

1) Period expansion: The operation first adds empty 
periods to the end of the timetable such that the timetable 
length is equal to a random number within the desired range. 
A clash list, consisting of all exams that are involved in at 
least one clash, is also maintained. An exam is randomly 
selected from the clash list and the operation searches in a 
random order for a period which the selected exam can be 
rescheduled without causing any clash while maintaining 
feasibility. The exam remains intact if no such period exists. 
The operation ends after one cycle through all exams in the 
clash list. 

2) Period packing: Starting from the period with the 
smallest number of students, the operation searches in order 
of available period capacity, starting from the smallest, for a 
period which can accommodate exams from the former 
without causing any clash while maintaining feasibility. The 
operation stops when it goes one cycle through all periods 
without rescheduling any exam or when the timetable length 
is reduced to a random number within the desired range. 

C. Mutation 
Mutation operators complement crossover operators in 

allowing a larger search space to be explored. The MOEA 
implements a mutation operator that is similar to the light 
mutation operator of Burke et al. [1]. The operator removes 
a number of exams, selected based on the reinsertion rate, 
from the chromosome. These exams are then reinserted into 
randomly selected periods while maintaining feasibility. 
Unlike Burke et al. [1], the reinsertion process is more 
elaborate, adopting features from the research on the graph 

167

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Scheduling (CI-Sched 2007)



 
 

 

coloring problem. It is widely known that the basic ETTP is 
a variant of the graph coloring problem. As such, many 
ETTP researchers have made use of graph coloring 
heuristics to improve the quality of their timetables [6], [7], 
[13]. The heuristics used here are such that they affect the 
order in which exams are reinserted into the timetable. If the 
reinsertion process concentrates on scheduling those more 
difficult exams first, it is likely that it would have fewer 
problems at the end scheduling the easier exams. Five 
versions of the MOEA based on five different heuristics are 
tested in this paper. The heuristics are described below. 

1) Largest Degree (LD): Exams with the largest number 
of conflicts with other exams are reinserted first. 

2) Color Degree (CD): Exams with the largest number of 
conflicts with other exams that have already been scheduled 
are reinserted first. 

3) Saturation Degree (SD): Exams with the fewest valid 
periods, in terms of satisfying the hard constraints, 
remaining in the timetable are reinserted first. 

4) Extended Saturation Degree (ESD): Exams with the 
fewest valid periods, in terms of satisfying both hard and 
soft constraints, remaining in the timetable are reinserted 
first. 

5) Random (RD): Exams are randomly selected for 
reinsertion. This is used as a benchmark to check whether 
the other heuristics are having any effect. 

When reinserting exams into a timetable, it is very likely 
that it will come to a point when it is not possible to 
schedule an exam without violating any of the hard 
constraints. In this case, a new period will be created at the 
end of the timetable to accommodate the exam. 

D. Goal-Based Pareto Ranking 
The role of multi-objective optimization in the ETTP is to 

discover a set of Pareto-optimal solutions from which the 
timetable planner can select an optimal solution based on the 
current situation. Each objective component of any non-
dominated solution in the Pareto-optimal set can only be 
improved by degrading at least one of its other objective 
components. A goal-based Pareto fitness ranking scheme is 
proposed in this paper to assign the relative strength of 
solutions. The ranking scheme consists of two phases. The 
first phase is similar to the Pareto fitness ranking scheme 
[14] which assigns the same smallest rank to all non-
dominated solutions, while the dominated ones are inversely 
ranked according to the number of solutions dominating 
them. A solution dominates another solution if its number of 
clashes and timetable length are both strictly lower than 
those of the latter. The second phase of the ranking scheme 
makes use of the desired range of timetable lengths provided 
by the timetable planner as mentioned in Section III-B. The 
desired range is used as a goal and solutions not meeting the 
goal are penalized based on the following pseudo-code: 

 
IF timetable length > max length THEN 
 rank2 = rank1 + (timetable length – max length) 
ELSE IF timetable length < min length THEN 
 rank2 = rank1 + (min length – timetable length) 

rank1 is the rank of a solution after the first phase, whereas 
rank2 is the adjusted rank after the second phase. This is 
done to allow the MOEA to focus its search on the desired 
range of timetable lengths. 

E. Local Exploitation 
It is widely believed that incorporating local search within 

evolutionary algorithms is an effective approach for finding 
high quality exam timetables [1]–[3], [5], [6]. As such, the 
MOEA utilizes two local search operators, namely a micro-
genetic algorithm (MGA) and a hill-climber. A description 
of the two local search operators is given below. 
1) Micro-genetic algorithm: Micro-genetic algorithm 
(MGA) is a genetic algorithm with small population and 
short evolution [15]. For each solution produced by the main 
algorithm that is selected for local search, the operation 
solves a smaller, single-objective problem by treating each 
period as an entity and seeks to minimize (1) by searching 
for the optimal order in which the periods are placed in the 
timetable. 

For brevity, only the main features of the MGA are 
highlighted here: 

• Initialization: The initial population of the MGA is 
generated by randomly shuffling the order of the 
periods of the solution provided by the main algorithm. 

• Crossover: The MGA uses the well-known order 
crossover [16]. For each pair of parents, a random 
fragment of the chromosome from one of them is 
copied onto the offspring. The empty positions of the 
offspring are then sequentially filled according to the 
chromosome of the other parent, following the 
sequence of periods. The roles of the parents are then 
reversed to produce the second offspring. The 
operation is detailed in Fig. 3. 
 

  Parent A   7 3 1 8 2 4 6 5  Parent B   4 3 2 8 6 7 1 5

1 8 2 7, 3, 4, 6, 5 
Order

4, 3, 6, 7, 5 
 Offspring 7 5 1 8 2 4 3 6 

 
Fig. 3 Operation of order crossover 

 
• Mutation: Each period will swap position with a 

randomly chosen period with a probability equal to the 
swap rate. 

• Selection: A binary tournament selection scheme is 
used. All the chromosomes in the MGA population are 
randomly grouped into pairs and from each pair, the 
chromosome with the smaller rank is selected for 
reproduction. This procedure is performed twice to 
preserve the original population size. 

• Stopping criterion: The MGA stops after a predefined 
number of generations. 

2) Hill-climber: This operation will be applied on the best 
solution from the MGA or the original solution provided by 
the main algorithm depending on which has a lower number 
of clashes. In order to identify the most promising moves, a 
clash list, like the one used in the period expansion operator, 
is maintained. The hill-climber operates on a neighborhood 
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defined by randomly selecting an exam from the clash list 
and rescheduling it in another randomly chosen period or 
swapping periods with an exam in the chosen period. To 
avoid the time consuming process of an exhaustive search, 
only a quarter of the periods will be tested. The hill-climber 
uses delta evaluation [6] to avoid performing a full 
evaluation of each move. The move which leads to the 
greatest decrease in the number of clashes is selected and the 
exam is removed from the clash list. If the exam is still not 
clash-free, it will re-enter the clash list after the hill-climber 
has cycled through all exams in the clash list. The operation 
stops when it has cycled through the clash list five times 
without any improvement in the number of clashes.  

F. MOEA Flowchart 
The algorithmic flow of the MOEA is shown in Fig. 4. At 

the start of the algorithm, a conflict matrix C [6] is created. 
The matrix has dimensions E by E with the definition cij 
from Section II being the (i, j)th element of the matrix. The 
matrix enables efficient conflict checking and eliminates the 
number of students as a factor in the complexity of the 
problem. 

1) Initialization: The population initialization process is 
similar to the reinsertion process of the mutation operator 
described in Section III-C. For each chromosome, a 
timetable with a random number of empty periods within the 
desired range is created. Exams are then inserted into 
randomly selected periods in the order determined by the 
graph coloring heuristic, depending on the version of the 
MOEA.  

2) Evaluation: After the initial evolving population is 
formed, all the chromosomes are evaluated based on (1) and 
ranked using the goal-based Pareto ranking scheme. 
Following the ranking process, an archive population is 
updated. The archive population has the same size as the 
evolving population and is used to store all the best solutions 
found during the search.  The archive population updating 
process consists of a few steps. The evolving population is 
first appended to the archive population. All repeated 
chromosomes, in terms of the objective domain, are deleted. 
Goal-based Pareto ranking is then performed on the 
remaining chromosomes in the population. The larger 
ranked (weaker) chromosomes are then deleted such that the 
size of the archive population remains the same as before the 
updating process. The evolving population remains intact 
during the updating process. 

3) Genetic operations: The binary tournament selection 
scheme, same as that used in the MGA, is then performed. 
The genetic operators consist of the day-exchange crossover 
and mutation. To further improve the quality of the exam 
timetables, the two local search operators of MGA and hill-
climber are applied to the evolving and archive populations 
every 20 generations (setting was chosen after some 
preliminary experiments) for better local exploitation in the 
evolutionary search.  

4) Elitism: A strong elitism mechanism is employed in the 
MOEA for faster convergence. The elitism strategy is 
similar to the archive population updating process with the 

roles of the evolving and archive populations reversed. 
Repeated chromosomes are however not deleted. 

This is one complete generation of the MOEA and the 
evolution process iterates for a predefined number of 
generations. 
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Fig. 4 Flowchart of MOEA 

 
Although some of the operations of the MOEA require the 

timetable planner to provide his desired range of timetable 
lengths, this is not mandatory. Even without the information, 
the MOEA would still be able to generate feasible timetables 
by using an infinitely large default range. It is believed that 
this is an important feature which a general algorithm for the 
ETTP should have. In this aspect, the MOEA is superior to 
most existing approaches which require prior knowledge of 
the exact timetable length and only produce single-length 
timetables. However, providing the MOEA with the desired 
range of timetable lengths would allow the algorithm to 
focus its efforts on the desired range and produce higher 
quality timetables. 

IV. SIMULATION RESULTS 
The MOEA was programmed in C++ and simulations 

were performed on an Intel Pentium 4 3.2 GHz computer. 
Table I shows the parameter settings chosen after some 
preliminary experiments. 

Carter et al. [13] and Burke et al. [1] have made several 
real enrollment datasets for exam timetabling publicly 
available. Table II lists the datasets used in this paper 
together with the characteristics of each dataset. As all the 
datasets indicated their desired timetable lengths instead of 
the desired range of timetable lengths that the MOEA takes 
as input, a desired range, which includes three periods above 
and below the indicated desired timetable length, is set for 
each of the datasets. For example, the desired range for 
CAR-F-92 is from 37 to 43 periods. It is to be noted that 
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NOT-F-94 indicated two desired timetable lengths. While 
most existing approaches would require two separate runs to 
obtain two timetables with the two desired lengths, the 
problem can be solved by the MOEA in one run by setting 
the desired range to be from 23 to 29 periods. 

 
TABLE I 

PARAMETER SETTINGS FOR SIMULATION STUDY 
Parameter Values 

Population size 100 
Generation number 200 

Crossover rate 0.7 
Mutation rate 0.3 

Reinsertion rate 0.02 
MGA population size 20 

MGA generation number 40 
MGA crossover rate 0.7 
MGA mutation rate 0.3 

MGA swap rate 0.3 
 

TABLE II 
CHARACTERISTICS OF DATASETS  

Dataset 
code 

Number of 
exams 

Number of 
students Enrolment Seating 

capacity
Number of 

periods 
CAR-F-92 543 18419 55522 2000 40 
CAR-S-91 682 16925 56877 1550 51 
KFU-S-93 461 5349 25113 1995 20 
NOT-F-94 800 7896 33997 1550 23/26 
TRE-S-92 261 4360 14901 655 35 
UTA-S-92 622 21266 58979 2800 38 

A. Performance of Graph Coloring Heuristics 
The five versions of the MOEA, namely LD, CD, SD, 

ESD, and RD, using the different graph coloring heuristics 
as described in Section III-C were applied to the datasets. 
The results are tabulated in Table III. The results were 
obtained over 10 independent runs on each of the datasets. It 
is important to note that no fine-tuning of the MOEA was 
performed and the same parameters as shown in Table I 
were used for all the datasets. 

In each grid of Table III, there are three numbers 
representing the number of clashes in the best solution 
(upper), the average number of clashes in solutions over the 
10 runs (lower left), and the number of runs that the MOEA 
was not able to find a timetable with the desired length 
indicated in Table II (lower right). The best solutions for 
each of the datasets are highlighted in boldface. 

 
TABLE III 

COMPARISON BETWEEN VARIOUS VERSIONS OF MOEA 
 RD LD CD SD ESD 

CAR-F-92 427 
(510.2, 0) 

319 
(390.6, 0) 

347 
(425, 0) 

240 
(337.1, 0) 

270 
(373.8, 0) 

CAR-S-91 156 
(200.7, 0) 

91 
(136.4, 0) 

104 
(134.8, 0) 

0 
(21.2, 0) 

0 
(24.9, 0) 

KFU-S-93 591 
(591, 9) 

513 
(614, 8) 

665 
(816.7, 7) 

513 
(679.1, 3) 

698 
(698, 9) 

NOT-F-94 
(23) 

230 
(230, 9) 

211 
(230.8, 6) 

135 
(195.7, 3) 

18 
(132.1, 0) 

21 
(123.5, 0) 

NOT-F-94 
(26) 

52 
(74.1, 0) 

34 
(56, 0) 

17 
(46.5, 0) 

0 
(7.7, 0) 

0 
(0, 0) 

TRE-S-92 6 
(17.7, 0) 

2 
(8.7, 0) 

0 
(4.1, 0) 

0 
(5.5, 0) 

0 
(5.4, 0) 

UTA-S-92 701 
(717.5, 8) 

524 
(588.1, 0) 

498 
(559.4, 0) 

439 
(561, 0) 

475 
(592.5, 0) 

From Table III, it is clear that SD dominates over all the 
other versions of the MOEA. Merlot et al. [2] and Burke and 
Newall [6] have also made similar conclusions that the 
saturation degree heuristic gives the best performance. It can 
also be observed from Table III that the MOEA had 
problems finding feasible timetables of the desired length 
for KFU-S-93. One probable reason for this could be that 
the desired number of periods for KFU-S-93 is set too low 
and the number of feasible timetables having the desired 
length is very small. Another reason could be that since the 
MOEA is designed to produce a Pareto optimal set of 
timetables, its search space is significantly larger than that 
handled by existing single-objective-based approaches. The 
MOEA has to spread out its efforts to find timetables with 
lengths within the desired range instead of focusing only on 
the desired length. Comparing the number of runs that the 
MOEA was not able to find a timetable with the desired 
length between the five versions, it can be seen that the 
saturation degree heuristic, on top of being able to find 
solutions with smaller number of clashes, is also superior in 
terms of packing exams into a smaller number of periods. 

It was mentioned in the previous paragraph that the 
MOEA is designed to generate a Pareto optimal set of 
timetables. Having seen the results for the desired timetable 
length in Table III, the results for the desired range of 
timetable lengths for each of the datasets are plotted in Fig. 
5(a)-(f). Only the Pareto optimal sets of timetables are 
shown in the figures. 
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(c) KFU-S-93 
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(d) NOT-F-94 
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(e) TRE-S-92 

35 36 37 38 39 40 41
200

300

400

500

600

700

800

900

Number of periods

N
um

be
r o

f c
la

sh
es

RD
LD
CD
SD
ESD

 
(f) UTA-S-92 

Fig. 5 Pareto optimal solutions for the datasets 

The relationship between the two objectives of number of 
clashes and timetable length can be observed from Fig. 5(a)-
(f). It can be seen that the two objectives are conflicting with 
each other, i.e. any attempt to minimize either of the 
objectives will cause the other objective to increase. This 
result shows the importance of taking a multi-objective 
approach in solving the ETTP. The MOEA is able to 
minimize concurrently the two conflicting objectives and 
generate a Pareto optimal set of timetables from which the 
timetable planner can select a solution to implement based 
on whether the priority is to have a smaller number of 
clashes or to conduct the exams in as few periods as 
possible. From Fig. 5(b), 5(d), and 5(e), it can also be 
observed that clash-free timetables shorter than the desired 
lengths actually exist. For CAR-S-91, NOT-F-94, and TRE-
S-92, the MOEA is able to generate clash-free timetables 
with 49, 25, and 33 periods respectively. This is a reduction 
of up to two periods from the respective desired lengths 
indicated in Table II. These clash-free results would never 
have surfaced for existing approaches that only produce 
single-length timetables. 

B. Comparison with Established Approaches 
To assess the effectiveness of the MOEA, a comparison 

with a few influential and recent optimization techniques is 
conducted. Since most of these techniques are designed to 
solve the single-objective problem [1], the comparison is 
carried out using the desired timetable lengths indicated in 
Table II. It was shown in the previous section that the SD 
version of the MOEA performs the best on the datasets. As 
such, the MOEA results here are based on that version. The 
results of the comparison are shown in Table IV. 

 
TABLE IV 

COMPARISON WITH OTHER OPTIMIZATION TECHNIQUES 

 MOEA Burke et 
al. 

Caramia 
et al. 

Di Gaspero 
and Schaerf 

Merlot et 
al. 

Wong et 
al. 

CAR-F-92 240 
337.1 

331 
- 

268 
- 

424 
443 

158 
212.8 

204 
267.4 

CAR-S-91 0 
21.2 

81 
- 

74 
- 

88 
98 

31 
47 

70 
78.8 

KFU-S-93 513 
679.1 

974 
- 

912 
- 

512 
597 

247 
282.8 

292 
322.9 

NOT-F-94 
(23) 

18 
132.1 

269 
- 

- 
- 

123 
134 

88 
104.8 

156 
182.4 

NOT-F-94 
(26) 

0 
7.7 

53 
- 

44 
- 

11 
13 

2 
15.6 

- 
- 

TRE-S-92 0 
5.5 

3 
- 

2 
- 

4 
5 

0 
0.4 

0 
2.4 

UTA-S-92 439 
561 

772 
- 

680 
- 

554 
625 

334 
393.4 

245 
338.4 

 
In each grid of Table IV, there are two numbers 

representing the number of clashes in the best solution 
(upper) and the average number of clashes in solutions 
(lower). The best solutions for each of the datasets are 
highlighted in boldface.   

It can be seen from Table IV that the MOEA produced 
timetables with the lowest number of clashes for four (CAR-
S-91, NOT-F-94 (23 periods), NOT-F-94 (26 periods), and 
TRE-S-92) out of the seven datasets. The MOEA is ranked 
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third for CAR-F-92 and UTA-S-92 and is ranked fourth for 
KFU-S-93, albeit falling behind Di Gaspero and Schaerf [3] 
in this dataset by only one clash. While some probable 
reasons explaining why the MOEA is not able to perform as 
well on some of the datasets have been discussed in Section 
IV-A, it is also widely known that evolutionary algorithms, 
on which the MOEA is based, produce better results the 
longer it is allowed to run. In order to test this theory, the 
MOEA was set to run for 1000 generations, five times 
longer than it was allowed to run previously, on the three 
datasets that it could not achieve the best ranking. The 
results of this experiment are shown in Table V. 
 

TABLE V 
RESULTS FOR LONG RUN MOEA 

 200 
Generations 

1000 
Generations 

CAR-F-92 240 
337.1 

218 
286.9 

KFU-S-93 513 
679.1 

408 
617.9 

UTA-S-92 439 
561 

397 
514.5 

 
From Table V, it is clear that the results get better the 

longer the MOEA is allowed to run. This characteristic of 
the MOEA is particularly useful for the ETTP where the 
time it takes to produce a timetable may, in practice, often 
be measured in months [17]. While it appears plausible that 
the MOEA may be able to catch up, in terms of ranking, if it 
is allowed to perform an even longer run, it is undeniable 
that the MOEA is not as effective as Merlot et al. [2] and 
Wong et al. [8] for the three datasets. In spite of this, the 
MOEA is still proven to be a worthwhile and more general 
algorithm, among the best that have been applied to the 
ETTP. 

V. CONCLUSIONS 
In contrast to most existing approaches which require 

prior timetable length information and fix the length of 
timetables at the desired length, the proposed MOEA works 
on a range of timetable lengths and would still be able to 
generate feasible timetables in the absence of any priori 
information. Simulation results have shown that such an 
approach is more general and is able to generate shorter 
clash-free timetables which can never be found by existing 
approaches. Moreover, a performance comparison of the 
MOEA with five recent and established optimization 
techniques displayed the optimization prowess of the 
algorithm, with the MOEA emerging superior on four out of 
the seven publicly available datasets. 
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