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Memory Length in Hyper-heuristics: An Empirical Study
Ruibin Bai, Edmund K. Burke, Michel Gendreau, Graham Kendall, Barry McCollum

Abstract— Hyper-heuristics are an emergent optimisation
methodology which aims to give a higher level of flexibility and
domain-independence than is currently possible. Hyper-heuristics
are able to adapt to the different problems or problem instances
by dynamically choosing between heuristics during the search.
This paper is concerned with the issues of memory length on the
performance of hyper-heuristics. We focus on a recently proposed
simulated annealing hyper-heuristic and choose a set of hard
university course timetabling problems as the test bed for this
empirical study. The experimental results show that the memory
length can affect the performance of hyper-heuristics and a good
choice of memory length is able to improve solution quality.
Finally, two dynamic approaches are investigated and one of the
approaches is shown to be able to produce promising results
without introducing extra sensitive algorithmic parameters.

I. INTRODUCTION

Considerable research has been carried out in developing
optimisation methodologies to tackle various challenging prob-
lems [1]. Despite many successful applications being reported
in the literature, using these techniques normally requires a
high level of expertise and experience. In many cases, an
implementation of a particular technique (or choosing the
best one from a group of those available) involves signi�cant
parameter tuning. Hyper-heuristics are an emerging search
technique which aims to raise algorithms’ domain indepen-
dence level such that minimal expertise is needed in order
to apply it to solve a given problem. Although many hyper-
heuristic frameworks have been proposed and tested on various
scheduling and application problems recently [2]–[11], very
limited research has been carried out with regard to some
important memory issues in hyper-heuristics. In this paper,
we focus on the issues surrounding how different memory
lengths affect the performance of hyper-heuristics and what
type of self-adaptive approaches can be used to dynamically
change the memory length at different stages of the search.
The paper is structured as follows: section II gives a brief
review of hyper-heuristics and issues that are worthy of further
investigation. In section III, a university course timetabling
problem is introduced and chosen as a test problem for this
study. Section IV describes the heuristic selection function and
weight adaption strategies that are used in the hyper-heuristic
algorithm investigated in this paper. Two dynamic memory
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length approaches are proposed and investigated in section V
and section VI concludes the paper.

II. HYPER-HEURISTICS

Hyper-heuristics are high-level heuristic strategies that
choose between heuristics to solve a given problem [12], [13].
Hyper-heuristics search in the heuristic space as opposed to
most implementations of meta-heuristics which operate on the
solution space. One of the challenges behind the develop-
ment of hyper-heuristic methodologies is how to manage a
group of simple heuristics in such a way that the algorithm
can adaptively combine these simple heuristics to tackle the
problems under consideration, with the help of some classi�er
systems or machine learning techniques to adapt the search to
the problem domain.

The study of hyper-heuristics is clearly related to widely
adopted multi-neighbourhood meta-heuristic approaches. For
example, one of the most popular classes of multi-
neighbourhood approaches is variable neighbourhood search
(VNS) which systematically switches neighbourhoods in a
prede�ned sequence so that the search can explore increasingly
distant neighbourhoods of the current solution [14]. Here,
designing a set of neighbourhood structures and arranging
them into an increased cardinality sequence requires a good
understanding and knowledge of both the problem domain
and the search algorithm. Some other applications of multi-
neighbourhood approaches allow users to change the sequence
of the neighbourhood during the search either randomly or
based on a prede�ned rule, for example, [15]–[17]. However,
the neighbourhood structures of many of these approaches
are very complicated and rely heavily on problem domain
structures. The design of these neighbourhoods requires a high
level of expertise and experience. In contrast, when studying
hyper-heuristics we often aim to provide a system which can
considerably reduce the requirement of user knowledge about
the problem under consideration by allowing the algorithm to
adapt itself to the different search scenarios either online or
of�ine.

Apart from designing sophisticated neighbourhood moves,
another central issue for multi-neighbourhood approaches is
to determine a strategy of systematically changing between
neighbourhoods during the search or to assign a probability
distribution with which each neighbourhood is chosen. Cur-
rently, the decision of such strategies is still an art, rather
than a science, and often involves signi�cant experiments and
parameter tuning. Although those �nely tuned algorithms are
able to produce high quality results for the problems (or prob-
lem instances) they are designed for, the performance of these
problem-tailored algorithms may be decreased (sometimes
drastically) if some conditions or properties of the problem
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change. One may have to tune the parameters again or redesign
the algorithm completely. This may be appropriate for some
applications where ample re-development time is allowed and
a high quality solution is a priority. However, there are many
other scenarios where users are only interested in satisfactory
solutions and the problem situations change very quickly so
that time-consuming parameter tuning is not appropriate. In
this case, a �exible, adaptive system with satisfactory solution
quality is preferable to a highly sophisticated, but “brittle”
system.

Several hyper-heuristic approaches have been proposed
and applied to dif�cult scheduling problems. The heuristic
selection mechanisms that were used in these approaches
are either based on of�ine classi�er models [5], [8]–[10] or
online machine learning techniques [2], [4], [6], [7]. In an
of�ine learning based hyper-heuristic approach, the heuristic
selection mechanism is trained before it is employed to solve
a new problem instance (of course, the heuristic selection
mechanism can be updated after this new experience but it
generally does not change during the problem solving period).
However, an online learning based hyper-heuristic approach
adapts its heuristic selection strategies during the search by
learning from previous search stages. Previous research has
shown that hyper-heuristics with online learning have ad-
vantages over of�ine learning hyper-heuristic approaches in
terms of solution quality and algorithm domain independence
[6]. However, of�ine learning hyper-heuristics are generally
computationally faster since no online learning is involved.
Several online learning hyper-heuristic mechanisms have been
based on the ideas of reinforcement learning [18], in which
historical information is utilised in order to choose heuristics
more intelligently in the next stage of the search. That is,
each heuristic is subject to a reinforcement procedure to
increase or reduce its chances of being chosen in future. To
do this, some quantitative measurements are generally used
to evaluate the performance of each heuristic throughout the
search. Preferences or priorities are then applied to those
heuristics that have obtained good overall performance during
the search history. However, few studies have been carried
out to investigate the issues of what types of information
to be exploited and in which way. Currently, most hyper-
heuristic approaches have used long-term memories. That is,
information gathered during the early stage of the search has
the same in�uence as the information which was obtained only
recently. For example, in [4], [2] and [7], the utility weights of
heuristics are based on the entire historical information with
equal impact, which may not be appropriate. It is also possible
that these values are getting either very large or very small.
To constrain these values, within a meaningful range, all the
three papers employed a lower bound and an upper bound
for these values. However, this method introduces two new
parameters into the algorithm which may harm the generality
of the method. In addition, as pointed out in [7], improving
moves during the middle and later stages of the search are
expected to be low, which leads to the situation that all the
heuristic utility weights are approaching their lower bounds
and the hyper-heuristic starts to operate in a random way.

In this study, we investigate these fundamental issues in
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Fig. 1. A diagram of the simulated annealing hyper-heuristic

the framework of a simulated annealing hyper-heuristic that
was studied in [19]. The reason we choose this simulated
annealing hyper-heuristic algorithm is that it has demonstrated
signi�cant improvement over other types of hyper-heuristics
on several dif�cult scheduling and optimisation problems
without lowering the generality of the algorithm [19]. See
Fig. 1 for a diagrammatic presentation of the algorithm.
The main features of this simulated annealing hyper-heuristic
include a stochastic heuristic selection mechanism, a simulated
annealing acceptance criterion and a short-term memory [19].
The heuristic selection mechanism plays a pivotal role. It
constantly adapts the priorities of the low-level heuristics
during the search. Initially, the heuristic selection mechanism
does not know which heuristic will perform better than any
other. Therefore, the heuristics are selected uniformly. As
the search proceeds, the heuristic selection mechanism starts
to apply preferences among different low-level heuristics by
learning from, and adapting to, their historical performance.
Therefore, the heuristics that have been performing well are
more likely to be chosen. To successfully apply a selected
heuristic, the simulated annealing acceptance criterion also has
to be satis�ed. That is, once a decision is made by the heuristic
selection mechanism, the chosen heuristic is then applied
to the current solution. The simulated annealing acceptance
criterion is employed to decide whether to accept this heuristic
move or not. Information about the acceptance decisions by the
acceptance criterion is then fed back to the heuristic selection
mechanism in order to make better decisions in future.

More speci�cally, in this paper we are interested in investi-
gating how different memory lengths affect the performance of
the hyper-heuristics and how the algorithm can automatically
tune the in�uence of the information attained at different
stages of the search.

A typical university course timetabling problem is chosen
as a test bed to investigate these fundamental issues.

III. PROBLEM DOMAIN: COURSE TIMETABLING

The university course timetabling problem involves assign-
ing a given number of events (including lectures, seminars,
labs, tutorials, etc) into a limited number of time-slots and
rooms subject to a given set of constraints. Several problem
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models have been introduced in the literature due to the dif-
ferent practical requirements by different universities [20]. In
this paper, we consider a model that was originally presented
in [21] and [22]. This model provides a representation of a
typical university course timetabling problem and has been
used in many academic publications. The model formulates
the problem as follows:

Given a set of events E and a number of rooms R, with
each room having one or more features out of feature set F .
Each event is attended by a given number of students from
student set S and requires some of the room features. The
aim of the problem is to assign every event e ∈ E to a time
slot tk(k = 1, ..., 45) and a room q ∈ R so that the following
hard constraints are satis�ed:

• No student should be assigned to more than one event in
a time slot;

• The room assigned to an event should have suf�cient
capacity and all the features required by the given event;

• No more than two events can be scheduled in one room
in a time slot.

The objective of the problem is to minimise the number of
students involved in the following soft constraint violations
(Scv):

• An event is scheduled in the last time slot of the day;
• A student has only one event in a day;
• A student has more than two consecutive events.

We adopted the same solution representation that was used
in both [22] and [2]. In this representation, a solution was
encoded as an E dimensional vector where a position in the
vector denotes an event index and the value corresponds to
the time slots assigned to the given events.

Instead of using many complex neighbourhoods as in many
other research publications (for example [23], [24]), here we
only use three simple heuristics:

H1 Shift: Move a random event from its current time slot
to another random time slot.

H2 Swap event: Swap the time slots of two random events.
H3 Swap timeslot: Swap all events of two randomly se-

lected time slots.

Similar to [22] and [2], room assignments are dealt with
separately using a matching algorithm. All of the above
heuristics were designed to ensure that the search proceeds in
feasible space. If an infeasible solution is produced, the current
solution is returned and the heuristic move is discarded.

A total of twenty problem instances are used here as
testing instances, drawn from the International Timetabling
Competition organised by the Metaheuristic Network [25]. The
parameters of these instances are as follows: | E |∈ [350, 440],
| S |∈ [200, 350], | R |∈ [10, 11], and | F |∈ [5, 10].

IV. HEURISTIC SELECTION MECHANISM

A. Selection function

The heuristic selection mechanism in this simulated anneal-
ing hyper-heuristic is based on the ideas of stochastic ranking
[26], in contrast with the deterministic approaches in most
of the other hyper-heuristic algorithms. It has been shown

that stochastic ranking is superior to other popular selection
strategies in the context of an evolutionary algorithm [26].
It is also compatible with the stochastic nature of simulated
annealing. Here we use a simple selection method similar to
roulette-wheel selection. The probability that a heuristic i is
selected from a collection of alternative low-level heuristics H
is proportional to its weight wi:

pi =
wi∑

i∈H
wi

(1)

B. Weight adaption

Weight adaption is the key phase for the success of the
hyper-heuristic. This is also the area that is particularly focused
upon in this paper. Both [4] and [2] used a reinforcement
learning function with a long-term memory. The weight of
heuristic i at an arbitrary iteration h can be calculated by:

wih =
h∑

k=1

rik (2)

where rik is the positive (or negative) reinforcement value
applied to heuristic i at iteration k. Therefore, the current
weight of a heuristic is a collective re�ection of its previous
performance. At each iteration k, a positive reinforcement
rik is rewarded to a heuristic that has improved the cur-
rent solution in terms of the objective value and a negative
reinforcement is applied if it fails to do so. However, we
observed that during the search, although some heuristics
cannot improve the solution directly, they are still useful in
creating some intermediate situations, from which the optimal
solution (or a good quality solution) could be reached. It is not
rational to penalise these heuristics. Hence in this research,
we give a minor positive score to those heuristics which
could transfer the state of the solution but could not improve
the objective value. Meanwhile, we penalise those heuristics
which could neither improve the current solution nor generate
a new solution. The following reward/penalty values are used:

rik =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c, δ > 0
−c, δ < 0
ε, δ = 0 and new solution
−ε, δ = 0 ant no new solution
0, if not selected

(3)

where c is a positive value and ε is a relatively small positive
value. In this application, we set c = 1, ε = 0.1. As mentioned
earlier, the majority of moves at the middle and latter stages
of the search are non-improving, which would lead to most
of the heuristics being assigned a very large negative weight.
Equation (3) does not generate probability distributions as we
expected. Although the lower and upper bounds used in [4] and
[2] can ensure that these weights are held within a reasonable
range, setting these two bound parameters can be dif�cult.
A bad choice of the parameters may lead the algorithm to
becoming a random search since these weights are not able
to distinguish between the performance of heuristics. In this
paper, instead of assigning a lower and upper bound for each
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Fig. 2. The average performance of the simulated annealing hyper-heuristic
with different learning rates over 10 runs for six randomly selected instances

weight, the following simple method is used to solve this
problem. Let wmin = min{0, wi | i ∈ H}, the heuristic
selection function is now de�ned as:

pi =
wi + wmin∑

i∈H
(wi + wmin)

(4)

The following standard reinforcement a learning function is
used:

wih =
h∑

k=1

αkrik (5)

where α is learning rate or discount factor to balance the
in�uence of the rewards gained at different iterations during
the search history. α = 0 implies a random heuristic selection
approach while α = 1 corresponds to the long-term memory
function used in [4] and [2]. Any α value between 0 and 1
would exponentially scale down the reinforcement applied to
each heuristic over time. For example, for a learning rate of
α = 0.5, the in�uence of reinforcement will almost vanish
after 10 iterations (0.510 ≈ 0.001).

Fig. 2 plots a comparison of the simulated annealing hyper-
heuristic with different learning rates for six problem instances
(to keep the paper brief, only six randomly selected problem
instances are presented here. Similar plots can be obtained
for other problem instances). The parameters, with respect to
simulated annealing, are set with the same values as in [19]
except that the reheating strategy is turned off to eliminate
potential factors which could have added disturbance to the
experimental results. For each version of the algorithm, 10
independent runs were carried out and both the best results
and average results were recorded. For each single run, the
number of total iterations was set to K=2,000,000. It can be
seen that in most cases, the algorithm without learning (i.e.
α = 0) performs worst when compared with the simulated
annealing hyper-heuristics with different learning rates. It is
also interesting to see that some short-term memory based al-
gorithms outperformed the algorithm with long-term memory
or in�nite memory as referred to in some other places (i.e.
α = 1). Unfortunately, it is dif�cult to determine an α value
with which the simulated annealing hyper-heuristic performs
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Fig. 3. The average results by the simulated annealing hyper-heuristic with
different learning rates over all the 20 instances. min: The best objective in
10 runs. mean: The mean objective in 10 runs.

best for every problem instance. For example, the best α value
(among the values we have tried) for the instance Comp8
appears around 0.9. However, for the instance Comp15, the
best α value is around 0.8. Indeed, this is a common problem
associated with many optimisation techniques whose parame-
ters are not only sensitive to a change of problem domain, but
also to a change of instance within the same domain.

Fig. 3 presents the average results over 20 instances by the
simulated annealing hyper-heuristic, with different learning
rates. It can be seen that across 20 instances, an in�nite
memory (α = 1) obtained better overall performance than the
memoryless approach (i.e. α = 0) but it is not as good as when
the learning rate is set to be 0.8 or 0.9. Over this set of problem
instances, the hyper-heuristic with a learning rate α = 0.9
performs best. However, one would have to run a considerable
number of experiments to tune this parameter, which contrasts
with the motivating goals of this research. We are aiming
to develop algorithms which are generic and self-adaptive
in the sense that the parameters in the algorithm are either
not sensitive to a change of problem or the parameters are
dynamically tuned to the problem instance during the search.
With this objective in mind, we investigated two alternative
methods which are presented in the next section.

V. DYNAMIC MEMORY LENGTH

From Fig. 2, it can be seen that the best α value changes
from instance to instance. It might be bene�cial to allow
the algorithm to change the learning rate during the search.
The �rst simple approach that we investigated (denoted by
R) is similar to the mechanism used in the reactive GRASP
(greedy randomised adaptive search procedure) [27]. The
search is divided into 10 identical sub-periods, with each
period using a learning rate randomly selected from the set
{0.5,0.6,0.7,0.8,0.9,0.99}.

The second approach is slightly more complex and is based
on the following observation: at the middle and latter stages
of the simulated annealing search, most heuristic moves will
be rejected and the ratio of improving solutions to non-
improving solutions is generally small. In this scenario, it
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Fig. 4. A comparison of dynamic memory length approaches with static
memory length approaches on six problem instances
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Fig. 5. The overall performance of the dynamic memory length approaches
across all the 20 instances

would need a longer period of historical information for the
algorithm to distinguish between the performance of low-level
heuristics. Therefore, it is reasonable to increase the memory
length systematically as the search proceeds. With the learning
function (5) used in this paper, this would be equivalent to
increasing the learning rate α. In the paper, the search is,
again, divided into 10 identical sub-periods. In the �rst sub-
period, we assign a relatively small initial learning rate α0.
After each period, we increase the learning rate by the function
α =

√
α, corresponding to roughly doubling the memory

lengths each time. To test the sensitivity of the initial value
α0, both α0 = 0.1 and α0 = 0.5 were tried. For simplicity,
these two versions of the algorithm are denoted by D0.1 and
D0.5 respectively.

Figs. 4 and 5 present comparisons between these two
approaches and the approaches with �xed learning rates for
six randomly selected individual instances and for all the 20
instances respectively. From both �gures, it can be seen that
the random learning rate approach (R) performed badly for
most cases. However, the dynamic learning rate approaches
outperformed most of the static learning rate methods. The
results that were obtained by D0.1 and D0.5 are even com-
parable to the results obtained by the best static learning rate

approach (i.e. when α = 0.9) which can only be achieved via
a time-consuming parameter tuning process. Also note that
the performances of D0.1 and D0.5 are very similar when
compared with each other, which indicates that this dynamic
memory length approach is not sensitive to the initial leaning
rate α0. The main advantages of D0.1 and D0.5 over the static
learning rate is that there is no parameter tuning involved and
the algorithm performed well across all 20 test instances.

Note that the purpose of this paper is to study the impact
of the memory length on the performance of the hyper-
heuristics. To exclude non-correlated disturbances, we turned
off some strategies that are able to improve the algorithm’s
performance. Therefore, the results presented in this paper are
not as good as those reported in [24], [28]. For example, we
used signi�cantly less iterations than in [24] which, if allowed,
will signi�cantly improve our results. Also, introducing a
reheating strategy that is similar to [19] has the potential to
improve the results. In addition, we used three very simple
heuristics as opposed to other algorithms that relied on much
more complex heuristics/neighbourhood moves (for example,
[23] and [24]).

VI. CONCLUSION

Memory represents a key component in hyper-heuristics
research. This paper is concerned with the issue of memory
length in hyper-heuristics. We speci�cally investigated how
the memory length can affect the performance of a newly
proposed simulated annealing hyper-heuristic. The empirical
study on a university course timetabling problem showed
that hyper-heuristics using a short-term memory produced
better results than both the algorithm without memory and
the algorithm with in�nite memory. A possible explanation is
that the search landscape is different at different stages of the
search and information about how a heuristic behaved during
the past may only be useful for a limited period in the future.
Information gathered a long time ago may be not valid any
more. Unfortunately, the parameter of memory length seems
to be sensitive to different problem instances and it is also
time-consuming to tune this parameter to a given problem. In
order to increase the level of domain independence of hyper-
heuristic methodologies and automatically set this parameter,
a dynamic memory length approach has been investigated and
proposed in this paper. It has been shown to be robust across
different instances without a parameter tuning process.

In future, we believe it would be worth studying other
dynamic memory length approaches that can combine short-
term and long-term memories simultaneously with a hyper-
heuristic framework. It would also be interesting to study the
interactions between different heuristic selection functions and
memory adaption approaches.
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