
 

 

 

  

Abstract—A recent competition course scheduling 

competition saw many solution approaches which constructed 

an initial solution, and then improved that solution using local 

search. The initial solution appears to be crucial for the local 

search to be effective and in this work we propose a tiling 

technique which can quickly construct a solution which we hope 

can be used as a good starting point for a local search 

procedure. 

I. INTRODUCTION 

 The Metaheuristics Network sponsored an International 

Timetabling Competition in 2003 [12], involving a course 

scheduling problem. Several competitors provided solution 

approaches, all of which relied upon the establishment of an 

initial neighborhood, followed by a swapping phase.  The 

focus of those solutions is on the swapping phase, which 

used techniques such as simulated annealing, tabu search and 

the Great Deluge algorithm.  The creation of the initial 

neighborhood was done randomly or employed a 

straightforward prioritizing mechanism.  Our work centers 

on a construction algorithm, utilizing a tiling technique, 

which provides a feasible solution which can serve as a solid 

base for the swapping phase. Our approach creates the initial 

solution within a few seconds, enabling the overwhelming 

majority of processing time to be dedicated to the swapping 

phase. 

II. PROBLEM DEFINITION 

The competition problem is a sample university course 

timetabling problem. It consists of a set of events to be 

scheduled in 45 timeslots across five days and nine periods.  

Each event must take place in one of a set of n rooms 

provided for each instance.  Each event is attended by a set 

of students.  Rooms are constrained by room size and 

features, eliminating the possibility of certain events from 

being held in a given room. Other hard constraints of the 

problem include students only attending one event on a given 

day and time period, and only one event scheduled per day 

and period in a room. Meeting all hard constraints for each 

event constitutes a “feasible” solution. 

The problem also contains soft constraints. Violating a 

soft constraint leads to a penalty and the quality of a solution 
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is given by the summation of all penalities. Hence, solutions 

with the least penalties represent the best solutions. The soft 

constraints causing penalties are: 

 

• a student has a class in the last slot of the day;  

• a student has more than two classes 

consecutively; 

• a student has a single class on a day 

 

A review of the submitted solutions shows that most 

approaches were in at least two phases. Typically, the first 

phase was to build an initial feasible solution. The second 

and subsequent phases performed some form of search 

algorithm looking to swap previously scheduled events. 

Burke and Newall describe this evolutionary approach in [2]. 

The method of creating the initial solution varied as well 

as the search algorithms; at least in the top four solutions.  

Kostuch [10] had the best set of results. The approach taken 

was to place events into timeslots, and then attempt to assign 

rooms. If a feasible solution could not be obtained, then the 

algorithm randomly unscheduled a set of events and tried 

again.  Twenty-five runs with different seeds were used to 

achieve the best feasible solution.  Burke and Bykov[3] and 

Bykov[4] used a modified Brelaz (saturation degree) 

algorithm. Events were analyzed for the number of timeslots 

available. Events with the lowest number of timeslots were 

scheduled first.  Shaerf [7] used a random placement of 

events for the initial feasible solution, while Courdreau [6] 

did not create a feasible solution before the swapping phase.  

This approach relies on the swapping phase to not only 

improve the solution but also develop a feasible solution. 

III. OUR APPROACH 

Our approach is a constructive algorithm, which does not 

incorporate any steps depending upon random value input. 

The algorithm builds the schedule event by event in an 

ordered fashion. If a timeslot is not available, then a 

backtracking procedure is performed, unscheduling and re-

scheduling events, until the event can be placed.   

One aspect of this problem is an event’s contribution 

toward the penalty count cannot always be fully determined 

until all the timeslots in the same day as the event are 

scheduled. There is always the possibility that another  event 

placement will cause this event to be the only event of the 

day for a student, or be one of three or more consecutive 

classes. This characteristic of the problem reduces the 
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effectiveness of the construction algorithm approach, since 

the partial solution value cannot be obtained adequately. 

 

 However, the constructive approach has relevance in 

producing the initial solution, which a local search algorithm 

can operate upon.  We seek a good quality initial solution 

that can be found in a few seconds, and provides a good 

starting point for the search algorithm. Cormen discusses 

building upon initial solutionss in [5]. 

We use “tiling” as a means to create the initial 

neighborhood in a constructive manner.  Bar-Noy and 

Moody [1] demonstrated that tiling was an effective 

approach for the traveling tournament problem to quickly 

develop a neighborhood within ten or less percentage points 

of the best known solutions. The tiles for that problem were 

a set of games that were to be scheduled sequentially within 

a team’s overall schedule. Tiles were placed in a team 

schedule, as long as hard constraints were not violated with 

tiles in other teams’ schedules. Kingston [8,9] also used tiles 

for set of classes in a high school scheduling environment.  

For our problem, a tile represents a set of events that will 

be scheduled in the same day and in period x and period x+1, 

where x the number of periods available without penalty (8 

in the competition).  The events in the tile relating to the 

same period, must not share any students, since this would 

violate the hard constraint of a student attending two events 

in one timeslot. Additionally, the tile provides a “break” in 

the student’s schedule. Since no student attends more than 

one event in a tile, the student has a break between period x 

and period x+1.  After the tiles are created and placed, 

remaining events are placed and backtracking employed if 

necessary. 

The tiling approach can also be viewed as creating the 

“macro event” defined by McCollum [11]. The macro event 

is a collection of events that can be associated together. This 

association may be because a student would take them as a 

block, or in our case, that the events are independent of each 

other. The ability to recognize relationships between events 

(beyond the obvious constraints) is key for tile or macro 

event usage.  

IV. PREPROCESSING STEPS 

The Metaheuristics Network competition problem is 

presented by a series of files that indicate the following 

relationships: 

 

• Rooms to Features 

• Features to Events 

• Students to Events 

 

By transitivity, rooms to events can easily be calculated. 

This information can be analyzed to determine the key 

relationship in the problem – event to event conflict due to 

students. The event-event relationship is helpful in two ways.  

We give a value to the relationship equal to the number of 

students required to attend both events.  For hard constraints, 

the relationship specifies which events can share timeslots 

that have the same day and period. All event-event 

relationship values between all events in the same day and 

period timeslot must be zero. For soft constraints, the 

relationship provides input on the potential violation of the 

three or more consecutive classes for a student. If two events 

have an event-event relationship that is positive and the 

events are scheduled in consecutive timeslots, these events 

may lead to a soft constraint violation, given the events 

scheduled around the pair. 

The final step of the preprocessing phase is to calculate 

the degrees of each event.  The degree of an event is the 

number of room, period combinations that are possible for 

the event. Initially, this value is the number of time periods 

(45) multiplied by the number of allowable rooms for the 

event, since each event can be placed in any timeslot, if no 

other events are scheduled.  In the next phase as events 

become scheduled, the degrees for events will decrease. 

V. CREATING THE TILES 

 Prior to placing any events, a set of “tiles” is created 

from the information of the instance. A tile is a set of up to 

2n  (n is the number of rooms) events in the instance. In the  

Metaheuristics Network competition, this value was usually 

ten.  Considering the events of a tile in two sets of size n, the 

first set was simply a set of events that could co-exist in the 

same day and time period. Searching by lowest event degree, 

the first n events that had an event-event relationship of zero 

were chosen for the tile.  Also the event cannot have already 

been assigned to another tile. After the first set of events for 

the tile was chosen, a second set was selected. Again, 

considering remaining events in lowest degree order, events 

were chosen that had zero event-event relationship with all 

events in the first set, and the events already assigned to the 

second set.  The second requirement of an event in the 

second set is similar to the first set’s requirements. However 

the cross-set event-event relationship number guarantees a 

student taking an event in the first set of the tile, will not 

have a class in the second set. Hence the student taking any 

event in the tile has a “break” in his or her daily schedule. 

This break will help reduce the possibility of receiving 

penalties for the consecutive classes for a student constraint. 

Figure 1 illustrates this point. 

This information can be analyzed to determine the key 

relationship in the problem – event to event conflict due to 

students. The event-event relationship is helpful in two ways.  

We give a value to the relationship equal to the number of 

students required to attend both events.  For hard constraints, 

the relationship specifies which events can share timeslots 

that have the same day and period. All event-event 

relationship values between all events in the same day and 

period timeslot must be zero. For soft constraints, the 

relationship provides input on the violation of the three or 

more consecutive classes for a student. If two events have an 
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event-event relationship that is positive and the events are 

scheduled in consecutive timeslots, these events may lead to 

a soft constraint violation, given the events scheduled around 

the pair. 

           

 
Fig. 1. Tiles slotted in periods 5 and 6 

 

 

Tiles placed in periods 2, 4 and 6 in each day would 

provide a solution with zero soft constraint violations for 

consecutive student classes during the first 8 periods.   

The requirement for the creation for a tile is a set of events 

that cover all rooms for two time periods (2n), each of which 

has a zero value for the event-event relationship. With 200 

students, 400 events and an approximate  average of 17 

events per student for most instances, it was difficult to 

create a sufficient number of tiles for most instances.  The 

requirement was relaxed to allow an overlap of up to two 

students between an event in the first set of the tile and the 

second set.  This does not necessarily guarantee a soft 

constraint violation, as the preceding event to the tile, or the 

subsequent event, may not match the students appearing in 

events within both sets of the tile.  For all instances we were 

able to create at least ten tiles. Some tiles were created with 

fewer than n (number of rooms) events in each set due to 

event-event relationships. 

Once all tiles are created, they are placed in specific 

timeslots within the schedule. Unlike the traveling 

tournament problem addressed by Bar-Noy and Moody[1], 

the placement of the tiles are independent of each other. In 

the traveling tournament problem, tiles consisted of set of 

games. Placement of a tile could conflict with previously 

scheduled games. Bar-Noy and Moody used a backtracking 

mechanism to move the tile in this situation. Within our 

problem, the placement of tiles in unique timeslots can not 

cause a hard constraint violation. 

For each instance our approach generated ten tiles. The 

tiles were then placed in the schedule as shown in figure 2.  

            
Fig. 2.  Tile placement within the schedule 

 

We selected the above tile placement to minimize the 

number of students violating the “taking more than two 

classes consecutively” constraint. A tile placed at period x 

represents a break in all student schedules for that day 

between period x and x+1. Placing the tile at period 3 assures 

us that only students with classes in the first 3 periods could 

be assessed a penalty point, as the tile creates a break 

between period 3 and 4. Placing the two tiles in periods 3 

and 6 ensures that a break occurs every three periods 

(including the ninth period if needed).  We did not explore 

the concept of moving tiles to different periods. Placing the 

tiles closer together would provide a longer time period  

block where absolutely no breaks could occur, while leaving 

a time period block (possibly up to 5 periods), where 

consecutive classes could be scheduled. In the latter 

scenario, students could have more than 3 classes 

consecutively, while in our approach, we have limited the 

number of consecutive classes for a student to 3.  

 

T1 represents the first tile created, which would contain 

events with the lowest event degrees. As tiles are scheduled, 

the degrees of the remaining events are changed. The tile is 

placed first, and then the event pool is analyzed for next set 

of events for the subsequent tile creation. 

VI. PLACING THE REMAINING  EVENTS 

 After the ten tiles are placed, the remaining unscheduled 

events, must be placed in the schedule. The construction and 

backtracking method is used to place these events with the  

algorithm  shown in figure 3. 

 

While (events remain) 

 set schedule_flag to false 

 Select event with lowest event degree  

       set event timeslot to last timeslot of this event 

       While (event day <= 5 and event period <= 8) 

  Advance event timeslot to next day or period  

       Check event conflicts 

   If no event conflict then 

    Make temp event placement in schedule 
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    Analyze  event degree of remaining events 

     If event degree of any event is negative 

      set schedule_flag to false 

                     else 

                        set schedule_flag to true 

                        make permanent event placement 

                       push event onto schedule_stack 

             if schedule_flag is false 

                 Advance event timeslot to next day/period 

       end while 

       If schedule_flag is false repeat for period =9 

 If schedule_flag is false then 

  pop event from schedule_stack 

      Advance event timeslot to next day or period 

   end select 

end while 
    Fig 3. Event Placement with Backtracking 

 

 The algorithm attempts to schedule an event in the 

period 1 to 8. If this is not successful, then the event is 

considered for period 9. If this also unsuccessful, the stack of 

scheduled events (including those scheduled through tiling) 

is popped. The popped event is advanced (adding one to the 

period of timeslot consideration) and re-scheduled. 

An event with a negative event degree indicates that there 

are no room / timeslot assignments that satisfy the event. In 

this case, backtracking is performed. 

The events are always selected by the lowest event degree.  

These events have the least flexibility of timeslot and room 

assignment, at this point in the scheduling process. 

Only two instances required more than 200 backtracks. 

Hence the algorithm produced a feasible solution with tiles 

in a few seconds. 

VII. RESULTS    

We present our results in figure 4. We look at three major 

criteria – how did the solution improve with tiling, how close 

is our neighborhood to the best solutions, and does   our 

approach support the next search phase.  

 

 
Fig. 4. Results 

 

The table in figure 4 shows the solution value for the 

initial neighborhood created using no tiling (zero tiles) for 

the set of tiles as described above. The “Simple Swapping” 

column represents the solution value after a rudimentary 

algorithm is employed. The simple swapping algorithm 

identifies the most expensive event in terms of penalty. For 

example, the third consecutive event for a student would be 

assessed the penalty point.  The most expensive event is 

compared with the next most expensive to see if a swap 

would improve the solution. The comparison is done 10,000 

times and the number of resulting swaps is shown in the fifth 

column.   

The first improvement column shows the benefit of 

performing tiling over a straight forward construction 

algorithm. The second column shows the impact of the 

simple swapping phase.  This column is provided to show 

the relationship between the initial neighborhood phase and 

the swapping phase. Similar improvement percentages 

indicate that the tiling does not inhibit success during the 

swapping phase. 

The last two columns provide information from Kostuch, 

who had the best results in the competition. This is the only 

competitor who provided information on the value of the 

initial neighborhood. Other submissions did not mention this 

value, or did not achieve a feasible (and hence scoreable) 

solution in the initial neighborhood. Kostuch’s initial 

neighborhood value, achieved by taking the best of 50 seeds 
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is shown in column 8 and is compared to our tiling approach 

in column 9 . 

VIII. CONCLUSIONS 

The key result of the tiling approach is the positive impact 

of tiling on the solution score. The percentage improvement 

from adding the tiles averages 18.48%, with some instances 

reaching nearly a 1/3 improvement.  This improvement is 

gained with negligible processing time. Our results involve 

one run versus the “best” of a series of runs. 

The second point is whether the construction of our 

neighborhood prohibits the next phase of swapping from 

being effective. A comparison of the %swap improvement 

column shows nearly identical improvement rates before and 

after tiling. Only two instances (18,10) favor the initial 

neighborhood before tiling by more than 3%. Hence the 

tiling provides a solid base for other swapping algorithms.  

 The final comparison is between the solution value of 

our approach to that of Kostuch.  In two instances our result 

beat that approach’s initial neighborhood, which is the best 

of 50 runs using different seeds. The average difference 

across all instances was 8.53%.  While we would have liked 

to provide a better solution in all instances, our approach 

yields a relatively close solution, without the processing time 

involved in Kostuch’s approach. This processing time 

appears to average 55 seconds per instance. This would need 

to be multiplied by 50 for the different seeds yielding almost 

45 minutes processing time to achieve an initial 

neighborhood approximately 8% better than our approach.  

This 8% differential could be resolved within the swapping 

phase, given the extra processing time saved in our 

approach. 

 

IX. FUTURE WORK 

An obvious extension of our approach is to investigate 

search algorithms and incorporate them into the 

methodology. This would further justify our approach in 

creating the initial neighborhood. 

Also, we can investigate the creation of the tile process to 

look for methods to include more events in the tiles, and 

possibly utilize more than ten tiles.  The problem could 

support using 3 tiles in a day, placing the tiles in periods 2,3; 

4,5; and 6,7.  Also, the selection of the events to be the 

starters for the tile could be analyzed more fully to see if a 

more intelligent approach would yield better tiles. 

Finally, the research will continue to focus on various 

problems and identifying when and how the tiling approach 

can add to the solution process. The tiling approach holds 

the potential to aid in the construction of timetabling 

solutions efficiently, with the ability to handle large 

instances. 
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