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Abstract

The Bus Driver Scheduling Problem (BDSP) is one
of the most important planning decision problems
that public transportation companies must solve
and that appear as an extremely complex part of
the general Transportation Planning System. It is
formulated as a minimization problem whose ob-
jective is to determine the minimum number of
driver shifts, subject to a variety of rules and reg-
ulations that must be enforced, such as overspread
and working time.

In this article, a greedy randomized adaptive
search procedure (GRASP) and a Rollout heuristic
for BDSP are proposed and tested. A new hybrid
heuristic that combine GRASP and Rollout is also
proposed and tested. Computational results in-
dicate that these randomized heuristics find near-
optimal solutions.

I Introduction

Rollout is a new meta-heuristic recently proposed
by (1) for hard combinatorial optimization prob-
lems. In this paper, to efficiently determine good
quality solutions for the Bus Driver Scheduling
Problem (BDSP), we study and test the perfor-
mance of a Rollout-type algorithm and compared
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it with a GRASP (Greedy Randomized Adap-
tive Search Procedure). Moreover, we propose
an innovative hybrid meta-heuristic that combines
GRASP with Rollout for the problem under exam-
ination.

The goal of this paper is to determine optimal
shifts (i.e., a full day of work) for local public trans-
portation companies. The BDSP is formulated as
a minimization problem whose objective is to de-
termine the minimum number of driver shifts nec-
essary to cover a set of Pieces-Of-Work, subject to
a variety of rules and regulations that must be en-
forced, such as overspread and working time. This
problem is one of the most important planning de-
cision problems that public transportation compa-
nies must solve and that appear as an extremely
complex part of the general Transportation Plan-
ning System ((2; 3)).

Since the terms used in literature in dealing with
the BDSP are not uniform, it is functional to de-
fine the terminology adopted in this paper. For the
Vehicle Scheduling Problem, trips are defined as a
one-way travel of a bus between two points (i.e., lo-
cations in the same city or in different cities), and
a running board is a sequence of trips assigned to
the same bus. The terms Piece-Of-Work and shift
are introduced into the Crew Scheduling Problem
context (in our case Bus Driver Scheduling Prob-
lem). A Piece-Of-Work is a part of a shift that cov-
ers a set of consecutive trips in a running board,
subject to different rules and regulations. A set
of Pieces-Of-Work that satisfies all the constraints
is a feasible shift. Then, the Bus Driver Schedul-
ing Problem consists in assigning the Pieces-Of-
Work to shifts such that each Piece-Of-Work is
performed by only one driver, the shifts are fea-
sible (that depends on a specified set of working
rules), and the total operational costs of the shifts
and the total number of shifts are minimized.

The combinatorial nature of the Crew Schedul-
ing Problem and the large dimension of real-world
instances have led to the development of sev-
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eral exact and heuristic algorithms. (4) provided
an outline of the Bus Driver Scheduling Problem
(BDSP) and proposed various approaches for its
solution. Many of these techniques have been re-
ported in proceedings of international conferences
on Computer-Aided-Scheduling of Public Trans-
port (e.g., (5), (6), (7), (8), (9), (10) and (11)).

The remaining of the paper is organized as fol-
lows. In Section II, the construction and local
search phases of a GRASP for the Bus Driver
Scheduling Problem are described. Section III
presents the Rollout procedure, which is then ap-
plied to the problem under examination. Sec-
tion IV shows how GRASP and Rollout are com-
bined and reports the computational results. Fi-
nally, in Section V our concluding remarks and
suggestions for future work can be found.

II GRASP for the BDSP

In this section, we provide a brief description of the
construction and local search phases of GRASP for
the Bus Driver Scheduling Problem (for more de-
tails, see (12) and (13)). Given a set W of Pieces-
Of-Work, in the sequel we denote with T a feasible
schedule corresponding to a set of feasible shifts
and with c(T ) the sum of the operational costs of
the shifts in schedule T .

A Construction Phase

In the GRASP construction phase a feasible sched-
ule T is built, i.e., a set of feasible shifts Ti,
i = 1, . . . , N , adding one Piece-Of-Work at a
time in a greedy randomized way, until all Pieces-
Of-Work have been assigned. Starting with an
empty solution T , iteratively a Restricted Can-

didate List (RCL) is constructed for each Piece-
Of-Work according to pairwise compatibility and
starting time. A Piece-Of-Work is randomly cho-
sen and then added to the current partial solution.
Once a Piece-Of-Work is selected, it must be re-
moved from the current set of candidates and the
set of Pieces-Of-Work must be adaptively adjusted
to take into account that the newly selected Piece-
Of-Work is now part of the current partial solution.
Once the current shift is completed, a new shift is
constructed. The updating procedure for the can-
didate list is the computational bottleneck of the

construction phase. The procedure ends when all
the Pieces-Of-Work have been assigned.

B Local Search

Starting from the feasible solution obtained at the
end of the construction phase, a local search proce-
dure is applied in order to guarantee local optimal-
ity. Given a feasible solution T = {T1, T2, . . . , TN},
for i ∈ {1, 2, . . . , N}, we decompose each Ti in
partial consecutive shifts, each having hi and ki

Pieces-Of-Work, respectively. More in detail, as-
suming that hi ≤ ki, Ti is decomposed as Ti1 =
hi⋃

r=1

POWr and Ti2 =

ki⋃

r=hi+1

POWr . A similar de-

composition can be applied to Tj to obtain Tj1 and
Tj2. The variable neighborhood swap N(T ) used
in the local search is defined as the following set:

{T = {T 1, , . . . , TN} s.t.
∀ i = 1, . . . , N − 1,∀ i < j ≤ N, l = 1, . . . , N,

∀ i1 = 1, . . . , hi, ∀ i2 = hi + 1, . . . , ki,

∀ j1 = 1, . . . , hj , ∀ j2 = hj + 1, . . . , kj ,

T l = Tl ∀l 6= i, j, T j = Tj1 ∪ Ti2, T i = Ti1 ∪ Tj2}.

A feasible schedule T is a local minimum if and
only if c(T ) ≤ c(T ) for all T ∈ N1(T ).

III Rollout

Rollout 1 algorithms have been recently proposed
by (15), (16), (1), and (17). These new meth-
ods for NP-hard combinatorial optimization prob-
lems have the advantage of amplifying the effica-
ciousness of any given heuristic algorithm. How-
ever, their computational complexity represents a
severe limitation when solving large scale prob-
lems. The Rollout algorithm determines a solution
of the problem (either minimization or maximiza-
tion) starting from a partial solution and apply-
ing at each step a suboptimal algorithm able to
produce feasible solutions (base heuristic H). The
following representation of a combinatorial opti-
mization problem as a graph search problem, as in
(15), will be helpful in describing sequential Roll-
out algorithms.

1The name “Rollout” was introduced by Tesauro ((14))
as a synonym for repeatedly playing out a given backgam-
mon position to calculate by Monte Carlo averaging the
expected game score starting from that position.
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Let G = (N, A) be a direct graph, where N rep-
resents the set of nodes and A ⊆ N × N the set
of arcs; let s be an origin node and let N ⊆ N be
the destination nodes and assume that for each el-
ement i ∈ N a cost function g(i) is assigned. The
aim is to determine a directed path which starts
at s (origin) and ends at one of the nodes i ∈ N
(destination) such that the cost g(i) is minimized.
We assume that N , A and N , that is the set of
nodes, the set of arcs and the set of destination
nodes, have a finite number of elements, as nor-
mally is the case for many NP-hard combinato-
rial optimization problems. We assume that there
are no parallel arcs in the graph. A directed path
is a set of arcs (i1, i2), (i2, i3), . . . , (in−1, in) that
we indicate as the sequence of nodes (i1, i2, . . . , in)
for convenience. For each non-destination node
i ∈ N \ N , we assume there is at least one path
starting at that node and ending at some destina-
tion node. Let H be a path construction algorithm
which, given a non-destination node i ∈ (N \ N),
constructs a direct path (i, i1, . . . , im, k̄) starting at
i and ending at one of the destination nodes k̄ ∈ N .
For a non-destination node i ∈ N\N , we define the
associated cost as c(i) = g(k̄), where k̄ is the end
node of the path, built by the path construction
algorithm H; moreover we define c(k̄) = g(k̄), for
each k̄ ∈ N . To obtain a suboptimal solution of the
problem it is possible to start at s (the origin) and
apply the path construction algorithm H to deter-
mine a solution of cost c(s). Another possibility
is to build a path to a destination by applying H
in a sequential way. The typical sequence starts
from a node i and considers all its downstream
neighbors j, to which H is applied. The neigh-
bor that provides the best result becomes the new
starting node. This sequential method to apply
H is called the Rollout algorithm based on H and
is referred to as RH. For a formal description of
the Rollout algorithm, let N (i) be the neighbor-
hood of node i defined as N (i) = {j|(i, j) ∈ A}.
Since there is at least one path starting at node i
and ending at a destination node k̄, the neighbor-
hood N (i) is non empty for each k̄ ∈ N \ N . The
Rollout algorithm begins with a degenerate path
P made only of the origin node s, i.e., P = {s}.
Every iteration adds a new node to the path and
this procedure is repeated until the path reaches a
destination node. Let Pt = (s, i1, . . . , it) be a se-
quence of nodes where it is a non-destination node;
the typical iteration t of RH can be illustrated as
follows.

1. Determine the neighborhood N (it) of the final
node it of the path Pt, that is:

N (it) = {j|(it, j) is an arc}.

2. For every node j which belongs to N(it) calculate

the cost c(j) by performing the base heuristic H
on the path resulting from the increase of Pt with
j.

3. Select the node it+1 that minimizes the cost in
N (it), that is:

it+1 = arg min
j∈N (it)

c(j).

4. Add the node it+1 to the current path Pt, and set

Pt+1 = Pt ∪ {it+1}.

The Rollout algorithm stops if the node it+1 is a
destination; in this case, the path Pt+1 is the so-
lution with cost g(it+1). When this not the case,
swap Pt with Pt+1 and continue with another it-
eration.

From the description of the Rollout algorithm it
is clear that the computational cost of all iterations
is determined by the number of applications of the
base heuristic H (Step 2), which is related to the
dimension of N (it). There are different possible
strategies to improve the computational complex-
ity of RH; for more details, we refer interested the
reader to (18) and (19).

A A Rollout algorithm for the

BDSP

In this subsection, we describe a Rollout algorithm
for the Bus Driver Scheduling Problem. We have
used the GRASP construction procedure as base
heuristic H. Starting from a partial solution, the
algorithm constructs a complete solution, for each
Piece-Of-Work that can be chosen, maintaining
the GRASP’s characteristics of greediness, ran-
domness, and adaptiveness. For this reason, the
version of the Rollout algorithm we propose is non-
deterministic. In particular, H starts from a par-
tial solution and, at each iteration, the solution
is augmented adding a Piece-Of-Work j. Clearly,
j must be compatible with the previous Piece-Of-
Work belonging to the partial solution and mini-
mizes the cost in terms of objective function value
of the augmentation. More in details, after l − 1
iterations, we have a solution T composed of l − 1
Pieces-Of-Work and, at the following iteration, we
add a new Piece-Of-Work to the shift. The pseudo-
code of Rollout is depicted in Figure 1. Given the
input set of Pieces-of-Work W and a partial sched-
ule T , Construct(L(T ), Lmax) procedure in line 5
is used to built the list of candidates that must
be added to schedule T . The parameter Lmax is
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algorithm rollout(W, RandomSeed,Lmax, c)
1 T := ∅;
2 k := 1;
3 while (∃POW ∈ W s.t. POW 6∈ T )
4 Construct(L(T ), Lmax);
5 if (L(T ) 6= ∅)
6 B := ∅; c(B) := +∞;
7 for each POWc ∈ L(T )
8 SCk := T ∪ POWc;
9 P := H(SCk, RandomSeed);
10 if (c(P ) < c(B))
11 B := SCk;
12 end if

13 end for each

14 T := B;
15 else

16 k := k + 1;
17 end if

18 end while

19 return(T );
end rollout;

Figure 1: Rollout procedure for the BDSP.

the cardinality of the list L(T ) and is fixed a pri-

ori. In lines 8 through 14, the procedure starts
from a partial solution and applies at each step the
base heuristic H(SCk, RandomSeed), that corre-
sponds to the GRASP construction phase already
described in Section A. The best choice at each
Rollout iteration is saved in the variable B, while
in POWc is saved the current element of the list
L(T ), i.e. a candidate Piece-Of-Work to be added
to the partial schedule T . The value of the lo-
cal minimum is saved in line 22. As shown in
the histogram in Figure 2, by choosing as objec-
tice function the minimization of the total number
of required shifts, the solution obtained when ap-
plying the Rollout procedure outperforms the so-
lution generated by the construction phase of pure
GRASP. These results have guided us to propose
a brand new hybrid algorithm, where the Rollout
procedure is used in place of the construction phase
of GRASP. We call this procedure hybrid GRASP
with Rollout for BDSP.

IV Hybrid GRASP with

Rollout

In this innovative approach, we have designed an
hybrid GRASP that uses as construction proce-
dure the Rollout algorithm described in Section A.

Figure 2: Rollout solution is always better than
GRASP construction solution.

At each iteration, a feasible bus driver schedule
is constructed by applying the Rollout procedure
and, starting from the computed solution, the lo-
cal search phase described in Section B is applied.
The scope of the local search is to improve the
schedule exchanging partial shifts and iteratively
repeated until we obtain a schedule where there is
no interchange that leads to an improvement.

A Computational Results

In our computational experiments we have cho-
sen as objective function the minimization of the
total number of required shifts. Our aim here is
to evaluate the effectiveness of the GRASP algo-
rithm when combined with Rollout. Computa-
tional results obtained with two heuristics Roll-
out and GRASP using Rollout in the construction
phase of the initial solution are reported. All nu-
merical tests were carried out on a Pentium 4 with
CPU 3.20 Ghz and 1.00 Gb of memory. The code
has been written in C and compiled with DEV-
C++2 version 5.0 beta 9.2. To link our investiga-
tion to the real world, data provided by PluService
Srl of Senigallia3 have been used. These data pro-
vided by PluService Srl have been utilized to com-
pare the two techniques described above and to
verify their effectiveness. Furthermore, their ex-
perience in the field of public transportation has
allowed us to specify in great detail the set of rules
that regulates, the construction of running boards,
and the building of shifts. Table 1 and Table 2 re-
port the results obtained with three different pro-
cedures (Rollout, GRASP, and GRASP with Roll-

2http://www.bloodshed.net/dev/index.html.
3Leading company in integrated information systems for

local transportation companies with great number of clients
in Italy.
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out) on 16 Bus Driver Scheduling real-world in-
stances. For each instance, 1000 iterations of the
GRASP and GRASP with Rollout have been ex-
ecuted. For each test problem, the first column
in Table 1 contains the total number of Pieces-Of-
Work, while the last column reports a measure (ǫ)
of the relative goodness in terms of objective func-
tion value between the solution GR obtained ap-
plying GRASP with Rollout and the solution G ob-
tained applying GRASP4. The remaining columns
of Table 1 provide the values of the objective func-
tion obtained by using the tested different proce-
dures. For each test problem, Table 2 reports run-
ning time of all proposed methods. From the data
reported in Table 1 and Table 2, we observe that
the incorporation of Rollout in GRASP was ben-
eficial, improving some of the solutions, but with
additional computational burden. In the next fu-
ture, we are planning to investigate on the quality
of solutions that the algorithms will be able to de-
termine, given a fixed amount of computing time.

Table 1: Computational results obtained on real-
world BDSP problems by Rollout and GRASP
combined with Rollout. R, G, and GR represent
the objective function value of the solution found
by Rollout, pure GRASP, and GRASP with Roll-
out, respectively.

Pr./POWs R G GR ǫ

38 11001913 9001735 8001760 -0.1249
55 8154128 7564132 7512075 -0.0069
71 13002475 9112449 9032354 -0.0088
74 17152279 14716175 15312178 0.0389
76 20108551 15450037 15628071 0.0113
84 22004680 14042163 15022202 0.0652
84 16002785 14002778 14038727 0.0025
114 16173713 13701807 14457704 0.0522
119 16289307 15537121 15640948 0.0066
142 34026490 31192465 29106375 -0.0716
162 32007135 27067061 29006866 0.0668
168 40008713 32084677 31008319 -0.0347
173 38137340 29212896 29658718 0.0150
175 36239686 32677723 33259456 0.0174
197 57010123 45127201 45113061 -0.0003
250 54011482 41151322 43017125 0.0433

In all cases the objective function value obtained
applying GRASP with Rollout is better than the
one obtained using Rollout. The results show, that
for 6 cases out of a total of 16, the solution found
by the new version (i.e., GRASP with Rollout) is
better than the solution obtained by GRASP. As
far as the results obtained with GRASP are con-
cerned, we note that the procedures used in this
section are better in terms of the objective func-
tion value, but we have a worsening in terms of
time.

4
ǫ = GR−G

GR
. Note that ǫ = 0 if the two algorithms find

the same objective function value solution.

Table 2: Computational experience on real-world
BDSP problems. Rsec, Gsec, and GRsec are the
number of seconds needed to find the solution by
Rollout, pure GRASP, and GRASP with Rollout,
respectively.

Pr./POWs R G GR

38 0 11 512
55 0 14 1093
71 2 37 3234
74 2 38 3713
76 1 32 2168
84 9 55 9395
84 2 39 435
114 7 55 11300
119 3 75 3556
142 24 225 30719
162 23 185 27070
168 38 311 42210
173 31 312 103305
175 15 145 18301
197 82 350 165796
250 67 494 160606

V Conclusions and Future

Works

In this paper, we have analyzed the Bus Driver
Scheduling Problem that is an important aspect of
the Transportation Planning System. We used the
recently proposed procedure Rollout algorithm,
and we have shown that it is always better than
the construction phase of pure GRASP. The good
computational results lead us to devise a brand
new hybrid meta-heuristic: GRASP with Rollout.
From the description of Rollout, it is evident that
the computational cost of each iteration depends
on the number of times the base heuristic is ap-
plied. A decrease of the computation cost in the
Rollout algorithm could be achieved using approx-
imation functions. We plan in the feature to exper-
iment with this approach as will combine Rollout
with other modern and efficient meta-heuristics,
such as VNS (Variable Neighborhood Search) and
PR (Path-Relinking).
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