
 
 

 

  

Abstract— Vehicle Routing Problems have been extensively 
analyzed to reduce transportation costs. More particularly, the 
Vehicle Routing Problem with Time Windows (VRPTW) 
imposes the period of time of customer availability as a 
constraint, a very common characteristic in real world 
situations. Using minimization of the total distance as the main 
objective to be fulfilled, this work implements an efficient 
hybrid system which associates non-monotonic simulated 
annealing to hill climbing with random restart (multi-start). 
Firstly, the algorithm is compared to the best results published 
in the literature for the 56 Solomon instances. Then, it is shown 
how statistical methods – analysis of variance and linear 
regression – can be used to determine the significance 
degree of the system’s parameters to obtain an even better 
and more reliable performance.

I. INTRODUCTION 

Costs with goods transportation are calling special attention in 
the last decades, since logistic expenses minimization is a big 
concern for many companies. According to [1], the costs related 
to people and goods transportation are very significant and are 
growing rapidly, motivated by the continuing increase of 
business complexity experienced today. Studies suggest that 
from 10% to 15% of the final value of the traded goods 
correspond to its transportation cost [7]. Many studies found in 
the literature of the Vehicle Routing Problem (VRP) have 
attempted to contribute to practical advances in this field 
[22][24]. Since in the real world this problem has to consider 
many constraints and particularities, some parameters have to 
be considered for a closer approximation to the market 
situations.  One of such constraints is the load capacity of the 
vehicle and the time window in which the customers must be 
visited. This class of problems is known as the Vehicle Routing 
Problem with Time Windows (VRPTW) and has been the most 
popular class of the VRP [19].  

II. THE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS  

The VRPTW is a combinatorial optimization problem. This 
is a particular case of the well know Vehicle Routing Problem 
(VRP), introduced by [5]. In the VRP, the vehicle fleet must to 
visit and deliver a service to a set of customers. Every vehicle 
starts and finishes at a unique depot. For each pair of customers, 
or customer and the depot, there is an associated cost. This cost 
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denotes how expensive it is for a vehicle to move from one 
costumer to another, with the constraint that each customer 
must be visited exactly once. Additionally, each customer 
demands a specific number of goods (denoted as the weight of 
the load). For each vehicle in a fleet, there is an upper limit of 
load capacity supported. In the basic case (considered here) all 
the vehicles are of the same type and have the same capacity. 
Then, basically, the objective of the VRP is to find a set of 
customers attended for each vehicle of the fleet in order to 
minimize the transportation costs [9]. 

With a further complexity, in the VRPTW each customer has 
an associated time window that determines an interval within 
which a vehicle has to begin and to finish the service to that 
customer. In the VRP as well as in the VRPTW several types of 
optimization objectives have been investigated in the literature. 
In particular, the total distance traveled is one of the most 
typical cost measures to be minimized by a given algorithm. 
Another parameter taken as target is to find the minimum set of 
possible routes to solve the problem, and to minimize the 
distance as a second objective. Yet some other authors also 
consider the time minimization for attending all the costumers 
as the objective to be completed. 

With the aim of minimizing the total traveled distance, such 
as in the work developed here, De Backer et al. investigated 
iterative improvement techniques within a Constraint 
Programming (CP) framework [3]. The improvement 
techniques are coupled to Tabu Search (TS) and Guided Local 
Search (GLS) to avoid the search of being trapped into local 
minima. The CP system is used only as a background operator 
to check the validity of the solutions found and to speed up 
legality checks of improvement procedures. Riise and Stølevik 
[21] studied GLS and Fast Local Search (FLS) combined with 
simple move operators that relocate single tasks. Kilby et al. 
[20] introduced a deterministic GLS that use local search 
operators (2-opt, relocate, exchange and 2-opt*) with a so-
called best-acceptance strategy (for details, see [23]). Alvarenga 
[2] studied the use of a Set Partitioning (SP) formulation after 
generating several solutions through a given genetic algorithm 
(GA). The routes of the generated solutions by the GA are 
combined by the exact method of Set Partitioning, finding the 
best combination of the routes without violating the constraints 
of the VRPTW.  

In the present paper, a different approach based on the 
combination of simulated annealing and hill climbing with 
random restart (multi-start) is proposed. 

III. COMPLEXITY OF THE VRPTW 

As defined in [13], an instance of an optimization problem is 
a pair (F,c) where F is any set, the domain of feasible points; c 
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is a cost function, i.e. a mapping
1: RFc →   (1)

 

The problem is to find an f ∈ F for which 

Fffcyc ∈∀≤ )()(  (2).
 

Such a point y is called a global optimal solution to a given 
instance or simply an optimal solution. 

As the VRPTW is a problem known as NP-hard [10], only 
solutions of reduced order instances can be found using exact 
algorithms [4]. The impossibility of guaranteeing optimal 
solutions (f ∈ F) occurs because the set of functions F is huge, 
given the non-determinism in the search of all the possible 
solutions to the problem, preventing the sweeping of every 
solution in a polynomial time. To overcome this problem, 
heuristics and meta-heuristics are frequently employed to find 
sub-optimal solutions which are both performance effective and 
feasible to be determined in non-polynomial time [2]. 

IV. A HYBRID SYSTEM (HS) TO THE VRPTW 

This work aims at finding a solution f ∈ F such that y is a 
good approximation to the optimal solution y, based on a 
combination of simulated annealing with a hill-climbing 
strategy. A set of techniques were considered with the principle 
of generating a solution that could provide good results in the 
diverse set of possible situations of the VRPTW. A strategy 
based on simulated annealing and hill climbing took place 
inspired on the capability of simulated annealing to both evolve 
solutions to a given problem and escape from local minima and 
on the capacity of hill climbing to refine initially defined 
solutions. To complete the method, a technique called ‘random 
restart’ [14] of the system is applied in order to cope with the 
idea of producing solutions to varied configurations of the 
VRPTW, returning the best solution from the executed restarts. 
Such strategy performs multiple system restarts with the 
association of simulated annealing and hill climbing and finds 
better results by diminishing the variance between the different 
executions of the system (consequently enhancing the 
robustness of the method). The idea behind the operation of the 
hybrid system can be viewed in Fig. 1. 

 
Fig. 1. Illustration of the Hybrid System 
 

A. Simulated Annealing (SA) to Solve the VRPTW 

Simulated Annealing is a probabilistic meta-heuristic 
algorithm, proposed originally in [8] (being a local search 
method), that accepts search movements that temporarily 
produces degradations in a current solution found to a problem 
as a way to escape from local minima. 

This meta-heuristic is based on a natural method which uses 
an analogy to the thermodynamics simulating the cooling of a 
set of heated atoms, in a operation known as annealing [8] (the 
term and operation of annealing are widely use in metallurgy). 

In its formal description, the simulated annealing begins its 

search from a random initial solution. The iteration loops that 
characterize the main procedure randomly generate in each 
iteration only one neighbor s´ of the current solution s. The 
variation Δ for the value of the objective function f(x) is tested 
for each neighbor generation. To test this variation, the 
following calculation takes place: 

 

)()'( sfsf −=Δ  (3) 
 

If the value of Δ is less than 0 (zero), then the new solution s´ 
is automatically accepted to replace s. Otherwise, accepting the 
new solution s´ will depend on the probability established by 
the Metropolis Criteria, which is given by: 

Te /Δ−   (4), 
 

where T is a temperature parameter, a key variable for operation 
of the method. The Metropolis Criteria accepts, with higher 
probability, solutions which have lower values of Δ. Higher 
values of Δ will have lower chances if compared to lower 
values of Δ. The higher the temperature, the higher is the 
probability of accepting the solution s´ as the new solution, 
explaining the algorithm analogy to the solid cooling. 
  

1) Starting Point for the Simulated Annealing 
For constructing an initial solution to the SA algorithm, this 

work used the algorithm known as Push-Forward Insertion 
Heuristic (PFIH) [15]. As cited in [9], the PFIH has an efficient 
constructive strategy for calculating the cost of a new customer 
in a route. This cost is computed according to its geographic 
position, the end of its time window and the angle between it 
and the central depot. For a better understanding consider Fig. 2 
as a current solution before the insertion of the customer C5. 
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C1

C0

New customer

Existing Routes: 
r1: C0 – C1 – C2 – C0
r2: C0 – C3 – C4 – C0

Where C0 represents 
the central depot

 
Fig. 2. Current incomplete solution before the insertion of a new customer 
  

The quality of the possible solutions is first checked with the 
insertion of the customer (C5) in each possible edge of the 
graph representing the current solution for the VRPTW. Then, 
the edge in which the insertion of the customer represents the 
lowest cost is chosen (with respect to the total distance) for the 
inclusion of the new customer in the route. 
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Fig. 3. Feasible solutions found by the PFIH algorithm for the introduction 
of a new customer 
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Besides the computation of the costs, the insertion of the 
customer is also examined to guarantee that it does not violate 
the restrictions of the VRPTW (see Section 2). If any of the 
existing (from the smallest to the biggest cost) route solutions 
(shown in Fig. 3) does not violate any constraint of capacity, 
vehicle load or customer attendance time, then this route 
becomes the definite solution for inclusion of the new costumer 
(Fig. 4). Otherwise, the current routes are discarded and a new 
route is created for representing the new costumer. 

C5
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C4

C2

C1

C0

 
Fig. 4. Solution selected as the best option when inserting the customer C5 
 

The order in which the customers are inserted into the 
VRPTW solution by the PFIH algorithm directly defines the 
quality of the final solution produced by the method. Keeping 
this in mind, Solomon developed in his work [15] a heuristic to 
determine the order in which the customers should be 
considered into the solution, according to the cost Equation: 
 

0360
i

i oi i i

p
C d l dα β γ

⎡ ⎤⎛ ⎞
= − + + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦    (5) 

 

Where: α = 0.7; β = 0.1; γ = 0.2; d0i = the distance between 
the central depot and customer i; bi = the upper limit of the time 
window for arrival of customer i; pi = polar coordinate angle of 
the customer i, with respect to the central depot. The constant 
values for α, β e γ  were defined empirically such as in [15]. 

From the first chosen customer, the remaining customers are 
tested one by one with respect to each possible route solution 
for construction, according to the cost Equation 6. The position 
and the customer that resulted in the lowest increase in the total 
traveled distance, without violating the time window capacity, 
are chosen. After there are no more customers to insert in the 
route under construction, this particular route is closed and the 
same process is restarted again with a new empty route, being 
the first customer the one with the lowest cost according to 
Equation 6 (among those customers yet to be routed). 

Aiming at introducing flexibility for starting the SA 
algorithm from different positions in the search space, this work 
introduced a variation in the original cost formula, where, 
instead of been treated as constants in the original algorithm, 
the α, β and γ  elements are turned into PFIH parameters. The 
new values change at each execution being captured by a 
normal distribution N(μ,σ), with an average in the points (αμ = 
0.7; βμ = 0.1; γμ = 0.2), suggested as optimal by Solomon, and 
with a deviation by the unit (σ = 1). With this variation of the 
heuristic orders, the customers being inserted by the PFIH 
algorithm maintain a good arrangement because the averages 
are centered on the optimal values obtained empirically and the 
small variations cause perturbations that create different initial 
solutions for the SA. This modification in the PFIH algorithm 

proposed here was inspired on the work of [11] that implements 
the change of the heuristic through taking the values of α, β and 
γ from a uniform distribution changing from 0 to 1.  

 

2) Neighborhood Operators Applied to the Simulated 
Annealing 

Given a feasible point f ∈ F in a particular problem, it is 
useful in many situations to define a set N (f) of points that are 
‘close’ in the same sense to the point f [13], where F represents 
the set of any solution that satisfies the problem. For example, 
if F = Rn, then the set of points within a fixed Euclidean 
distance provides a natural neighborhood solution for F [13]. 

As this work focus on ordered lists without repetitions 
(routes with its respective customers), it is guaranteed according 
to [6] that for this type of representation four basic permutation 
operators can describe a generic way to capture the 
neighborhood of a solution f.  These operators perform 
permutations between the elements in order to capture the 
neighborhood of a solution f and were originally implemented 
as mutation operators in evolutionary algorithms [6]. These 
have been adapted in this research to be employed in the SA for 
the neighborhood definition.  

The first neighborhood operator is the simplest and is called 
Swap Mutation (see the work of [6]). It is described to find a 
neighborhood to a solution for the Traveling Salesman Problem 
(TSP) and is called “2-change” in [13]. The swap (f) operator 
can be described as: swap(f) = {g : g ∈ F e g can be obtained 
from f swapping 2 customers (c1, c2) of any routes (r1, r2)}.  

 

1 5 4 3 2 6 1 6 4 3 2 5 

Fg ∈f  
Fig. 5. Application of the swap neighborhood operator in the same route of 
solution f 
 

The second neighborhood operator, also based on random 
changes, is called Insert Mutation and is formally defined as: 
insert(f) = {g : g ∈ F and g may be obtained by removing one 
customer from any route of f and inserting it again in any 
position of any route of f}. 

Fg ∈f

 

1 5 4 3 2 6 1 5 4 6 3 2 

 
Fig. 6. Example showing the application of the Insert neighborhood 
operator in a route of solution f 
 

The third operator is the Scramble Mutation, which is 
another random operator defined as: scramble(f) = {g : g ∈ F 
and g may be obtained by choosing any continuous sequence q 
of customers in a route r chosen randomly from f and mixing 
the customers of q in order to create a sequence q’ which will 
substitute q in r } 
 

Fg ∈f

 
1 5 4 3 2 6 1 5 2 4 3 6 

 
Fig. 7. Example of application of the neighborhood operator Scramble on a 
route r of the solution f 
 

The fourth operator, totally random, is based on the 
customers’ inversion and can be defined as: inversion(f) = {g : 
g ∈ F e g may be obtained by choosing a sequence s of 
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customers in a route r, randomly chosen from f, and after 
inverting them systematically for the generation of a new 
sequence s´ that will replace s in r}. 

Fg ∈f

 
1 5 4 3 2 6 1 6 2 3 4 5 

 
Fig. 8. Example of the application of the neighborhood operator inversion 
in the same route r of solution f 
 

A fifth operator, called OP5 (based on the work of [12]), was 
also employed. This is also a mutation operator for evolutionary 
algorithms that uses specific information on the problem 
(heuristics) to navigate in the solution space constructed by the 
instantiated VRPTW. Firstly, m customers are withdrawn from 
each route of solution f. The number of withdrawn customers
varies for each route r and is chosen by selecting a value from a 
uniform distribution that varies from 0 to the number of 
customers present in r.  

After selecting the customers withdrawn from f (creating an 
incomplete solution h), all the selected customers are inserted 
back into h through the PFIH method, until a complete solution 
for the VRPTW is found. This neighborhood operator never 
generates a new solution f´ that violates any constraints, 
because the PFIH algorithm does not allow such possibility. 

The f´ solution generated through the f solution after the 
application of any neighborhood operator is accepted only if f´ 
satisfies every constraint of the VRPTW. In any case of 
constraint violation, the solution f is kept into the SA for the 
next iteration of the system. This possibility may occur with the 
operators swap, insert, scramble and inversion. 

For each iteration of the SA, an operator is chosen by 
withdrawing a positive number from a uniform distribution, 
which varies from 1 to k, being k the number of operators of the 
system (in this work k is equal to 5). The operators are stored in 
a vector of k positions and the one whose index is raffled is 
applied. 
 

3) Temperature Control 
The temperature T used initially on the system was set up 

to 100 and, at every 100 iterations, was reduced to 95% of its 
current value: 

tt TT ×=+ 95.0)1(
  (6) 

 

In addition to the temperature decrease, the algorithm can 
also produce a temperature increase, characterizing the non-
monotonic aspect of the T variable. This increase (by the unit) 
occurs when there is no improvement in the best solution in the 
last 1000 iterations of the system. In the total, 30000 iterations 
were used for each execution of the simulated annealing. 
Another example of efficient use of non-monotonic temperature 
control is reported in [16]. 

B. Hill Climbing (HC) Strategy 

After the conclusion of the SA process, the hill climbing 
(HC) strategy takes places to compose the hybrid solution (HS) 
proposed in this work. The motivation to introduce the HC 
strategy comes from the observation that the solution given by 
the SA may be found in the system when its temperature is 
considerably high, and, in this case, the neighborhood close 
(which may contain a better solution) to the best solution of the 
SA will probably never be explored. This happens because, 

when the temperature is high, the Metropolis Criteria will tend 
to easily carry out a drastic locomotion in the solution space to 
look for the solution and worse solutions may be accepted by 
the method with high probability. Taking that into account, it 
was considered the application of the HC strategy to find a local 
minimum equal or better than the returned solution of the SA 
method. When the best solution of the SA is found under low 
temperatures, however, this local search (HC) turns itself to be 
unnecessary since it is basically executed by the SA method 
itself, considering that the Metropolis Criteria will only accept 
worse solutions with very low probabilities. 

The HC process is then executed three times at the end of the 
SA method, each execution corresponding to 1000 iterations, to 
consider that different executions of a hill climbing may drive 
to different regions of the search space (solutions). This is the 
case because the implemented hill climbing is non deterministic 
and the execution with the best result is returned by the method. 
The neighborhood operators are those described in Section A.2. 

C. Random Restart 

With respect to the issue of random initialization, different 
works have followed different paths. Some works choose the 
idea of performing a small number of short iterations, based on 
[14] which poses that, “if the problem is NP-complete, then in 
all likelihood we cannot do better than exponential time”. 
Although theoretically, in such situations, there may be an 
exponential number of local minima where the solution may get 
stuck on, fortunately, in practice, a reasonably good solution 
can be found after a small number of iterations. Other works, 
however, were based on the strategy of executing for each 
instance the evolutionary algorithm for a long period of time 
(40 minutes on average) [11].  

In the work of [12] it was identified that short executions of 
the system (1 minute and 17 seconds on average), repeated 
many times, produced more robust results for the VRPTW. 
Since simulated annealing is also a stochastic algorithm, the 
quality of the final solutions over a number of runs shows a 
certain variance, the same strategy was adopted in 
implementing the proposed HS (SA with HC). 30 system 
restarts were applied and the solution that presented the shorter 
total distance of all the system restarts was considered as the HS 
solution to the VRPTW. 

V. TEST BASE 

There are many publications using heuristics and meta-
heuristics in the resolution of the VRPTW, making easier 
comparisons and analysis on new proposed approaches. For 
discovering the quality and robustness of the different 
algorithms, these are frequently applied over the Solomon 
instances [15].  

Likewise, the tests of this work were executed over the 56 
Solomon instances with 100 customers each. The data 
descriptions and sources may be found on the internet 
(http://neo.lcc.uma.es/RADIAEB/WebVRP/data/instances/solo
mon/solomon_100.zip). 

The Solomon instances are divided into six classes: R1, R2, 
C1, C2, RC1 and RC2. The R1 and R2 instances present 
customers with random Euclidean coordinates. Instances C1 
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and C2 present customers grouped in clusters. Instances of type 
RC1 and RC2 present a mix of the two first characteristics 
(spare and clustered). One common characteristic of the types 
R1, C1 and RC1 is that their instances impose that few 
customers have to be attended by each vehicle, introducing the 
need for more vehicles to attend all the demand. The types R2, 
C2 e RC2 present few vehicles in the solution to attend a great 
number of customers in each route. 

VI. RESULTS 

A. Best known results 

For ease of visualization, Tables I, II, III, IV, V and VI point 
out if the hybrid system proposed obtains equal or better results 
when compared to the best individual published results with 
respect to the total traveled distance minimization for the 
VRPTW. The instances marked with ** denote the situations 
where the best previous individual result for that instance 
(picked up from many different authors) were overcame by the 
proposed method, whereas those marked with * represent the 
cases where the results of the method paired the previous 
results. Each table in this section considers the total traveled 
distance minimization as the main focus for the VRPTW. 
 

TABLE I 
BEST RESULTS FOUND IN THE R1 PROBLEM CLASS 

 Other works This work 

Instance Vehicles Distance Work Vehicles Distance 

* R101 20 1642.88 [1] 20 1642.88 
 R102 18 1472.62 [1] 18 1475.35 
 R103 14 1213.62 [17] 15 1222.68 
 R104 11 986.10 [2] 11 990.78 
 R105 15 1360.78 [2] 15 1363.74 
 R106 13 1241.52 [2] 13 1244.58 
 R107 11 1076.13 [2] 11 1081.88 
 R108 10 948.57 [2] 10 952.37 
 R109 13 1151.84 [2] 12 1153.89 
 R110 11 1080,36 [17] 12 1087.94 
 R111 12 1053,50 [2] 12 1053.80 
 R112 10 953,63 [17] 11 973.34 

 

TABLE II  
BEST RESULTS FOUND IN THE R2 PROBLEM CLASS 

 Other works This work 

Instance Vehicles Distance Work Vehicles Distance 

** R201 5 1148.48 [2] 8 1147.80 
** R202 9 1042.35 [12] 8 1039.32 
** R203 5 876.94 [12] 6 874.87 
** R204 4 736.66 [12] 5 735.80 
** R205 5 960.07 [12] 5 954.16 
** R206 4 887.90 [12] 5 884.25 
** R207 4 811.93 [12] 4 797.99 
** R208 3 707.01 [12] 4 705.62 
** R209 5 860.11 [12] 5 860.11 
** R210 6 912.48 [12] 5 910.98 
** R211 4 761.75 [12] 4 755.82 

 

TABLE III  
BEST RESULTS FOUND IN THE C1 PROBLEM CLASS 

 Other works This work 

Instance Vehicles Distance Work Vehicles Distance 

* C101 10 828.94 [17] 10 828.94 
* C102 10 828.94 [17] 10 828.94 
* C103 10 828.06 [17] 10 828.06 

 Other works This work 

Instance Vehicles Distance Work Vehicles Distance 

* C104 10 824.78 [17] 10 824.78 
* C105 10 828.94 [17] 10 828.94 
* C106 10 828.94 [17] 10 828.94 
* C107 10 828.94 [17] 10 828.94 
* C108 10 828.94 [17] 10 828.94 
* C109 10 828.94 [17] 10 828.94 

 

TABLE IV  
BEST RESULTS FOUND IN THE C2 PROBLEM CLASS 

 Other works This work 

Instance Vehicles Distance Work Vehicles Distance 
* C201 3 591.56 [17] 3 591.56 
* C202 3 591.56 [17] 3 591.56 
* C203 3 591.17 [17] 3 591.17 
* C204 3 590.60 [17] 3 590.60 
* C205 3 588.88 [17] 3 588.88 
* C206 3 588.49 [17] 3 588.49 
* C207 3 588.29 [17] 3 588.29 
* C208 3 588.32 [17] 3 588.32 

 

TABLE V  
BEST RESULTS FOUND IN THE RC1 PROBLEM CLASS  

 Other works This work 

Instance Vehicles Distance Work Vehicles Distance 

 RC101 15 1623.58 [17] 16 1642.83 
 RC102 14 1466.84 [2] 15 1480.46 
 RC103 11 1261.67 [18] 13 1308.64 
 RC104 10 1135.48 [19] 11 1162.75 
 RC105 16 1518.60 [1] 15 1534.60 
 RC106 13 1377.35 [1] 13 1386.82 
 RC107 12 1212.83 [1] 12 1247.53 
 RC108 11 1117.53 [1] 11 1135.87 

 

TABLE VI  
BEST RESULTS FOUND IN THE RC2 PROBLEM CLASS  

 
 

 Other works This work 

Instance Vehicles Distance Work Vehicles Distance 

** RC201 8 1267.27 [12] 9 1266.11 
* RC202 8 1096.75 [12] 8 1096.75 

** RC203 5 941.31 [12] 5 926.89 
** RC204 4 788.66 [12] 4 786.38 
** RC205 7 1161.32 [12] 7 1157.55 
** RC206 7 1059.88 [2] 6 1056.21 
** RC207 5 970.78 [12] 6 966.08 

 RC208 4 779.84 [12] 4 780.72 
 

B. Comparisons between different works 

Table VII summarizes the comparisons of the proposed 
algorithm with the best works ([20],[21],[3] and [2]) for the 
Solomon’s benchmarks that consider the total traveled distance 
as the main objective function. The columns represent the 
algorithm whereas the lines show the average number of 
vehicles and the total traveled distance for each class. For each 
algorithm, the average results with respect to Solomon’s 
benchmarks are reported through NV (number of vehicles) and 
TD (total distance). CNV and CTD indicate the cumulative 
number of vehicles and cumulative total distance over all 56 
test problems. 
 

TABLE VII  
COMPARISONS BETWEEN DIFERENT WORKS THAT OPTIMIZE THE TOTAL 

TRAVELED DISTANCE OF THE VRPTW 
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Work 
Class 

[20] [21] [3] [2] SA This 
work 

NV 12.67 13.92 14.17 13.25 12.40 13.33 R1 
TD 1200.33 1211.22 1214.86 1183.38 1287.00 1186.94 
NV 3.00 4.91 5.27 5.55 3.2 5.36 

R2 
TD 966.56 917.54 930.18 899.90 1052.00 878.79 
NV 10.00 10.56 10.00 10.00 10.00 10.00 

C1 
TD 830.75 846.88 829.77 828.38 937.00 828.38 
NV 3.00 3.88 3.25 3.00 3.0 3.00 

C2 
TD 592.24 598.70 604.84 589.86 684 589.86 
NV 12.13 13.75 14.25 12.88 12.10 13.25 

RC1 
TD 1388.15 1399.76 1385.12 1341.67 1471.00 1362.44 
NV 3.38 5.63 6.25 6.50 3.4 6.13 

RC2 
TD 1133.42 1055.61 1099.96 1015.90 1307.00 1004.59 

CNV 423 502 508 489 423 488 All 
classes CTD 57423 56682 56998 55134 63145 55020 

 
 

Fig. 9 illustrates the cumulative distance for all the works 
taken for performance comparison. 
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Fig. 9. Cumulative total distance for all the Solomon’s instances 

VII. PARAMETER ADJUSTMENT 
 

Just like many other methods, the original experiments taken 
with the HS were conducted on a trial and error basis for 
optimal parameter adjustment. Although this alone was capable 
of producing improved results when compared to previous 
works, such manual setting up may take time and, sometimes, 
not attain the expected results.  

Some works apply optimization algorithms to adjust their 
own parameters. Eiben and Smith [6], for example, consider the 
auto-adaptive control as the most appropriated for evolutionary 
algorithms, since it finds optimal parameters in every state of 
the algorithm, estimated according to the population dynamics 
in a given epoch. Alvarenga [2] implements a genetic algorithm 
that searches optimal values for the parameter of its hybrid 
system. In this case, the parametric correlations may be 
identified implicitly by the optimizer system but, after 
adjustment, it is not possible to say which parameters induced 
the response of the system, and what important correlations 
produced the good results. 

This work, conversely, uses analysis of variance [25] to 
identify which parameters and respective interactions influence 
more on the quality of the HS. Thus, through linear regression 
[26], it is found a polynomial that identifies the tendencies of 
these influences onto the target variable, making possible the 
proposal of an optimized configuration for the parameters of 
the HS. 
 

A. Analysis of variance 
 

The analysis of variance (ANOVA) can be conducted by 

testing the hypothesis that different configurations of the HS 
(i.e. varying its parameters) produce the same effect [25]. The 
hypothesis (H0) that does not exist any difference in the effects 
of the treatments on an experiment can be defined 

as iH τττ ==== ...210 , where H0 represents the “nullity 

hypothesis” and τi represents the effect of treatment i on the 
response of the system (in this work, τi represents a specific 
parameter configuration). The parameters studied corresponded 
to the percentage of application (P) of the OP5 to find a 
neighbor solution, the reduction factor (FR) of the temperature 
in the SA, and the re-heating temperature of the system (TR), 
which characterizes the non-monotonic nature of the SA. The 
OP5 operator was examined because of its stronger impact on 
the method due to its O(n2) complexity, as opposed to the other 
operators which have complexity O(1). Each of those 
parameters was tested with pre-specified levels. P was tested 
with values 0.1%, 0.2%, 0.3% and 0.4%; FR was tested with 
values 0.985, 0.990, 0.995 and 0.999; and TR was tested with 
values 15 and 25. 

The experimental framework was set up with 32 parametric 
combinations, based on the values considered for the HS 
parameters, and each combination was repeated five times, 
totalizing 160 samples for the analysis of variance. 
 

B. Linear Regression 
 

Linear regression is an analysis technique that uses the 
relation between two or more quantitative variables to define a 
mathematical model, such that the effect of a given variable, 
may be predicted by means of another variable (or other 
variables) [26]. In experimental analysis, the most frequently 
used mathematical model for explaining the effects of the 
treatments in the response variable is the polynomial model. 
This model was employed in this work. 
 

VIII. FURTHER EXPERIMENTAL RESULTS 
 

The experiments carried out for evaluating the parameters of 
the HS were conducted with the RC208 instance of the 
Solomon’s benchmark.  
 

A. Results on analysis of variance 
 

The analysis of variance showed that, amongst the four 
studied parameters, the percentage of application of the 
operator OP5 in the algorithm (P) and the reduction factor (FR) 
of the temperature in the SA, indeed influence the quality of the 
hybrid system. At the same time, the only parametric interaction 
that induces a statistically significant change in the HS quality 
is that between P and FR (the significance level used was 5%). 
TABLE 8 shows the results for the different factors examined.  
 

TABLE 8  
SYNOPSIS OF THE ANALYSIS OF VARIANCE ON THE PARAMETERS OF THE HS 

Factor p-value 
P 1.163 ×  10-11

FR 9.710 ×  10-05

TR 0.517474 
P:FR 0.008894 
P:TR 0.202591 
FR:TR 0.457425 
P:FR:TR 0.385875 
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The interpretation of the results is that if the p-value is less 
than 0.05, the nullity hypothesis (H0) is denied and, therefore, 
there is an impact of the parameter or parametric interaction on 
the final distance (target variable) reached by the HS. To assure 
the validity of the application of the ANOVA method, the 
Shapiro-Wilk test [27] was employed on the ANOVA residuals 
and, with 95% of confidence, the test pointed out normality of 
the residuals (p-value=0.07). 
 

B. Linear regression results 
 

The linear regression technique was applied (only) to the 
significant parameters indicated by the ANOVA: P and FR. Fig. 
10 and Fig. 11 illustrate, respectively, the influence of those 
parameters on the minimization of the distance found by the HS 
algorithm for the VRPTW problem. 
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Fig. 10. Linear regression showing the behavior of the distance as a 
function of P, through a quadratic polynomial model 
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Fig. 11. Linear regression showing the behavior of the distance as a 
function of FR, through a quadratic polynomial model 

C. Parametric interaction 
 

Similarly, Fig. 12 relates the influence of the interaction 
between the significant pair of parameters (P and FR) on the 
mean distance found by the HS algorithm. The analysis shows 
that, on average, the best parametrical configuration tested for P 
and FR were P=0.4 and FR=0.995, respectively.  

 
Fig. 12. Mean distance found by the HS algorithm as a function of the 
interaction between parameters P and FR 
 

D. Optimal distance minimization with the adjusted 
parameters 

 

Confidence intervals (CI) and the average time of execution 

of four different parametric configurations of the HS algorithm 
were then considered for observing the impact of the statistical 
analysis on the performance of the method, as opposed to the 
manual parameter setting. The first configuration (A1) refers to 
the optimal manual tuning used before the analysis [P=0.1; 
FR=0.990; TR=25]. The second configuration (A2) refers to the 
best combination tested in this work (Section C): [P=0.4; 
FR=0.995; TR=25]. The third configuration (A3) was an 
extrapolation of the P values following the tendency shown by 
the linear regression (Fig. 10), with a new value tested for P: 
[P=1.0; FR=0.995; 25]. And, finally, the fourth configuration 
(A4) was defined with extrapolated values for P in the direction 
where the distance is minimized: [P=5.0; FR=0.995; TR=25]. 
All the samples A1, A2, A3 e A4 have the same size (30). 

 

1) Confidence Intervals
 

The confidence intervals of the samples A1, A2 A3 e A4 are 
shown in Fig. 13. The results of the confidence intervals follow 
the same tendency suggested by the linear regression curve (Fig. 
10). The confidence level used was of 95%. 
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Fig. 13. Confidence intervals for the four configurations 

2) Execution Time

The average execution time for the samples A1, A2 A3 and 
A4 are shown in Fig. 14. 
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Fig. 14. Execution Time for the four configurations 

IX. THE BEST RESULTS FOR THE RC208 INSTANCE 
 

Table 2 presents the best literature results for the RC208 
instance of the Solomon's benchmark for comparison with the 
results attained by the HS, before and after parameter 
optimization. The results shown correspond to the minimum 
distance found (best), the average distance ( x ), the standard 
deviation (s) and the average execution time for each algorithm. 
It is seen that the performance reached after statistical analysis 
(A4 sample) outperformed both the results found with the 
manual (best) tuning and the results (best) found in the 
literature. 

 

Table 9 Comparison between the best results published for RC208 instance 
work

measure 
[28] [2] Manual 

tuning 
Statistical 
tuning 

best 828,14 795.40 780.72 778.93 
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work 
measure 

[28] [2] Manual 
tuning 

Statistical 
tuning 

x  unknown 814.90 785.50 783.42 
s unknown 28.4 3.0 4.77 
mean time 
(seconds) 

~10560 ~2700.00 ~660.00 1324.15 

X. CONCLUSIONS 
This work presented a HS that combines simulated annealing 

with non-monotonic temperature control, random start and hill 
climbing for the optimization of the total traveled distance in 
the VRPTW. Its main gain, in relation to previous works, is a 
substantial improvement in solving the R2 problem classes (R2, 
C2 and RC2) of the Solomon’s benchmark. The solutions found 
by the HS for each instance contains few routes, and those by 
themselves, contain many customers for attendance. In the type 
2 classes, this work obtained 17 new best results when 
compared to the ones found in the literature on minimization of 
the total traveled distance, and equaled other 10 best results 
(obtaining success in all but one instance (RC208)) out of the 
28 tested. With respect to the classes C1, R1 and RC1, (where 
the solutions for each instance contain many routes and few 
customers for attendance), this work only paired the best results 
of the C1 class and the instance R101, being inferior in 19 out 
of the 29 tested instances. 

It was shown that the performance of the method could be 
further enhanced through a consistent statistical analysis as 
opposed to the typical trial-and-error process (for the instance 
RC208 of the Solomon's benchmark, the total distance of the 
VRPTW was minimized to 778.93 Euclidean’s units, the best 
result reached so far in the problem). By increasing the value of 
the P parameter (which refers to the probability of application 
of the operator OP5), following the tendency of the linear 
regression in P, the system turns out to be more robust and 
reliable (Fig. 13). By the fact that the operator OP5 has 
quadratic complexity, the execution time increases substantially 
with P (Fig. 14), and so does the quality of the method. It is the 
role of the user when applying this hybrid system, to decide 
what percentage of the operator should be employed, taking 
into consideration the time available for finding a solution. 
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