
Abstract—A dynamic implementation of the single-runway
aircraft landing problem was chosen for experiments designed
to investigate the adaptive capabilities of Extremal
Optimisation. As part of the problem space is unimodal, we
developed a deterministic algorithm which optimises the time
lines of the permutations found by the EO solver. To assess our
results, we experimented on known problem instances for which
benchmark solutions exist. The nature and difficulty of the
instances used were assessed to discuss the quality of results
obtained by the solver. Compared to the benchmark results
available, our approach was highly competitive.

I. INTRODUCTION

XTREMAL Optimisation (EO) is a recent addition to

the available range of stochastic solvers. In its current

form, it was first described in [7]. While similar to a

Genetic Algorithm, it only uses a single solution, consisting

of multiple components, which are assigned individual

fitness values. The solution mutates through the search space

using a power law distribution to determine its next move

from a neighbourhood of candidate solutions ordered by

fitness. Best solutions, when found, are recorded for

reporting, but do not influence the development of the

working solution.

The dynamic aircraft landing problem was chosen as an

example to further explore EO’s capabilities to solve

dynamic problems. Existing problems from the OR library in

[2] were to be used as known benchmarks with comparable

implementations and results. After some initial examination

of the problem instances it became clear that to choose the

most promising instances for our examples, some analysis of

the available data would be necessary.

II. AIRCRAFT LANDING

The aircraft landing problem used in these experiments

has been described in detail in [4], its dynamic

implementation in [3]. Aircraft appear at a given appearance

time A , which is when they report to the ATC for landing.

All P aircraft have a range (earliest E to latest L landing

time) within which they may land and a target T between

E and L as an optimal landing time. Penalties apply for

landing aircraft before or after the target time. Aircraft

Manuscript received November 3, 2006

I. Moser is a PhD student in the Faculty of Information and

Communication Technology at Swinburne University, Melbourne,

Australia (e-mail: imoser@ict.swin.edu.au).

T. Hendtlass is a Professor in the Faculty of Information and

Communication Technology at Swinburne University, Melbourne,

Australia (e-mail: thendtlass@swin.edu.au).

landing after other aircraft have to wait until a given, type-

dependent separation time has elapsed. The optimisation

goal is a) to find a feasible solution that lands all aircraft

within their landing ranges (between the earliest and latest

landing times) and b) to find the feasible solution which

minimises the penalties for early/late (compared to target)

landings. The objective function to optimise as formalised in

[4] is given in equation (1).
P

i
iiii hg

1

min (1)

where P is the number of aircraft

g is the penalty for landing early

h is the penalty for landing late

 is the amount of time the aircraft is early

 is the amount of time the aircraft is late.

In the dynamic case, the solving process follows a time

line measured as the CPU time used by the program. The

aircraft are made available to the solver at their given

appearance times and remain in the active window of the

solver until the landing time found by the solver is too close

to current time to make any further change (i.e. within freeze
time). In the dynamic case, the solver solves a sequence of

smaller problem instances instead of the overall problem of

all aircraft in the static instance.

III. KNOWN APPROACHES

There are only two known dynamic approaches to the

ALP, one based on the instances in [2], one working on

actual data. Beasley et al. [3] apply two variations of a GA as

well as a deterministic linear programming implementation

to the time windows as implemented in this work. The

instances airland9 - 13 were first devised for these

experiments.

Ciesielski et al. [9] use two different GA adaptations to

solve the problem dynamically, applying a sliding time

window of three minutes each. For the experiments, two

actual (past) schedules with 28 (29) aircraft over 37 (38)

minutes from Sydney airport, incorporating the use of both

its runways, have been used.

There are a few approaches which solve the instances

from [2] in a static context. Ernst et al. [1] introduce a

simplex-based approach for the scheduling part of the

problem. The sequentially ordered aircraft are divided into

trees where only the root node of each tree is allowed to land

on target, similar to the scheduling model used in this work.

The permutation part of the problem is solved using a GA,

Solving Dynamic Single-Runway Aircraft Landing Problems With
Extremal Optimisation

Irene Moser and Tim Hendtlass

E

206

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

encoding the individuals as a permutation of all aircraft. The

authors compare this approach with a Simplex, which is

more time-consuming but has the advantage of providing

accurate results.

An ACS (Ant Colony System) approach was proposed by

Randall [14]. As ACS is a constructive approach, solutions

are built from random sequences observing landing ranges

and separation times. The pheromone model divides the

landing ranges into four different parts. Experiments on

airland1 – airland5 and airland8 (listed as airland6) show

that the approach does not solve the problems to the same

quality as [4].

Pinol et al. [13] propose to use two techniques they call

Scatter Search and Bionomic Algorithms on the problems

from [2], which are in essence GAs with special features.

Both algorithms use a local search technique to optimise the

new individual's time line. The benchmark solver used is a

local search not discussed in detail, which finds the optimum

reliably but at the cost of a runtime exponential in the

number of aircraft.

Wen [15] uses Beasley’s integer linear programming

formulation [4] to create a set partitioning problem in which

runways are represented as columns and aircraft as rows. The

column generation follows the Branch-and-Price method

which is designed to simplify linear programs with large

numbers of variables. A separate deterministic scheduler is

used to optimise the time line of a given permutation. The

approach is reported to outperform the linear program from

Beasley et al. [4]

IV. METHODOLOGY

A. Implementation

The aircraft landing optimisation process consists of two

parts, the search for the best permutation and the

optimisation of the landing times given a permutation. The

latter part of the solving process, as has been observed in [4],

[3], [13] and [15] can be solved by a deterministic algorithm.

Therefore we developed a deterministic hill climbing

algorithm for optimising the landing times. The stochastic

EO solver’s task is to find the optimal permutation of the

aircraft in the active window.

A separate algorithm is needed to manage the active

window and the time line. The controlling algorithm for the

dynamic process has been implemented as follows:

1. At the start of the program, the CPU time is stored as the

start time of the algorithm.

2. After each iteration of the algorithm, the start time is

subtracted from the current CPU time. The result is

compared to the appearance times of aircraft that are yet

to appear and to the landing times of planes in the

currently active solver window. If the landing time of an

aircraft is within freeze time, it is removed from the

active solver window.

3. If aircraft have appeared, they are added in order of their

target times and the preliminary schedule of all active

aircraft are adapted according to the minimum

separation times.

4. The active aircraft are optimised as described in section

B.

5. The algorithm stops when all aircraft have landed or

when the CPU time has exceeded the latest landing time

of the last aircraft, whichever comes first.

B. Extremal Optimisation

Unlike Genetic Algorithms, which work on a population

of solutions, EO improves a single solution using mutation.

A solution consists of multiple components which are

assigned individual fitness values. The initial implementation

proposed by Boettcher and Percus [8] only accepted the

component with the worst fitness to be mutated and replaced

by a random component. This method proved inefficient in

that it was prone to entrapment in local optima.

The same authors later [7] introduced a power-law-based

probabilistic choice of component for mutation. The solution

components are ranked according to their fitness values,

using a rank of 1 for the best quality component and K for

the worst. A candidate component is chosen for mutation and

confirmed with a probability of k where k is the fitness

rank and is a small value between 1 and 10.

As these approaches solved problems with binary

component representations, once the component had been

chosen according to the rank-based distribution scheme,

there was no doubt as to the type of change. The ALP is

modelled as a permutation problem in this work. Therefore,

instead of ranking the components of the existing solution by

their fitness, a number of candidate mutations – each a copy

of the current solution with a small change – is chosen and

ranked by quality. This is referred to as the neighbourhood.

The performance of the EO algorithm depends on the type

of change made to the current solution to define the

neighbourhood, and on the only free parameter . It has

been shown by Boettcher and Percus in [6] and other works,

that the optimal value for is determined by
1

ln1 K ,

where K is the number of neighbours to choose from. Some

experiments with the current problem showed that good

Controlling algorithm

(active time window management)

EO solver

(permutation optimisation)

Scheduler

(landing times optimisation)

Fig. 1 Parts of which our algorithm is composed.

207

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

results will be achieved in the range 1.6-1.8, which coincides

with the assumption that the active time window is, on

average, a small number 5 . As the value varies slightly for

each problem instance, and the difference in quality is not

large, we selected 1.6 over the whole series of experiments.

Similarly to the approach to solving a Travelling

Salesperson Problem [7], where 2-opt moves were applied,

our neighbourhood is defined as a single position swap, i.e.

pairs of adjacent aircraft change places. Hence the length of

the candidate sequence equals the length of the active time

window. The candidates are then submitted to the scheduling

algorithm to find their optimal cost which determines the

rank k of each candidate.

 Refining step 4 of the controlling algorithm described in

section A, the steps of the EO solver are as follows:

1. Receive target-ordered sequence of active aircraft of

length K and use it as a working solution.

2. Build a neighbourhood of K candidate solutions by

swapping one pair of aircraft at a time.

3. Submit candidates to scheduler for optimisation of

landing times and establish cost of optimised schedule.

4. Rank candidate solutions ascending by cost.

5. Choose one candidate according to k and adopt as

new working solution unconditionally.

6. If the working solution is better than the existing

schedule (either the preliminary one set by the

controlling algorithm or subsequent improvements made

in this step), adopt the landing times of the working

solution.

7. Let the controlling algorithm check for update of active

window. If changes have occurred, resume from 1. If

not, resume from 2.

Note that, as the current solution continues to evolve, best

solutions - when they are found - are simply set aside for

reporting. The current working solution may be many steps

from any recorded best solution.

C. Scheduler

Our implementation is based on the observation that the

permutation at hand can be split up into sequences

determined by equation (2), which can then be scheduled

separately.

n

n

mi
ijm TijmST

1

|max (2)

where mn ; 0m ; Pn ;

T is the target time of an aircraft,

P is the total number of aircraft and

ijS is the minimum separation time between aircraft i and

each preceding aircraft j
Note that equation (2) enforces that for each plane, the

separation time to all its predecessors, not only the

immediately preceding plane, must hold. If equation (2)

holds for all aircraft between m and n, we regard the

sequence between m and n as an interdependent chain of

planes that must be optimised in combination.

The landing times of the aircraft in such an interdependent

chain can be regarded as linked by the minimum separation

times. They can be changed only in unison. To find out

whether moving the sequence to an earlier landing is

beneficial, we add one penalty weight (as if landing each

plane one time unit earlier) for each aircraft to the score.

Each aircraft which is currently scheduled with a landing

time after target, adds a negative h to the score (moving it to

an earlier landing would reduce the cost) and each aircraft

whose landing time is scheduled on or before target, adds a

positive g (as this aircraft would add to the cost if landed

earlier).

The mirror image of this test is carried out for a move to a

later landing time. Obviously, only one of these moves can

have a negative result and thus reduce the cost. If neither

move is beneficial, the optimum has already been achieved.

If there is a benefit to either move, the possible length of the

shift has to be explored. In our example with the left shift,

possible limits are

a) the scheduled landing time of the last plane of an

earlier chain and the separation times between

the planes;

b) the earliest possible landing time of each craft in

the sequence;

c) the target times of the planes currently landing

later than their target. This is because they no

longer add a negative late penalty to the score

once the target time is reached.

If the possible shift range is zero and the boundary is the

earlier chain, the benefits of uniting the chains and shifting

them together has to be explored.

Similarly, if the benefit of both shifts is zero, we have to

explore if one or more of the first aircraft in a chain can be

shifted to an earlier landing with benefit while leaving the

latter planes in place, or if one or more of the later planes

can be shifted to a later landing with benefit if the earlier

planes are left at their current landing times. This would

indicate that the chain has to be split.

The exact steps of the scheduling algorithm, used at step 3

of the EO algorithm, are as follows:

1. Pre-schedule all active aircraft by assigning each aircraft

whose landing time jt is not influenced by the

separation time from a preceding aircraft to its target

time jT . If the separation times from previous aircraft

prevent assigning the target time, assign the first

possible landing time (minimum separation time).

2. Divide all aircraft in the active window into x separate

chains xss ..1 of aircraft whose landing times influence

each other according to equation (2).

208

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

3. While there are chains is whose landing times can be

further optimised, for each is check the benefit of

i. shifting all aircraft in is to an earlier landing time by

means of adding an early penalty g for all aircraft

with jj Tt and a negative late penalty -h for each

aircraft landing later than the target time, i.e. jj Tt

ii. deferring the landing of all aircraft in is by adding h

for each aircraft with jj Tt and -g for all aircraft

with jj Tt .

4. If none of above checks returns a negative cost (an

improvement), go to 7. If there is a gain in either (both

is not possible), find the maximal displacement

i. for a shift to earlier landing; the distance to the

minimum of the following:

a) the earliest landing according to the minimum

separation times from planes in the preceding

sequences }|{ iksk , if they exist;

b) the earliest landing according to the minimum

separation times from already landed aircraft, if

they exist;

c) jjijjj TtstEt ;|min , where jE is the

earliest landing time of aircraft j;

d) jjijjj TtstTt ;|min

ii. for a shift to a later landing; the distance to the

minimum of the following:

a) the minimum distance to the landing times of the

planes of the following sequences }|{ ilsl , if

they exist;

b) jjijjj TtsttL ;|min , where jL is the

latest landing time of aircraft j

c) jjijjj TtsttT ;|min

5. If either of the shifts (4.i or 4.ii) is beneficial and the

maximum possible displacement is nonzero, shift the

landing times by the maximum displacement and go to

3. If one of the shifts is beneficial, but the maximum

displacement is 0, go to 6.

6. Check if the distance to the aircraft of the previous

(following) sequence is 0. If yes, join the chains and go

to 3.

7. Check if it is beneficial to split a sequence by either

i. shifting the later planes in a sequence to a later

landing time while leaving one or more of the first in

place;

ii. shifting the earlier planes of a sequence to an earlier

landing time while keeping the current landing times

of one or more later planes in the sequence.

TABLE I

PROPERTIES OF PROBLEM INSTANCES

Problem instance Number of

aircraft

Run time per 10

aircraft*

Cost for target

time order**

Active window

length

Max (mean)

sequence***

Number of

moves****

Longest

move*****

airland1 10 744 700 9 7 (5) 0 (0) 0

airland2 15 543 1520 10 7 (5) 2 (1.3) 2

airland3 20 485 1730 11 7 (3) 1 (0.5) 1

airland4 20 420 2540 11 15 (15) 0 (0) 0

airland5 20 465 5940 10 15 (15) 3 (1.5) 4

airland6 30 1089 N/A 6 27 (15) Unknown Unknown

airland7 44 1148 N/A 4 36 (11) Unknown Unknown

airland8 50 226 2470 18 6 (2.3) 3 (0.6) 3

airland9 100 1412 10690 11 17 (2.8) 13 (1.3) 5

airland10 150 1383 28868 15 25 (3.5) 27 (1.8) 8

airland11 200 1290 23973 12 14 (3.8) 32 (1.6) 10

airland12 250 1225 29091 13 23 (3.4) 36(1.4) 10

airland13 500 1122 69935 17 41 (4.5) 78 (1.5) 7

*Proportion of the time line (appearance of earliest – end of landing range of latest plane) available to 10 successive craft on average

**Cost of solution when optimal schedule is calculated for airplanes ordered by target times

***Maximum number of planes having no more distance between them than the minimum separation times. Average sequence length in brackets.

****How many aircraft are not between their nearest neighbours in target order, counted as the smallest number necessary to restore original order; i.e.

1,2,6,3,4 count as one (for 6) not 2 (for 3 and 4); in brackets number of moves per 10 aircraft

*****Number of aircraft with bigger (smaller) target landing times which are between this craft and its previous (successive) neighbour in target order.

Airland6 and airland7 cannot be solved in a dynamic context for lack of sufficient active window length (1 aircraft for most time windows). Their

target-ordered sequence cannot be optimised as landing time decisions have to be made without knowledge of subsequent aircraft.

209

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

8. If none of these checks is successful, set the “optimised”

flag of the sequence to true and continue with the next

sequence until all sequences are optimised.

V. EXPERIMENTS

To select suitable instances from the available datasets, we

analysed the best solutions obtained from preliminary

experiments, which yielded the best-known costs for most of

the smaller problems. The results of the analysis are listed in

Table I.

It is apparent that solving the first 7 instances would not

improve our knowledge of the solver’s capabilities

considerably. Problems 6 and 7 are, due to the scarce

number of aircraft in the active window (more than half of

the time windows has only one aircraft), not suited for

combinatorial optimisation in the dynamic case. Problems 1

and 4 do not require any changes to the target time ordering

and make the EO solver redundant.

Problems 2, 3 and 5 are possible candidates, but since they

only require minor moves (changing the position of very few

craft by one or two positions) and there is no real sequence

of numerous active windows of interesting length, we

decided to experiment only on instances 8 – 13.

Airland8 has a rather short timeline of 226 seconds per 10

aircraft (Table I), an adequate challenge in the given

environment. Problems 9 – 13 average between 1122 and

1412 seconds for 10 aircraft. To speed up the timeline and

enhance the challenge, we ran them at 3 and 5 times the

speed. Due to insignificant differences in the results, we only

list the results of the fastest runs.

As in the benchmark, we observed the minimum

separation time between all pairs of aircraft, not only

adjacent planes.

VI. BENCHMARKS

The benchmarks used have been described in [3] and

previous works of the same authors. DALP-H1 and DALP-

H2 are hybrid approaches based on a stochastic algorithm

and a deterministic schedule optimiser implemented as a

primal-dual simplex algorithm in [1] and [11] which splits up

interdependent sequences into a tree structure.

The stochastic parts of both DALP-H1 and DALP-H2

were implemented as Genetic Algorithms with a constructive

preprocessing stage. Both rely on target-time ordering for

their primary solution structure. For DALP-H1, the basic

algorithm from [1] was adapted to the dynamic case by

adding new aircraft by target times to the present aircraft

which are ordered by the landing times the solver has found

before.

DALP-H2 was first described in [5] as using a genetic

algorithm with real-valued normalised encoding of the

landing time as a position on the landing range. Features that

adapt it to the dynamic environment have been added in [3]

to ascertain that the range of the active time window is not

exceeded. The extension made in [3] adds good individuals

from runs with DALP-H1 as well as individuals obtained by

orderings according to earliest/latest/target times.

VII. RESULTS

We compare our best results, obtained from the

experiments using EO on the chosen instances, with the

results from [3] in Table II.

More detailed results of the trials are shown in Table III.

Each experiment was repeated 100 times. As definite best

results exist only for the first 8 problem instances, we list our

results as percentages of the results of DALP-OPT, the

deterministic solver used as a benchmark for the dynamic

case in [3], mentioned in Table II.

Whether the DALP-OPT results are optimal is an

interesting question. A cross-check with EO on the smaller

problems, for which known optimal static results exist,

proved that it is possible to solve these problems to a quality

that is closer (airland4, airland5, airland8) or equal (airland1,

airland2, airland3) to the static best-known result even in a

dynamic environment. However, given the dynamic nature of

the problem optimisation results of previous time windows

influence the optimisation of subsequent active windows.

VIII. DISCUSSION

The test results show that the algorithm solves the

problems very quickly and to a very good result. Prolonged

run times do not produce better results. There is, however,

TABLE III

RESULTS OF EXPERIMENTS WITH EO ON SELECTED PROBLEM INSTANCES

Problem Instance Min Avg Standard dev.

airland8 116 117 1.4

airland9 77 77 0

airland10 92 96 1.5

airland11 75 75 0

airland12 77 77 0

airland13 76 77 0.2

 The best, mean and standard deviation of 100 trials are given as a

percentage of the best solution of “DALP-OPT” in Table II.

TABLE II

RESULTS OF EXPERIMENTS, COMPARISON WITH EXISTING BENCHMARK

Problem

Instance
DALP-OPT DALP-H1 DALP-H2 EO Result

airland8 2000 2915 2710 2320

airland9 7848 13555 12554 6110

airland10 17726 31945 31034 16386

airland11 19327 27417 23963 14559

airland12 25049 34246 31440 19342

airland13 58393 78008 58392 44708

The results are the minima found over the trials, best results in bold.

DALP-OPT, DALP-H1 and DALP-H2 are algorithms for which results

have been listed for the single runway case of these instances in [2].

All results have been rounded to the nearest integer.

210

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

very little variation in the results for most of the problems.

This may either indicate that the solver is reduced to finding

a certain local minimum, or corroborate the theory that the

problem is not very demanding.
Z

i
iz

1

! (3)

where PZ is the number of sequences of

interdependent aircraft and ZZZ mnzmnz ...111 .

The complexity of the permutation problem, even in the

static case, is limited by equation (3). If the complete

sequence does not fit into a time window, the complexity is

further restricted (and, as an aside, it becomes virtually

impossible to obtain results of static case quality in the

dynamic case). To shed some light on this question, we listed

the active window length and the lengths of interdependent

sequences in Table I. For each interdependent sequence, we

explored whether all its aircraft were in the active solver

window at once. This was the case for all sequences in

instances airland1 – airland3. In all the other problems, the

coincidence of the interdependent sequences of aircraft with

the active windows was at most 50%.

As Table I shows, the average number of moves that will

create the optimal solution starting from a target-time-

ordered permutation is around 2 per 10 aircraft at most for

all the problem instances in the library. The vast majority of

these moves is made by swapping the positions of two

neighbouring aircraft (counted as a single move). Airland10

and airland13 are the only “interesting” instances; the best

solution we found has longer average moves as well as small

areas where many moves are intertwined and the underlying

target-time ordering is barely visible.

The range of shifts has also been reduced for practical

reasons, as first implemented in [10] and more recently in

[1]. It is still a reliable measure, since target time ordering

has been used as a starting point for permutations by the

stochastic solvers both in [3] and the work presented here. It

seems plausible that an incremental algorithm with single

step moves can outperform a Genetic Algorithm with

crossover and mutation operators, as they may prove

“overkill”.

The values obtained by our solver are therefore very

consistent with our analysis. The best results found by EO

(listed in Table III) outperform the benchmark results by a

factor of up to 2.2.

It seem surprising that our stochastic algorithm has been

able to outperform the deterministic benchmark solver

DALP-OPT. As we are working in a dynamic environment,

deterministic solvers can be expected to produce the optimal

result within the local time window. However, this may lead

to a suboptimal global result.

IX. FURTHER WORK

The current implementation can easily be adapted to solve

a problem with multiple runways. In the case of the given

problem instances, this does not seem to pose a great

challenge to our solver. To experiment further with the

capabilities of a stochastic solver, the density of aircraft

would have to be adjusted to the number of runways to

produce an adequately dense and interesting problem.

Future experiments will be directed at the question of

whether the EO neighbourhood would improve by including

moves with variable lengths (covering more than one

position). In combination with more complex problem

instances, this variation can be expected to produce

interesting results.

As the optimal value of depends on the length of the

candidate list, and the candidate list length fluctuates with

the length of the active solver window, experimenting with

an adaptible value for is also one of our priorities.

As there is only one existing benchmarch result available

to these instances, and it is likely that this type of

permutation problem would lend itself as an ideal problem to

be solved by Ant Colony Optimisation, trials with ACO on

these problem instances, and more difficult instances are

likely to produce excellent results.

REFERENCES

[1] H. Balakrishnan and B. Chandran, “Scheduling Aircraft Landings

under Constrained Position Shifting,” AIAA Guidance, Navigation

and Control Conference and Exhibit, 2006.

[2] J. Beasley, OR-library, “Distributing Test Problems by Electronic

Mail,” Journal of the Operational Research Society, pp. 1069-1072,

4/1990.

[3] J. Beasley, M. Krishnamoorthy, Y. Sharaiha and D. Abramson,

“Displacement Problem and Dynamically Scheduling Aircraft

Landings”, Journal of the Operational Research Society, pp. 54-64,

55/2004.

[4] J. Beasley, M. Krishnamoorthy, Y. Sharaiha and D. Abramson,

“Scheduling Aircraft Landings - the Static Case”, Transportation

Science, pp. 180-197, 34/2000.

[5] J. Beasley, J. Sonander and P. Havelock, “Scheduling aircraft

landings at London Heathrow using a population heuristic,” Journal

of the Operational Research Society, pp. 483–493, 52/2001.

[6] S. Boettcher and A. G. Percus, “Extremal optimization: an

evolutionary local-search algorithm” In: Proceedings of the 8th

INFORMS Computing Society Conference, 2003.

[7] S. Boettcher and A. Percus, “Nature’s Way of Optimizing,” Artificial

Intelligence, Vol. 119, Number 1, 2000, pp. 275-286.

[8] S. Boettcher and A. Percus, “Optimization with Extremal Dynamics,”

Physical Review Letters, Vol. 86, 2001, pp. 5211-5214

[9] V. Ciesielski, and P. Scerri, “An anytime algorithm for scheduling of

aircraft landing times using genetic algorithms”, Australian Journal of

Intelligent Information Processing Systems, vol. 4, pp. 206-213, 1997.

[10] R.G. Dear, “The dynamic scheduling of aircraft in the near terminal

area, “ Report R76-9, Flight Transportation Laboratory, MIT, 1976.

[11] A. T. Ernst and M. Krishnamoorthy, “Algorithms for Scheduling

Aircraft Landings,” AGIFORS 2001.

[12] A.T. Ernst, M. Krishnamoorthy and R.H. Storer, “Heuristic and Exact

Algorithms for Scheduling Aircraft Landings,” Networks pp. 229-

241, 34/1999.

[13] H. Pinol and J. Beasley, “Scatter search and bionomic algorithms for

the aircraft landing problem”, European Journal of Operational

Research, vol. 171, 2006, pp. 439-462.

[14] M. Randall, “Scheduling Aircraft Landings with Ant Colony

Optimisation”, Proceedings of the International Conference Artificial

Intelligence and Soft Computing, pp. 129-133, 2002.

[15] M. Wen, “Algorithms of Scheduling Aircraft Landing Problem”,

Master thesis, Department of Informatics and Mathematical

Modelling, Technical University of Denmark, 2005.

211

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

