
Abstract—A dynamic implementation of the single-runway 
aircraft landing problem was chosen for experiments designed 
to investigate the adaptive capabilities of Extremal 
Optimisation. As part of the problem space is unimodal, we 
developed a deterministic algorithm which optimises the time 
lines of the permutations found by the EO solver. To assess our 
results, we experimented on known problem instances for which 
benchmark solutions exist. The nature and difficulty of the 
instances used were assessed to discuss the quality of results 
obtained by the solver. Compared to the benchmark results 
available, our approach was highly competitive.

I. INTRODUCTION

XTREMAL Optimisation (EO) is a recent addition to 

the available range of stochastic solvers. In its current 

form, it was first described in [7]. While similar to a 

Genetic Algorithm, it only uses a single solution, consisting 

of multiple components, which are assigned individual 

fitness values. The solution mutates through the search space 

using a power law distribution to determine its next move 

from a neighbourhood of candidate solutions ordered by 

fitness. Best solutions, when found, are recorded for 

reporting, but do not influence the development of the 

working solution. 

The dynamic aircraft landing problem was chosen as an 

example to further explore EO’s capabilities to solve 

dynamic problems. Existing problems from the OR library in 

[2] were to be used as known benchmarks with comparable 

implementations and results. After some initial examination 

of the problem instances it became clear that to choose the 

most promising instances for our examples, some analysis of 

the available data would be necessary. 

II. AIRCRAFT LANDING

The aircraft landing problem used in these experiments 

has been described in detail in [4], its dynamic 

implementation in [3]. Aircraft appear at a given appearance 

time A , which is when they report to the ATC for landing. 

All P  aircraft have a range (earliest E  to latest L  landing 

time) within which they may land and a target T between

E  and L as an optimal landing time. Penalties apply for 

landing aircraft before or after the target time. Aircraft 
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landing after other aircraft have to wait until a given, type-

dependent separation time has elapsed. The optimisation 

goal is a) to find a feasible solution that lands all aircraft 

within their landing ranges (between the earliest and latest 

landing times) and b) to find the feasible solution which 

minimises the penalties for early/late (compared to target)

landings. The objective function to optimise as formalised in 

[4] is given in equation (1).
P
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where P  is the number of aircraft

g  is the penalty for landing early

h  is the penalty for landing late

 is the amount of time the aircraft is early

 is the amount of time the aircraft is late.

In the dynamic case, the solving process follows a time 

line measured as the CPU time used by the program. The 

aircraft are made available to the solver at their given 

appearance times and remain in the active window of the 

solver until the landing time found by the solver is too close 

to current time to make any further change (i.e. within freeze
time).  In the dynamic case, the solver solves a sequence of 

smaller problem instances instead of the overall problem of 

all aircraft in the static instance. 

III. KNOWN APPROACHES

There are only two known dynamic approaches to the 

ALP, one based on the instances in [2], one working on

actual data. Beasley et al. [3] apply two variations of a GA as 

well as a deterministic linear programming implementation 

to the time windows as implemented in this work. The 

instances airland9 - 13 were first devised for these 

experiments.

Ciesielski et al. [9] use two different GA adaptations to 

solve the problem dynamically, applying a sliding time 

window of three minutes each. For the experiments, two 

actual (past) schedules with 28 (29) aircraft over 37 (38) 

minutes from Sydney airport, incorporating the use of both 

its runways, have been used.

There are a few approaches which solve the instances 

from [2] in a static context. Ernst et al. [1] introduce a 

simplex-based approach for the scheduling part of the 

problem. The sequentially ordered aircraft are divided into 

trees where only the root node of each tree is allowed to land 

on target, similar to the scheduling model used in this work. 

The permutation part of the problem is solved using a GA, 
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encoding the individuals as a permutation of all aircraft. The 

authors compare this approach with a Simplex, which is 

more time-consuming but has the advantage of providing 

accurate results.

An ACS (Ant Colony System) approach was proposed by 

Randall [14]. As ACS is a constructive approach, solutions 

are built from random sequences observing landing ranges 

and separation times. The pheromone model divides the 

landing ranges into four different parts. Experiments on 

airland1 – airland5 and airland8 (listed as airland6) show 

that the approach does not solve the problems to the same 

quality as [4].

Pinol et al. [13] propose to use two techniques they call 

Scatter Search and Bionomic Algorithms on the problems 

from [2], which are in essence GAs with special features. 

Both algorithms use a local search technique to optimise the 

new individual's time line. The benchmark solver used is a 

local search not discussed in detail, which finds the optimum 

reliably but at the cost of a runtime exponential in the 

number of aircraft.

Wen [15] uses Beasley’s integer linear programming 

formulation [4] to create a set partitioning problem in which 

runways are represented as columns and aircraft as rows. The 

column generation follows the Branch-and-Price method 

which is designed to simplify linear programs with large 

numbers of variables. A separate deterministic scheduler is 

used to optimise the time line of a given permutation. The 

approach is reported to outperform the linear program from 

Beasley et al. [4]

IV. METHODOLOGY

A. Implementation

The aircraft landing optimisation process consists of two 

parts, the search for the best permutation and the 

optimisation of the landing times given a permutation. The 

latter part of the solving process, as has been observed in [4],

[3], [13] and [15] can be solved by a deterministic algorithm. 

Therefore we developed a deterministic hill climbing

algorithm for optimising the landing times.  The stochastic 

EO solver’s task is to find the optimal permutation of the 

aircraft in the active window.

A separate algorithm is needed to manage the active 

window and the time line. The controlling algorithm for the 

dynamic process has been implemented as follows:

1. At the start of the program, the CPU time is stored as the 

start time of the algorithm.

2. After each iteration of the algorithm, the start time is 

subtracted from the current CPU time. The result is 

compared to the appearance times of aircraft that are yet 

to appear and to the landing times of planes in the 

currently active solver window. If the landing time of an 

aircraft is within freeze time, it is removed from the 

active solver window.

3. If aircraft have appeared, they are added in order of their 

target times and the preliminary schedule of all active 

aircraft are adapted according to the minimum 

separation times.

4. The active aircraft are optimised as described in section 

B.

5. The algorithm stops when all aircraft have landed or 

when the CPU time has exceeded the latest landing time 

of the last aircraft, whichever comes first.

B. Extremal Optimisation

Unlike Genetic Algorithms, which work on a population 

of solutions, EO improves a single solution using mutation. 

A solution consists of multiple components which are 

assigned individual fitness values. The initial implementation 

proposed by Boettcher and Percus [8] only accepted the 

component with the worst fitness to be mutated and replaced 

by a random component. This method proved inefficient in 

that it was prone to entrapment in local optima.

The same authors later [7] introduced a power-law-based 

probabilistic choice of component for mutation. The solution 

components are ranked according to their fitness values, 

using a rank of 1 for the best quality component and K for 

the worst. A candidate component is chosen for mutation and 

confirmed with a probability of k  where k  is the fitness 

rank and is a small value between 1 and 10.

As these approaches solved problems with binary 

component representations, once the component had been

chosen according to the rank-based distribution scheme, 

there was no doubt as to the type of change. The ALP is 

modelled as a permutation problem in this work. Therefore, 

instead of ranking the components of the existing solution by 

their fitness, a number of candidate mutations – each a copy 

of the current solution with a small change – is chosen and 

ranked by quality. This is referred to as the neighbourhood.

The performance of the EO algorithm depends on the type 

of change made to the current solution to define the 

neighbourhood, and on the only free parameter . It has 

been shown by Boettcher and Percus in [6] and other works, 

that the optimal value for  is determined by 
1

ln1 K ,

where K is the number of neighbours to choose from. Some 

experiments with the current problem showed that good 

Controlling algorithm

(active time window management)

EO solver

(permutation optimisation)

Scheduler

(landing times optimisation)

Fig. 1 Parts of which our algorithm is composed.
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results will be achieved in the range 1.6-1.8, which coincides 

with the assumption that the active time window is, on 

average, a small number 5 . As the value varies slightly for 

each problem instance, and the difference in quality is not 

large, we selected 1.6 over the whole series of experiments.

Similarly to the approach to solving a Travelling 

Salesperson Problem [7], where 2-opt moves were applied, 

our neighbourhood is defined as a single position swap, i.e. 

pairs of adjacent aircraft change places. Hence the length of 

the candidate sequence equals the length of the active time 

window. The candidates are then submitted to the scheduling 

algorithm to find their optimal cost which determines the 

rank k  of each candidate.

  Refining step 4 of the controlling algorithm described in 

section A, the steps of the EO solver are as follows:

1. Receive target-ordered sequence of active aircraft of 

length K and use it as a working solution.

2. Build a neighbourhood of K candidate solutions by 

swapping one pair of aircraft at a time.

3. Submit candidates to scheduler for optimisation of 

landing times and establish cost of optimised schedule.

4. Rank candidate solutions ascending by cost.

5. Choose one candidate according to k  and adopt as 

new working solution unconditionally.

6. If the working solution is better than the existing  

schedule (either the preliminary one set by the 

controlling algorithm or subsequent improvements made 

in this step), adopt the landing times of the working 

solution.

7. Let the controlling algorithm check for update of active 

window. If changes have occurred, resume from 1. If 

not, resume from 2.

Note that, as the current solution continues to evolve, best 

solutions - when they are found - are simply set aside for 

reporting. The current working solution may be many steps 

from any recorded best solution. 

C. Scheduler

Our implementation is based on the observation that the 

permutation at hand can be split up into sequences 

determined by equation (2), which can then be scheduled 

separately.

n

n

mi
ijm TijmST

1

|max (2)

where mn ; 0m ; Pn ;

T  is the target time of an aircraft,

P is the total number of aircraft and

ijS  is the minimum separation time between aircraft i and 

each preceding aircraft j
Note that equation (2) enforces that for each plane, the 

separation time to all its predecessors, not only the 

immediately preceding plane, must hold. If equation (2) 

holds for all aircraft between m and n, we regard the 

sequence between m and n as an interdependent chain of 

planes that must be optimised in combination.

The landing times of the aircraft in such an interdependent 

chain can be regarded as linked by the minimum separation 

times. They can be changed only in unison. To find out 

whether moving the sequence to an earlier landing is 

beneficial, we add one penalty weight (as if landing each 

plane one time unit earlier) for each aircraft to the score. 

Each aircraft which is currently scheduled with a landing 

time after target, adds a negative h to the score (moving it to 

an earlier landing would reduce the cost) and each aircraft 

whose landing time is scheduled on or before target, adds a  

positive g (as this aircraft would add to the cost if landed 

earlier).

The mirror image of this test is carried out for a move to a 

later landing time. Obviously, only one of these moves can 

have a negative result and thus reduce the cost. If neither 

move is beneficial, the optimum has already been achieved. 

If there is a benefit to either move, the possible length of the 

shift has to be explored. In our example with the left shift, 

possible limits are

a) the scheduled landing time of the last plane of an 

earlier chain and the separation times between 

the planes;

b) the earliest possible landing time of each craft in 

the sequence;

c) the target times of the planes currently landing 

later than their target. This is because they no 

longer add a negative late penalty to the score 

once the target time is reached.

If the possible shift range is zero and the boundary is the 

earlier chain, the benefits of uniting the chains and shifting 

them together has to be explored. 

Similarly, if the benefit of both shifts is zero, we have to 

explore if one or more of the first aircraft in a chain can be 

shifted to an earlier landing with benefit while leaving the 

latter planes in place, or if one or more of the later planes 

can be shifted to a later landing with benefit if the earlier 

planes are left at their current landing times. This would 

indicate that the chain has to be split.

The exact steps of the scheduling algorithm, used at step 3

of the EO algorithm, are as follows:

1. Pre-schedule all active aircraft by assigning each aircraft 

whose landing time jt  is not influenced by the 

separation time from a preceding aircraft to its target 

time jT . If the separation times from previous aircraft 

prevent assigning the target time, assign the first 

possible landing time (minimum separation time). 

2. Divide all aircraft in the active window into x separate 

chains xss ..1   of aircraft whose landing times influence 

each other according to equation (2).
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3. While there are chains is whose landing times can be 

further optimised, for each is  check the benefit of 

i. shifting all aircraft in is  to an earlier landing time by 

means of adding an early penalty g for all aircraft 

with jj Tt   and a negative late penalty -h for each 

aircraft landing later than the target time, i.e. jj Tt

ii. deferring the landing of all aircraft in is by adding h

for each aircraft with jj Tt   and -g for all aircraft 

with jj Tt .

4. If none of above checks returns a negative cost (an 

improvement), go to 7. If there is a gain in either (both 

is not possible), find the maximal displacement 

i. for a shift to earlier landing; the distance to the 

minimum of the following:

a) the earliest landing according to the minimum 

separation times from planes in the preceding 

sequences }|{ iksk , if they exist;  

b) the earliest landing according to the minimum 

separation times from already landed aircraft, if 

they exist;

c) jjijjj TtstEt ;|min , where jE is the 

earliest landing time of aircraft j;

d) jjijjj TtstTt ;|min

ii. for a shift to a later landing; the distance to the 

minimum of the following:

a) the minimum distance to the landing times of the 

planes of the following sequences }|{ ilsl , if 

they exist;

b) jjijjj TtsttL ;|min , where jL is the 

latest landing time of aircraft j

c) jjijjj TtsttT ;|min

5. If either of the shifts (4.i or 4.ii) is beneficial and the 

maximum possible displacement is nonzero, shift the 

landing times by the maximum displacement and go to 

3. If one of the shifts is beneficial, but the maximum 

displacement is 0, go to 6.

6. Check if the distance to the aircraft of the previous 

(following) sequence is 0. If yes, join the chains and go 

to 3.

7. Check if it is beneficial to split a sequence by either

i. shifting the later planes in a sequence to a later 

landing time while leaving one or more of the first in 

place;

ii. shifting the earlier planes of a sequence to an earlier 

landing time while keeping the current landing times 

of one or more later planes in the sequence.

TABLE I

PROPERTIES OF PROBLEM INSTANCES

Problem instance Number of 

aircraft

Run time per 10 

aircraft*

Cost for target 

time order**

Active window 

length

Max  (mean) 

sequence***

Number of 

moves****

Longest 

move*****

airland1 10 744 700 9 7 (5) 0 (0) 0

airland2 15 543 1520 10 7 (5) 2 (1.3) 2

airland3 20 485 1730 11 7 (3) 1 (0.5) 1

airland4 20 420 2540 11 15 (15) 0 (0) 0

airland5 20 465 5940 10 15 (15) 3 (1.5) 4

airland6 30 1089 N/A 6 27 (15) Unknown Unknown

airland7 44 1148 N/A 4 36 (11) Unknown Unknown

airland8 50 226 2470 18 6 (2.3) 3 (0.6) 3

airland9 100 1412 10690 11 17 (2.8) 13 (1.3) 5

airland10 150 1383 28868 15 25 (3.5) 27 (1.8) 8

airland11 200 1290 23973 12 14 (3.8) 32 (1.6) 10

airland12 250 1225 29091 13 23 (3.4) 36(1.4) 10

airland13 500 1122 69935 17 41 (4.5) 78 (1.5) 7

*Proportion of the time line (appearance of earliest – end of landing range of latest plane) available to 10 successive craft on average

**Cost of solution when optimal schedule is calculated for airplanes ordered by target times

***Maximum number of planes having no more distance between them than the minimum separation times. Average sequence length in brackets.

****How many aircraft are not between their nearest neighbours in target order, counted as the smallest number necessary to restore original order; i.e. 

1,2,6,3,4 count as one (for 6) not 2 (for 3 and 4); in brackets number of moves per 10 aircraft

*****Number of aircraft with bigger (smaller) target landing times which are between this craft and its previous (successive) neighbour in target order.

Airland6 and airland7 cannot be solved in a dynamic context for lack of sufficient active window length (1 aircraft for most time windows). Their 

target-ordered sequence cannot be optimised as landing time decisions have to be made without knowledge of subsequent aircraft.
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8. If none of these checks is successful, set the “optimised” 

flag of the sequence to true and continue with the next 

sequence until all sequences are optimised.

V. EXPERIMENTS

To select suitable instances from the available datasets, we 

analysed the best solutions obtained from preliminary 

experiments, which yielded the best-known costs for most of 

the smaller problems. The results of the analysis are listed in 

Table I. 

It is apparent that solving the first 7 instances would not 

improve our knowledge of the solver’s capabilities

considerably. Problems 6 and 7 are, due to the scarce 

number of aircraft in the active window (more than half of 

the time windows has only one aircraft), not suited for 

combinatorial optimisation in the dynamic case. Problems 1 

and 4 do not require any changes to the target time ordering 

and make the EO solver redundant.

Problems 2, 3 and 5 are possible candidates, but since they 

only require minor moves (changing the position of very few 

craft by one or two positions) and there is no real sequence 

of numerous active windows of interesting length, we 

decided to experiment only on instances 8 – 13. 

Airland8 has a rather short timeline of 226 seconds per 10 

aircraft (Table I), an adequate challenge in the given 

environment. Problems 9 – 13 average between 1122 and 

1412 seconds for 10 aircraft. To speed up the timeline and 

enhance the challenge, we ran them at 3 and 5 times the 

speed. Due to insignificant differences in the results, we only 

list the results of the fastest runs.

As in the benchmark, we observed the minimum 

separation time between all pairs of aircraft, not only 

adjacent planes.

VI. BENCHMARKS

The benchmarks used have been described in [3] and 

previous works of the same authors. DALP-H1 and DALP-

H2 are hybrid approaches based on a stochastic algorithm 

and a deterministic schedule optimiser implemented as a 

primal-dual simplex algorithm in [1] and [11] which splits up 

interdependent sequences into a tree structure.

The stochastic parts of both DALP-H1 and DALP-H2 

were implemented as Genetic Algorithms with a constructive 

preprocessing stage. Both rely on target-time ordering for 

their primary solution structure. For DALP-H1, the basic 

algorithm from [1] was adapted to the dynamic case by  

adding new aircraft by target times to the present aircraft 

which are ordered by the landing times the solver has found 

before.

DALP-H2 was first described in [5] as using a genetic 

algorithm with real-valued normalised encoding of the 

landing time as a position on the landing range. Features that 

adapt it to the dynamic environment have been added in [3]

to ascertain that the range of the active time window is not 

exceeded. The extension made in [3] adds good individuals 

from runs with DALP-H1 as well as individuals obtained by 

orderings according to earliest/latest/target times.

VII. RESULTS

We compare our best results, obtained from the 

experiments using EO on the chosen instances, with the 

results from [3] in Table II. 

More detailed results of the trials are shown in Table III. 

Each experiment was repeated 100 times. As definite best 

results exist only for the first 8 problem instances, we list our 

results as percentages of  the results of DALP-OPT, the 

deterministic solver used as a benchmark for the dynamic 

case in [3], mentioned in Table II. 

Whether the DALP-OPT results are optimal is an 

interesting question. A cross-check with EO on the smaller 

problems, for which known optimal static results exist,  

proved that it is possible to solve these problems to a quality 

that is closer (airland4, airland5, airland8) or equal (airland1, 

airland2, airland3) to the static best-known result even in a 

dynamic environment. However, given the dynamic nature of 

the problem optimisation results of previous time windows 

influence the optimisation of subsequent active windows.  

VIII. DISCUSSION

The test results show that the algorithm solves the 

problems very quickly and to a very good result. Prolonged 

run times do not produce better results. There is, however, 

TABLE III

RESULTS OF EXPERIMENTS WITH EO ON SELECTED PROBLEM INSTANCES

Problem Instance Min Avg Standard dev.

airland8 116 117 1.4

airland9 77 77 0

airland10 92 96 1.5

airland11 75 75 0

airland12 77 77 0

airland13 76 77 0.2

 The best, mean and standard deviation of 100 trials are given as a 

percentage of the best solution of “DALP-OPT” in Table II.

TABLE II

RESULTS OF EXPERIMENTS, COMPARISON WITH EXISTING BENCHMARK

Problem 

Instance
DALP-OPT DALP-H1 DALP-H2 EO Result

airland8 2000 2915 2710 2320

airland9 7848 13555 12554 6110

airland10 17726 31945 31034 16386

airland11 19327 27417 23963 14559

airland12 25049 34246 31440 19342

airland13 58393 78008 58392 44708

The results are the minima found over the trials, best results in bold.

DALP-OPT, DALP-H1 and DALP-H2 are algorithms for which results 

have been listed for the single runway case of these instances in [2].

All results have been rounded to the nearest integer.
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very little variation in the results for most of the problems. 

This may either indicate that the solver is reduced to finding 

a certain local minimum, or corroborate the theory that the 

problem is not very demanding. 
Z

i
iz

1

! (3)

where PZ  is the number of sequences of 

interdependent aircraft and ZZZ mnzmnz ...111 .

The complexity of the permutation problem, even in the 

static case, is limited by equation (3). If the complete 

sequence does not fit into a time window, the complexity is 

further restricted (and, as an aside, it becomes virtually 

impossible to obtain results of static case quality in the 

dynamic case). To shed some light on this question, we listed 

the active window length and the lengths of interdependent 

sequences in Table I. For each interdependent sequence, we 

explored whether all its aircraft were in the active solver 

window at once. This was the case for all sequences in 

instances airland1 – airland3. In all the other problems, the 

coincidence of the interdependent sequences of aircraft with 

the active windows was at most 50%. 

As Table I shows, the average number of moves that will 

create the optimal solution starting from a target-time-

ordered permutation is around 2 per 10 aircraft at most for 

all the problem instances in the library. The vast majority of 

these moves is made by swapping the positions of two 

neighbouring aircraft (counted as a single move). Airland10 

and airland13 are the only “interesting” instances; the best 

solution we found has longer average moves as well as small 

areas where many moves are intertwined and the underlying 

target-time ordering is barely visible. 

The range of shifts has also been reduced for practical 

reasons, as first implemented in [10] and more recently in 

[1]. It is still a reliable measure, since target time ordering 

has been used as a starting point for permutations by the 

stochastic solvers both in [3] and the work presented here. It 

seems plausible that an incremental algorithm with single 

step moves can outperform a Genetic Algorithm with 

crossover and mutation operators, as they may prove 

“overkill”.

The values obtained by our solver are therefore very 

consistent with our analysis. The best results found by EO 

(listed in Table III) outperform the benchmark results by a 

factor of up to 2.2. 

It seem surprising that our stochastic algorithm has been 

able to outperform the deterministic benchmark solver 

DALP-OPT. As we are working in a dynamic environment, 

deterministic solvers can be expected to produce the optimal 

result within the local time window. However, this may lead 

to a suboptimal global result. 

IX. FURTHER WORK

The current implementation can easily be adapted to solve 

a problem with multiple runways. In the case of the given 

problem instances, this does not seem to pose a great 

challenge to our solver. To experiment further with the 

capabilities of a stochastic solver, the density of aircraft 

would have to be adjusted to the number of runways to 

produce an adequately dense and interesting problem. 

Future experiments will be directed at the question of 

whether the EO neighbourhood would improve by including 

moves  with variable lengths (covering more than one 

position). In combination with more complex problem 

instances, this variation can be expected to produce 

interesting results. 

As the optimal value of  depends on the length of the 

candidate list, and the candidate list length fluctuates with 

the length of the active solver window, experimenting with 

an adaptible value for  is also one of our priorities.

As there is only one existing benchmarch result available 

to these instances, and it is likely that this type of 

permutation problem would lend itself as an ideal problem to 

be solved by Ant Colony Optimisation, trials with ACO on 

these problem instances, and more difficult instances are 

likely to produce excellent results.
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