
Abstract—We discuss the application of the multilevel (ML) 
refinement technique to the Vehicle Routing Problem (VRP), 
and compare it to its single-level (SL) counterpart. Multilevel 
refinement recursively coarsens to create a hierarchy of 
approximations to the problem and refines at each level. A SL 
heuristic, termed the combined node-exchange composite 
heuristic (CNCH), is developed first to solve instances of the 
VRP. A ML version (the ML-CNCH) is then created, using the 
construction and improvement heuristics of the CNCH at each 
level.  Experimentation is used to find a suitable combination, 
which extends the global view of these heuristics. Results 
comparing both SL and ML are presented. 

Keywords: Heuristics, metaheuristic, combinatorial optimization, 
vehicle routing, multilevel refinement, aggregation techniques

I. INTRODUCTION

UE to the practical importance of combinatorial 
optimization (CO) problems in a number of industries, 

work into finding algorithms for such problems continues to 
be an active area of research. With this type of problem, the 
goal is to find an optimal solution from a finite or numerable 
infinite set of possible solutions [2].  

Vehicle routing has emerged as an important CO problem 
because of its practical significance to a number of 
industries. In addition, it is of interest in a theoretical context 
because of its research components being closely related to 
the Travelling Salesman Problem (TSP – one of the most 
widely studied CO problems) and the Bin Packing Problem 
(BPP).

The VRP has many variants with different side constraints 
[10]. In this paper we consider the capacity vehicle routing 
problem. The VRP requires the creation of a set of vehicle 
routes originating and ending at a depot D, serving the 
demands 0id of n customers, for (1,2,3.... )i n . The 
demand of the depot D is zero. A non-negative cost is 
defined between any two customers i j  as ij jiC  = C and
between any customer and D. The depot holds V identical 
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vehicles of capacity Q. The total demand of customers on a 
route should not exceed an upper capacity Q. The cost of a 
route: given by the sum of the costs between customers on 
the route and the cost to and from D should not exceed an 
upper cost M (perhaps relating to the maximum distance a 
vehicle can travel). The solution then seeks to minimise the 
total cost of the routes. 

The VRP is known to be NP-hard [13] and problem 
instances solved to optimality normally consist of less than 
100 customers. However, since there are real world 
instances of the problem consisting of thousands of 
customers [4], there is a need for suitable heuristic 
approaches capable of producing solutions of usable quality 
in an acceptable runtime. Laporte et al. [12] provide a 
survey of heuristic approaches to solving the VRP, while 
Funke et al. [9] provide a survey of local search techniques 
used for the VRP. 

Walshaw found success in extending multilevel 
techniques to the TSP [26] where it outperformed many of 
the traditional methods. The similarities between the two 
problems (i.e. the TSP and the VRP) made it a logical 
decision to ask: 

How would a ML algorithm for the VRP perform 
compared to an equivalent single-level version? 

How would a ML algorithm compare with other 
metaheuristics in the field? 

These questions provided the motivation for the current 
research.

A. The Multilevel Refinement Technique 
The multilevel technique (ML) [1], [21] has been used for 

a number of years with proven effectiveness across varying 
problem areas. These include clustering [11], grid 
computing [14], graph partitioning, graph colouring and the 
TSP [25], [26]. Additionally metaheuristics from simulated 
annealing through genetic algorithm to tabu search have 
been incorporated into effective multilevel implementations 
as reported by Walshaw [25]. 

Coarsening: This forms the construction phase of a ML 
algorithm where aggregate modelling [17] techniques are 
applied to the problem. The aggregation process filters the 
search space creating a simplified model. The model retains 
the characteristics of the original problem ensuring solutions 
of the model are applicable to both. 

Refinement: This is the process of changing the current 
solution so that the value of the problem attribute(s) being 
controlled changes ‘favourably’ with respect to the cost 
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function. By favourably we mean that for a minimisation 
problem the value of the measured quantity is being reduced 
by this process and vice-versa for a maximisation problem. 

A level is a period in the solution defined during the 
coarsening process. In the coarsening phase a level 
demarcates an approximation to the problem, while in the 
refinement phase a level demarcates one solution to the 
problem. 

Due to the complexity of CO problems, composite 
heuristics [8], [19] are the preferred method to find a good 
solution in reasonable time. Typically composite heuristics 
consist of two phases. During a construction phase a 
construction algorithm is applied to create an initial solution. 
An improvement phase, utilising local search algorithms, is 
then deployed to improve the solution obtained from the 
construction phase. 

The multilevel refinement technique follows a similar but 
somewhat different approach. The solution process consists 
of a coarsening and refinement phase. The initial feasible 
solution is created at the end of the coarsening phase, which 
also constructs a hierarchy of approximations to the 
problem. A refinement phase analogous to the composite 
heuristics’ improvement phase occurs recursively on each 
approximation in reverse order [20]. Not only does this 
mean that at each level a feasible solution exists, making the 
multilevel heuristics faster to run, but also that the 
hierarchical view of the problem seems to impart a much 
more global view than can be seen by single-level local 
search heuristics [25]. 
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Fig. 1.   Multilevel Algorithm [25]. 

The multilevel algorithm is shown in Fig. 1. Lines 2 to 6 
outline the coarsening phase while lines 7 to 11 encapsulate 
the refinement phase. Line 10 constitutes the improvement 
phase of an iterative improvement algorithm. The 
differentiating feature of the ML algorithm however, is that 
this is repeated at each level of refinement. 

A segment is a section of a proposed route having a cost, 
demand, two end points and a fixed edge. At the start of the 
solution process, referred to as level zero, a segment 

represents a single customer (or a vertex). The demand is 
equal to the customer’s demand. The cost of the segment is 
zero as the end points are the same. 

Segments at the upper levels (excluding level zero) are 
created by fixing an edge of least cost between a pair of 
existing segments. The edge connects two of the four 
available end points such that the cost of the edge is 
minimised. The two unconnected end points become the end 
points of the created segment. The new segment is then 
represented by its two end points and a fixed edge. The 
refinement algorithms treat segments of level zero (single 
customers) and segments of the upper levels (group of 
customers) in the same manner as the internal structure of a 
segment is not accessible. 

A fixed edge is the section of a route within the end points 
of a single upper level segment. Fixed edges form the 
internal structure of segments and could represent multiple 
segments. However segments represented by fixed edges 
demarcate sections of a route that is not currently available 
for merging during the coarsening phase or for improvement 
during the refinement phase. 

For the VRP we define the graph ( , )P S E . S defines a 
segment set given by, 0 1{ , ....... }nS s s s . Segment s0 is the 
depot and the other segments represent customers. E
represents the set of edges between the segments given 
by {( , ) : , , }i j i jE s s s s S i j . The edges defined by the set 
E have a non-negative cost, Cij and are termed free edges,
referring to the fact they can be acted upon by edge-
exchange heuristics [9]. At the upper levels where the 
segments’ end points are different, an edge in E defines the 
edge of least cost that can be used to connect an end point of 
si to an end point of sj.

Fig. 2 shows the multilevel algorithm solution process. 
Coarsening the problem achieves two things. Firstly, 
constructing a solution to the problem, by fixing edges 
(represented by solid lines) between segments that will 
hopefully be served on the same route in a final solution of 
high quality. Secondly, reducing the level of detail to be 
considered when the problem is refined at each level. When 
an edge is fixed at a level it is freed when the level is 
revisited in the extension phase [25]. The refinement phase 
optimises the free edges (represented by dotted lines) in the 
solution. Segments that contained fixed edges are treated as 
single nodes, capable of being optimised by node exchange 
heuristics [9] however, the internal structure is not 
considered while fixed. 

This means a minimal level of detail is presented to the 
refinement algorithms at the start of the refinement process. 
However, the free edges correspond to the edges fixed at the 
higher levels of the coarsening process and potentially of 
greater cost as the edges fixed at the lower levels tend to be 
edges between segments that are ‘closer’ together. Hence 
most of the improvements found by the ML algorithm will 
occur early in the refinement phase. 
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When the optimisation is completed at a level the solution 
in place is projected to the level below, the extension 
process then frees the edges fixed at that level. The 
refinement process now has a problem of greater detail, but 
improvements found earlier in the process help make the 
search faster. 

For the example shown in Fig. 2, no improvement is 
found at levels 3 and 2. For some problems no improvement 
will be found at the highest levels of the refinement process. 
However there is refinement at levels 1 and 0, with the 
refinement at level 1 being done on segments, giving an 
indication of the gains found from coarsening the problem. 

Fig. 2.  ML refinement applied to a VRP showing the stages of coarsening, extension and refinement. Continuous lines show 
fixed edges and broken lines show free edges. 

II. COARSENING

The coarsening process is shown on the left of Fig. 2. At 
the first level (level zero) a starting segment is chosen at 
random and an edge is fixed between it and another 
unmatched segment. The process continues while there are 
pairs of unmatched segments at the current level. When all 
the matches satisfying the above requirements have been 
completed the created segments are moved to the following 
level (level 1) and the process is repeated. When no new 
segments can be created the last level of coarsening is 
reached. Segments are matched once at a given level and the 
created segments should respect the problem capacity and 
cost constraint.  

The Clark Wright saving [6] algorithm was used to select 
the segments to be matched at each level during the 
coarsening phase. For the set of segments 0\C S s we
define an ordered set of free edges given by 

E i j i j i jC   = {(s , s ): s , s   C, i   j, C := C \ (s , s )} .Assume CE

is ordered by decreasing savings in which case si and sj are 
segments yielding the greatest savings when merged based 
on the Clark Wright saving algorithm. 

The coarsening process at each level defines the sets C
and CE and match segments corresponding to edges resulting 

in the greatest savings. The set C at each level corresponds 
to the segments created at the last level excluding the depot. 
A match consists of fixing an edge between a chosen pair of 
segments creating a new segment. Edges are fixed between 
the end points of segments where the greatest saving were 
found. Checks are done on the segments created to ensure 
they do not exceed the constraints on the problem. When all 
allowed matches are done at a given level, a level counter is 
incremented indicating a new level. The segments created 
from the last level are used to repeat the process while new 
segments can be created respecting the problem constraints. 

The coarsening process is similar to the one used for the 
TSP [27]. However the depot is never aggregated during the 
coarsening process. At the end of the coarsening phase 
segments are formed having low average values with regard 
to the objective function. These segments are then joined to 
the depot to form the initial VRP routes. 

III. REFINEMENT 
Using the initial solution created from the coarsening 

phase, the refinement process seeks to iteratively improve 
the quality of the solution by reducing the total cost. The 
process uses a combination of inter and intra route 
optimisation heuristics to explore the neighbourhoods 
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accessible from the initial solution by the refinement 
algorithm of Fig. 3.  

0     :     
1    
2
3   exp      
4     
5   
6        3 -   -  
7     

i

set level counter i last level of coarsening
set initial solution S
do

and segments coarsened at level i
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do

refine routes with opt lambda shift
pe     

8    (  )
9  :   -  1
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rform cyclic transfer on routes
while improvement found

i i
while i

Fig. 3.  Refinement algorithm. 

The refinement process works through the solution levels 
in the reverse order to that experienced during the 
coarsening phase, starting at the highest level. As the 
process descends though the levels the segments in each 
route are checked to determine if they were coarsened at the 
present level. If so, they are expanded to reveal their 
constituting segments, which are used to replace the old 
segments in the route. The improvement stage is then 
executed while the cost of the solution can be reduced. The 
3-opt exchange is used for intra-route optimisation. 

A. Split Procedure
Given a Giant Tour [24]: a Hamiltonian cycle linking all 

the segments and not the depot, it is possible to find the best 
way to partition it into sections which are attached at their 
ends to the depot so as to form routes. This can be done by 
solving a set-partitioning problem [3] to select the optimal 
combination of routes [18]. We refer to this procedure as the 
Split Procedure that can be performed in O(n2) [16], [7]. The 
routes it produces respect the capacity and cost constraints 
of the problem. 

Prins [16] has used this procedure to find improvements 
to VRP solutions. He first removes all the edges from routes 
which are incident at the depot creating sub-routes. The sub-
routes are then joined to form a Giant Tour by connecting 
the sites at the ends of different sub-routes. Details of how 
Prins chose the connecting edges were not published. We 
have joined sub-routes by starting with an arbitrary sub-
route end as the start, then connecting the other end of the 
sub-route to the nearest (using the least cost edge) 
unconnected sub-route end which is not yet part of the Giant 
Tour. We repeat the procedure for this extended sub-route 
and so on. Eventually only the start will be available to 
connect to, completing the tour. The Split Procedure is then 
applied to this Giant Tour to recover a VRP solution 
satisfying any constraints and hopefully of lower cost. 

This procedure has the potential to introduce large 

changes to a solution, for example it has sometimes been 
seen to produce large ‘rotations’ of the routes. It has also 
been useful for implementing rebalancing. A VRP solution 
that violates the constraints can be used to form a Giant-
Tour as above, and then the Split Procedure is applied, but 
now with the constraints tightened. The formation of a Giant 
Tour followed by the split can be performed at any level. 

B. Lambda – Shift 
This is a heuristic created by Osman [15] that searches for 

improvements by moving vertices between a given pair (p,
q) of routes. Osman considers all possible insertions in the 
route q of a vertex from route p and vice -versa. He also 
considers exchanges where two vertices on different routes 
exchange places i.e. each is inserted into the other route with 
the same neighbours as the removed vertex. Additional 
transfers involving groups of neighbouring vertices are 
considered.

Since at higher levels segments represent groups of 
vertices and the ML algorithm operates on segments, we 
restrict our attention to the case where only one segment is 
removed from a route i.e. Lambda equal to one. Most 
transfers executed at solution levels greater than zero, will 
be equivalent to a shift of lambda greater than one for a non-
ML scheme. 

If a transfer leading to an improvement is found, it is 
immediately accepted and the 3-opt exchange is applied to 
the affected routes. All pairs of routes are searched. 

C. Cyclic Transfers 
It has been found that most known low-cost solutions to 

the VRP are composed of routes that are close to capacity. 
Thus when searching for inter route improvements, the 
transfer of a customer from one route to another will 
normally require the removal of one or more customers from 
the route into which it has been inserted. The ejected 
customers will have to be inserted into another route, if the 
solution is likely to be one of low cost, and so on. 

This has lead to the construction of cyclic transfer 
algorithms, in which the sets of allowed transfers between 
routes forms a cycle – the customers ejected from the last 
route are inserted into the first.

Two parameters influence the complexity of a cyclic 
transfer algorithm; these are the number of customers 
ejected from each route and the number of routes forming 
the cycle (cycle depth). The cyclic transfer algorithm 
implemented follows Thompson [22] but is restricted to the 
case where only one segment (a multilevel customer/group 
of customers) is transferred at a time. The number of routes 
in the cycles is varied during the algorithm execution with 
the first improvement found accepted. 

The least cost insertion point of a customer in another 
route, for each possible ejection is used. This can be 
efficiently pre-calculated [22]. Unlike the lambda–shift 
heuristic the segment can be inserted in a position in the 
route that is different from the position of the ejected 
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segment. The search for cyclic transfers that reduce the cost 
of a solution utilises techniques for finding elementary 
circuits in graphs [23]. 

IV. SINGLE-LEVEL
In analysing the effect of the ML philosophy on a given 

problem it helps to compare the performance of the single-
level (SL) counterpart with the ML version being analysed. 

0    
1      
2  (  )
3     ( )
4

set problem P
construct initial solution S for P
While improvement found

refine S
end

Fig. 4.  Single-level Algorithm. 

The SL algorithm shown in Fig. 4 for the implemented 
combined node-exchange composite heuristic (CNCH) can 
be classed as an iterative improvement algorithm. 
Algorithms of this kind find it difficult to escape local 
optima. A first improvement approach is used in the 
improvement phase of the CNCH SL and ML versions. This 
is possibly the least effective approach to use. 
Unsurprisingly the results of the overall SL approach are 
poor, however the ML version designed on the same 
principles produces results comparable to most 
metaheuristics in the field. 

For the SL version of the CNCH coarsening as seen from 
a multilevel perspective is best viewed as a construction 
process, in which the initial routes are created in one pass of 
the algorithm being used. The side constraints in place are 
satisfied at level zero, hence the results returned from the SL 
coarsening phase is inline with standard implementation of 
the Clark Wright saving algorithm. 

The removal of lines 0, 2, 3, 9 and 10 from the refinement 
algorithm of Fig. 3 yields the refinement algorithm for the 
SL version. For the SL algorithm there is no concept of 
levels and hence no extension process is required. 

The SL algorithm implemented uses the Clark Wright 
saving algorithm, the Split procedure, 3 - opt exchange, 
lambda - shift and cyclic transfer algorithms. To convert the 
CNCH into its ML counterpart consisted of a process of 
modifying the CWS algorithm so that coarsening became an 
iterative process across the levels, the implementation of an 
extension algorithm, and then running the improvement 
phase of the SL algorithm at each level. 

V. BALANCING AND OVERLOADING
Problem constraints prevent moves that would otherwise 

lower solution costs. This is particularly restrictive at higher 
levels in ML algorithms when segments have for example in 
the VRP, demands which are a substantial fraction of the 
maximum route capacity.  For the VRP inter-route moves 
are prevented by these capacity constraints. With this in 

mind we have implemented two changes to our algorithm 
that were found to work well together, segment balancing 
and route overloading. It was suggested by the results that 
these heuristics are particularly effective in the cases where 
the problems are clustered.  

A. Segment Balancing 
Segment balancing is the process of creating segments 

during the coarsening phase of approximately the same 
demand and cost. It was found that inter-route optimisation 
heuristics reported improved results when using balanced 
segments. The lambda-shift is used to outline the potential 
gain from segment balancing 

For a given pair (p, q) of routes it is assumed that the 
demand and capacity of the routes are equal to the maximum 
values allowed by the problem side constraints. Additionally 
a lambda-shift exchange is attempted in transferring a 
segment from p to q and one from q to p. In the case where 
the segments are balanced if the transfer results in a solution 
of lower cost the transfer would be successful. In the 
unbalanced case however this transfer would most likely be 
prevented by the side constraints.  

B. Route Overloading and Balancing 
Overloading is the process of gradually relaxing the 

capacity constraints at each level during coarsening with a 
view of creating routes with improved solution cost. For the 
VRP overloading can be thought of as temporally ignoring 
the bin-packing element of the problem, while obtaining the 
best TSP solution possible for each route. 

Route balancing is the complementary strategy to 
overloading and is done during refinement. It gradually 
brings the constraints back inline with the original values 
imposed by the problem while attempting to preserve the 
improvements found with regard to the cost function during 
the overloading process. A feasible solution is found when 
the constraints are sufficiently tightened to be inline with the 
problem specified values. The Split Procedure is used to 
implement route balancing at each level. 

VI. RESULTS

The algorithms described above have been tested 
extensively with a number of standard test cases used by 
other authors for benchmarking VRP algorithms [5]. 

As part of this testing, many experiments were performed 
to choose optimal parameter settings and algorithmic 
configurations. For example, two heuristics were 
implemented for the coarsening phase, namely the Clark 
Wright Savings (CWS) algorithm and the Nearest 
Neighbour (NN) algorithm. The results indicated that the 
time spent during coarsening was a negligible percentage of 
the overall solution time and since the CWS method 
generally returns marginally better costs (about 0.5%) than 
the NN it is the method used in the results produced below. 

However, it is of interest to look at how different heuristic 
approaches impact on the results and so in subsection A the 
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most significant findings are given. Then in subsection B the 
best results are presented, both in terms of a fixed set of 
parameters and following other authors’ (e.g. [15]) 
individual parameter settings for each problem. 

A. Heuristic Approach Testing 
The results in this section present the findings for tests 

carried out using algorithmic configurations that feature 
different combinations of segment balancing and route 
overloading. These factors seem to be most significant in the 
experimental testing of the algorithms. 

Note that when segment balancing is employed, a level 
demand must be specified. This is a factor governing the 
targeted demand of segments created at each level and is 
based on the average demand of customers in the problem. 
A level demand of 1.2 indicates that the initial level demand 
is 1.2 times the average demand of customers in the 
problem. The initial level demand value is then doubled at 
each level. 

Similarly, when route overloading is in use an adjusted 
capacity factor must be set. Thus the maximum allowed 
demand for a route is increased at each level in the 
coarsening phase up to a predefined limit. The maximum 
allowed demand value is given by the adjusted capacity 
factor times the problem stated capacity. 

Finally, during testing of such algorithms it is important 
to note that some evaluation of the trade-off between 
solution quality and run-time must be made. Thus, for the 
following results, costs are normalized with respect to the 
best-known values for each problem and averaged over the 
number of problems in the test suite. 

TABLE I. A COMPARISON OF THE DIFFERENT HEURISTICS APPROACHES

Segment 
balancing

Level 
demand 

Route
overloading 

Adjusted
capacity
factor 

Normalised 
average
cost

0 - 0 - 1.114 
0 - 1 1.6 1.087 
1 1.4 0 - 1.085 
1 1.2 1 1.2 1.076 

Table I shows a comparison of the four different 
configurations (a zero in the segment balancing and route 
overloading columns indicates that the heuristic was not 
used). The normalised cost averaged over all problem 
instances is given in the final column and thus it can easily 
be seen that using either segment balancing or route 
overloading improves the results but that the best 
configuration occurs when both are combined. 

Indeed, when route overloading is used in combination 
with segment balancing it has the effect of increasing the 
value of the segment balancing level demand at each level 
by a factor of the overloaded capacity allowed at that level. 

In a situation where there is no overloading, at the start of 
the refinement phase the total capacity in the solution (equal 
to the problem capacity multiplied by the number of routes) 

is close in value to the total demand of the solution. This 
means that there is a high possibility inter route moves are 
rejected because they violate the capacity constraint on the 
routes. Where the solution is overloaded the total capacity of 
the solution at the start of the refinement phase exceeds the 
total demand of the solution.  This spare capacity makes it 
possible to implement inter-route improvement moves at the 
upper levels. Finally, note that many different values for the 
level demand and adjusted capacity factor settings were 
tested but that the ones in the table gave the best results for 
this configuration. 

B. Best Results 
In this section the best results are given, firstly using a 

fixed set of parameters values: level demand = 1.2, adjusted 
capacity factor = 1.2 and cyclic depth = 2. Then following 
other authors (e.g. [16]) individual parameter settings for 
each problem where the three parameters above are varied. 
The algorithms are tested on the Christofides instances [5]. 

Table II shows a comparison of the results for the 
multilevel (ML) and single level (SL) versions. The first two 
columns give the problem number and size. Columns 3 and 
4 compare the cost and runtime for the ML and SL 
algorithms using the fixed set of parameters. Columns 5 and 
6 present the best solutions found by the ML algorithm. 

As can be seen for a constant set of parameters the ML 
algorithm can get within an average of 7.13% of the best 
known with an average runtime of 310 seconds. The SL 
algorithm is considerably faster (by around a factor of 2, as 
predicted by Walshaw in a general discussion of multilevel 
schemes [25]) but gives much worse results. The SL 
algorithm, when allowed to run for the same time as the ML 
algorithm return an average cost of 18% above best known 
values.

The results are particularly interesting for the larger test 
cases. Prins results [16] while reporting better cost showed 
large increases in runtimes for the larger test cases. The ML 
algorithm presents a technique for dealing with larger 
problems. 

In the best case, the ML framework returns an average 
cost 2.49 % above the best known results with an average 
runtime of 280 seconds. This is comparable to the improved 
petal heuristic [18] which reports an average cost of 2.43 
above the best known values with an average runtime of 208 
seconds.

The results indicated that where the problems are 
clustered (problems 11, 12, 13, 14) there are improvements 
to be found in the solution cost from using route overloading 
and segment balancing. For the problems where the 
segments are not clustered, overloading provides marginal 
improvements in some cases. 

Whilst more extensive testing needs to be done using 
larger datasets of clustered problems the results above 
appear likely to be further validated after increased testing 
for the following reasons. Firstly, when inter-route heuristics 
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transfer balanced segments between routes, an improvement 
is found once the costs of the new edges are less than the 
costs of the edges being replaced in the affected routes. We 
assume for a clustered problem that a region of clustered 
segments exists requiring a given pair (p, q) of routes to 
serve the demand within the region. New edges generated by 
transfers of segments between the routes should be similar in 
cost and similar to the cost of old edges as the segments of 
each route are close to each other. On average, therefore, 
most potential moves attempted should return an average 
cost approximately equal to zero (no improvement or 
deterioration in the cost function).

In some cases there may be slight differences in the cost 
of the new edges compared to the old edges. In the cases 
where this corresponds to a gain the solution is changed. 
This allows the algorithm to explore areas of the search 
space that might not have been possible in the case where 
the problems are not clustered. 

The second possible reason for the improvements found 
could be due to the mechanics of route overloading as 
applied to clustered regions. Route overloading is most 
effective where the actual route capacity is increased. An 
improving move is found when additional customers can be 
added to the route that will respect the increased capacity 
constraints without violating the cost constraints. It is not 
unlikely, therefore, that in a clustered region (where the 
average cost of the edges to any proposed new customer 
should be lower than that in a non-clustered region) the 
algorithm would have a greater likelihood of finding 
improving moves compared to a non-clustered region. 

VII. CONCLUSIONS

It can be seen from the results that the ML version greatly 
improves the SL version and always returns an improved 
cost for the equivalent runtime.  It is also important to note 
the differing experiences found from using the ML 
algorithm on clustered VRP problems and using it on Graph 
Partitioning Problems and Graph Colouring Problems of 
high density. As was shown once overloading and segment 
balancing were introduced the ML algorithm performed well 
on the clustered problems.  The ML algorithm did not 
perform similarly on graphs of high density. While this 
requires more investigation the results suggest that the 
technique once allowed suitable relaxation of the constraints 
bounding the objection function, does possess the ability to 
refine problems of high density. 

There are a number of areas that the framework could 
address to achieve further improvements, namely 
investigating the effect Node Ejection Chains [9] would 
have in improving the handling of inter–route optimisation. 
This is one heuristic that should benefit from the ML 
algorithm, as at the upper levels ejecting a segment would 
correspond to an entire section of a route being ejected, 
hence the potential for achieving improvement with limited 
runtime and ease of implementation. 

We also plan to investigate how much influence the 
clustering within a problem has on the results especially 
since many real life problems are clustered. 

TABLE II. COMPARISON OF THE ML AND SL FRAMEWORK FOR CONSTANT PARAMETER SETTINGS. BEST KNOWN VALUES TAKEN FROM [16] 
Problem N Percentage Cost 

above best known for 
constant set of 

parameters 

Runtime for constant set 
of parameters (s) 

Percentage Cost 
above best known 

individual parameter 
setting for each 

problem 

Runtime using 
individual parameter 

setting for each problem 
(s)

Best known 

  ML SL ML SL ML ML  
1 50 7.28 8.29 27 27 0.48 29 524.61 
2 75 7.86 14.68 76 55 3.40 69 835.26 
3 100 3.27 15.81 230 149 1.97 210 826.14 
4 150 7.17 22.42 562 237 4.56 442 1028.42 
5 199 8.09 28.41 1499 687 6.28 1558 1291.45 
6 50 1.92 10.54 26 16 1.38 19 555.43 
7 75 5.99 8.78 42 44 3.01 48 909.68 
8 100 11.08 13.34 91 86 3.79 161 865.94 
9 150 12.08 10.30 318 181 3.83 385 1162.55 
10 199 11.27 15.04 618 411 1.42 119 1395.85 
11 120 5.96 47.43 391 353 0.93 518 1042.11 
12 100 2.83 17.43 117 187 0.27 106 819.56 
13 120 10.12 25.84 244 167 3.45 163 1541.14 
14 100 5.03 19.04 106 102 0.20 101 866.37 
Average  7.13 18.38 310 193 2.49 280  

218

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Scheduling (CI-Sched 2007)



REFERENCES

[1] Brandt, A. (1977) Multilevel Adaptive Solutions to Boundary Value 
Problems, Math. Comp, vol.31, pp.333-390. 

[2] Blum, C. and Roli, A. (2003) Metaheuristics in combinatorial 
optimization overview and conceptual comparison, ACM Computing 
Surveys, Vol. 35, No. 3, pp. 268 - 308. 

[3] Boctor, F.F. and Renaud, J. (2000), The column-circular subsets-
selection problem: complexity and solutions, Computers & Operations 
Research, vol.27, pp. 383 – 398. 

[4] Caseau, Y. and Laburthe, F. (1999), Heuristics for Large Constrained 
Vehicle Routing Problems, Journal of Heuristics, vol.5, pp. 281-303. 

[5] Christofides, N. Mingozzi, A. and Toth, P. (1979) The Vehicle routing 
problem. In Combinatorial Optimization. Pp. 315-338. Wiley, 
Chichester.

[6] Clark, G. and Wright, J.W. (1964) Scheduling vehicles from a central 
depot to a number of delivery points. Oper. Res. vol. 12, pp – 568 – 
581. 

[7] Cormen, T. Leiserson, C. and Rivest, R.919900 Introduction to 
algorithms. Cambridge, MA: MIT Press. 

[8] Framinan, J. M. Leisten, R. and Ruiz- Usano, R. (2005) Comparison 
of heuristics for flowtime minimisation in permutation  flowshops. 
Computer and Oper. Res. vol. 32, pp. 1237 – 1254` 

[9] Funke, B. Grunert, T. and Irnich, S. (2005) Local Search for Vehicle 
Routing and Scheduling Problems: Review and conceptual 
integration, Journal of Heuristics, vol. 11, pp. 267 -306. 

[10] Kilby, P. Prosser, P. and Shaw, P. (2000) A Comparison of Traditional 
and Constraint-based Heuristic Methods on Vehicle Routing Problems 
with Side Constraints, Constraints, vol,. 5, pp.  
389–414. 

[11] Karypis, G. Han, E. and Kumar,V. Multilevel refinement for 
hierarchical clustering. Technical Report TR-99-020, Department  
of Computer Science, University of Minnesota, Minneapolis,1999. 

[12] Laporte, G. Gendreau, M. and Potvin, J.Y. (2000) Classical and 
modern heuristics for the vehicle routing problem. International 
Transactions in operational Research, vol.7, pp.285-  300. 

[13] Lenstra, J. K. and  Rinnooy, K.(1981) Complexity of vehicle routing 
and scheduling problem. Networks, Vol. 11, pp. 221-227. 

[14] Moulitsas,I. and Karypis, G (2001) Multilevel Algorithms for 
Generating Coarse Grids for Multigrid Methods, sc, ACM/IEEE  SC 
2001 Conference (SC'01), pp. 15-24. 

[15] Osman, I.H. (1993), Metastrategy simulated annealing and tabu search 
algorithms for vehicle routing problem, Annals of Oper. Res. vol. 41 
pp. 421– 451. 

[16] Prins, C. (2004) A simple and effective evolutionary algorithm for the 
vehicle routing problem, Computers & Operations Research, 
vol.31,pp. 1985–2002. 

[17] Rogers, D.F. Plante, R.D. Wong, R.T. and Evans, J.R.(1991) 
Aggregation and disaggregation Techniques and Methodology in 
Optimization, Oper. Res. vol.39, No. 4, pp. 553–582. 

[18] Renaud, J. Boctor, F.F. and Laporte, G. (1996), An Improved Petal 
Heuristic for the Vehicle Routing Problem, Journal of Operational 
Research Society, Vol. 47, pp. 329–336. 

[19] Renaud, J. Boctor, F.F. and Laporte, G. (1996) A fast composite 
heuristics for the symmetric travelling salesman problem. INFORMS 
Journal on computing, vol. 8, no.2, pp.134 – 143 

[20] Silver, E. (2004) An overview of heuristic solution methods, Journal 
of the Operational Research Society, vol.55, pp. 936–956. 

[21] Teng, S. (1999). Coarsening, sampling and smoothing: elements of the 
multilevel method. In: Heath MT, Ranade A and Schreiber RS (eds). 
Algorithms for Parallel Processing. IMA Volumes in Mathematics and 
its Applications, Vol. 105,Springer Publishing Co. Inc., New York, pp 
247–276. 

[22] Thompson, P.M. and Psaraftis, H.N. (1993), Cyclic transfer 
Algorithms for Multivehicle Routing and Scheduling Problems, Oper. 
Res. vol. 41, No.5, pp. 935-946. 

[23] Tiernan, J.C. (1970) An efficient search algorithm to find elementary 
circuits of a graph, Communications of the ACM, Vol.13, No. 12, pp. 
722-726. 

[24] Tore Gr nert, B.F. and Irnich, S. (2005) Local Search for Vehicle 
Routing and Scheduling Problems: Review and Conceptual

Integration, Journal of Heuristics, Vol. 11, pp. 267-306.  
[25] Walshaw, C. (2004) Multilevel Refinement for Combinatorial 

Optimisation Problems, Annals of Oper. Res. vol. 131, pp. 325–3 
[26] Walshaw, C (2002) A Multilevel Approach to the Travelling Salesman 

Problem, Oper. Res.  vol.50, no. 5, pp.862–877. 
[27] Walshaw, C. and Cross, M. (2000) Mesh Partitioning: A Multilevel 

balancing and refinement algorithm, SIAM J. SCI. COMPUT, Vol. 22, 
No. 1, pp. 63-80. 

219

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Scheduling (CI-Sched 2007)


