
Abstract—We discuss the application of the multilevel (ML)
refinement technique to the Vehicle Routing Problem (VRP),
and compare it to its single-level (SL) counterpart. Multilevel
refinement recursively coarsens to create a hierarchy of
approximations to the problem and refines at each level. A SL
heuristic, termed the combined node-exchange composite
heuristic (CNCH), is developed first to solve instances of the
VRP. A ML version (the ML-CNCH) is then created, using the
construction and improvement heuristics of the CNCH at each
level. Experimentation is used to find a suitable combination,
which extends the global view of these heuristics. Results
comparing both SL and ML are presented.

Keywords: Heuristics, metaheuristic, combinatorial optimization,
vehicle routing, multilevel refinement, aggregation techniques

I. INTRODUCTION

UE to the practical importance of combinatorial
optimization (CO) problems in a number of industries,

work into finding algorithms for such problems continues to
be an active area of research. With this type of problem, the
goal is to find an optimal solution from a finite or numerable
infinite set of possible solutions [2].

Vehicle routing has emerged as an important CO problem
because of its practical significance to a number of
industries. In addition, it is of interest in a theoretical context
because of its research components being closely related to
the Travelling Salesman Problem (TSP – one of the most
widely studied CO problems) and the Bin Packing Problem
(BPP).

The VRP has many variants with different side constraints
[10]. In this paper we consider the capacity vehicle routing
problem. The VRP requires the creation of a set of vehicle
routes originating and ending at a depot D, serving the
demands 0id of n customers, for (1,2,3....)i n . The
demand of the depot D is zero. A non-negative cost is
defined between any two customers i j as ij jiC = C and
between any customer and D. The depot holds V identical

Manuscript received October 31, 2006. This work is supported by the
University of Greenwich London. The application of Multilevel Refinement
to the Vehicle Routing Problem.

Demane Rodney is with the School of Computing and Mathematical
Sciences, University of Greenwich, Greenwich, London England SE10 9LS
(phone: +44 (0)20 8331 8454; e-mail: d.o.rodney@gre.ac.uk).

Alan Soper is with the School of Computing and Mathematical Sciences,
University of Greenwich, Greenwich, London England SE10 9LS (e-mail:
a.j.soper@gre.ac.uk).

Chris Walshaw is with the School of Computing and Mathematical
Sciences, University of Greenwich, Greenwich, London England SE10 9LS
(e-mail: c.walshaw@gre.ac.uk).

vehicles of capacity Q. The total demand of customers on a
route should not exceed an upper capacity Q. The cost of a
route: given by the sum of the costs between customers on
the route and the cost to and from D should not exceed an
upper cost M (perhaps relating to the maximum distance a
vehicle can travel). The solution then seeks to minimise the
total cost of the routes.

The VRP is known to be NP-hard [13] and problem
instances solved to optimality normally consist of less than
100 customers. However, since there are real world
instances of the problem consisting of thousands of
customers [4], there is a need for suitable heuristic
approaches capable of producing solutions of usable quality
in an acceptable runtime. Laporte et al. [12] provide a
survey of heuristic approaches to solving the VRP, while
Funke et al. [9] provide a survey of local search techniques
used for the VRP.

Walshaw found success in extending multilevel
techniques to the TSP [26] where it outperformed many of
the traditional methods. The similarities between the two
problems (i.e. the TSP and the VRP) made it a logical
decision to ask:

How would a ML algorithm for the VRP perform
compared to an equivalent single-level version?

How would a ML algorithm compare with other
metaheuristics in the field?

These questions provided the motivation for the current
research.

A. The Multilevel Refinement Technique
The multilevel technique (ML) [1], [21] has been used for

a number of years with proven effectiveness across varying
problem areas. These include clustering [11], grid
computing [14], graph partitioning, graph colouring and the
TSP [25], [26]. Additionally metaheuristics from simulated
annealing through genetic algorithm to tabu search have
been incorporated into effective multilevel implementations
as reported by Walshaw [25].

Coarsening: This forms the construction phase of a ML
algorithm where aggregate modelling [17] techniques are
applied to the problem. The aggregation process filters the
search space creating a simplified model. The model retains
the characteristics of the original problem ensuring solutions
of the model are applicable to both.

Refinement: This is the process of changing the current
solution so that the value of the problem attribute(s) being
controlled changes ‘favourably’ with respect to the cost

The application of Multilevel Refinement to the Vehicle Routing
Problem

Demane Rodney, Alan Soper, and Chris Walshaw

D

212

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

function. By favourably we mean that for a minimisation
problem the value of the measured quantity is being reduced
by this process and vice-versa for a maximisation problem.

A level is a period in the solution defined during the
coarsening process. In the coarsening phase a level
demarcates an approximation to the problem, while in the
refinement phase a level demarcates one solution to the
problem.

Due to the complexity of CO problems, composite
heuristics [8], [19] are the preferred method to find a good
solution in reasonable time. Typically composite heuristics
consist of two phases. During a construction phase a
construction algorithm is applied to create an initial solution.
An improvement phase, utilising local search algorithms, is
then deployed to improve the solution obtained from the
construction phase.

The multilevel refinement technique follows a similar but
somewhat different approach. The solution process consists
of a coarsening and refinement phase. The initial feasible
solution is created at the end of the coarsening phase, which
also constructs a hierarchy of approximations to the
problem. A refinement phase analogous to the composite
heuristics’ improvement phase occurs recursively on each
approximation in reverse order [20]. Not only does this
mean that at each level a feasible solution exists, making the
multilevel heuristics faster to run, but also that the
hierarchical view of the problem seems to impart a much
more global view than can be seen by single-level local
search heuristics [25].

1

1

0 : 0
1
2 ()
3 ()
4 : 1
5
6
7 (0)
8 : - 1
9 ()

i

i

i i

i i

temp i

set level counter i
set problem P
while P can be coarsened

P coarsen P
i i

end
Set initial solution S P
while i

i i
S extend S

10 ()
11

i tempS refine S
end

Fig. 1. Multilevel Algorithm [25].

The multilevel algorithm is shown in Fig. 1. Lines 2 to 6
outline the coarsening phase while lines 7 to 11 encapsulate
the refinement phase. Line 10 constitutes the improvement
phase of an iterative improvement algorithm. The
differentiating feature of the ML algorithm however, is that
this is repeated at each level of refinement.

A segment is a section of a proposed route having a cost,
demand, two end points and a fixed edge. At the start of the
solution process, referred to as level zero, a segment

represents a single customer (or a vertex). The demand is
equal to the customer’s demand. The cost of the segment is
zero as the end points are the same.

Segments at the upper levels (excluding level zero) are
created by fixing an edge of least cost between a pair of
existing segments. The edge connects two of the four
available end points such that the cost of the edge is
minimised. The two unconnected end points become the end
points of the created segment. The new segment is then
represented by its two end points and a fixed edge. The
refinement algorithms treat segments of level zero (single
customers) and segments of the upper levels (group of
customers) in the same manner as the internal structure of a
segment is not accessible.

A fixed edge is the section of a route within the end points
of a single upper level segment. Fixed edges form the
internal structure of segments and could represent multiple
segments. However segments represented by fixed edges
demarcate sections of a route that is not currently available
for merging during the coarsening phase or for improvement
during the refinement phase.

For the VRP we define the graph (,)P S E . S defines a
segment set given by, 0 1{ , }nS s s s . Segment s0 is the
depot and the other segments represent customers. E
represents the set of edges between the segments given
by {(,) : , , }i j i jE s s s s S i j . The edges defined by the set
E have a non-negative cost, Cij and are termed free edges,
referring to the fact they can be acted upon by edge-
exchange heuristics [9]. At the upper levels where the
segments’ end points are different, an edge in E defines the
edge of least cost that can be used to connect an end point of
si to an end point of sj.

Fig. 2 shows the multilevel algorithm solution process.
Coarsening the problem achieves two things. Firstly,
constructing a solution to the problem, by fixing edges
(represented by solid lines) between segments that will
hopefully be served on the same route in a final solution of
high quality. Secondly, reducing the level of detail to be
considered when the problem is refined at each level. When
an edge is fixed at a level it is freed when the level is
revisited in the extension phase [25]. The refinement phase
optimises the free edges (represented by dotted lines) in the
solution. Segments that contained fixed edges are treated as
single nodes, capable of being optimised by node exchange
heuristics [9] however, the internal structure is not
considered while fixed.

This means a minimal level of detail is presented to the
refinement algorithms at the start of the refinement process.
However, the free edges correspond to the edges fixed at the
higher levels of the coarsening process and potentially of
greater cost as the edges fixed at the lower levels tend to be
edges between segments that are ‘closer’ together. Hence
most of the improvements found by the ML algorithm will
occur early in the refinement phase.

213

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

When the optimisation is completed at a level the solution
in place is projected to the level below, the extension
process then frees the edges fixed at that level. The
refinement process now has a problem of greater detail, but
improvements found earlier in the process help make the
search faster.

For the example shown in Fig. 2, no improvement is
found at levels 3 and 2. For some problems no improvement
will be found at the highest levels of the refinement process.
However there is refinement at levels 1 and 0, with the
refinement at level 1 being done on segments, giving an
indication of the gains found from coarsening the problem.

Fig. 2. ML refinement applied to a VRP showing the stages of coarsening, extension and refinement. Continuous lines show
fixed edges and broken lines show free edges.

II. COARSENING

The coarsening process is shown on the left of Fig. 2. At
the first level (level zero) a starting segment is chosen at
random and an edge is fixed between it and another
unmatched segment. The process continues while there are
pairs of unmatched segments at the current level. When all
the matches satisfying the above requirements have been
completed the created segments are moved to the following
level (level 1) and the process is repeated. When no new
segments can be created the last level of coarsening is
reached. Segments are matched once at a given level and the
created segments should respect the problem capacity and
cost constraint.

The Clark Wright saving [6] algorithm was used to select
the segments to be matched at each level during the
coarsening phase. For the set of segments 0\C S s we
define an ordered set of free edges given by

E i j i j i jC = {(s , s): s , s C, i j, C := C \ (s , s)} .Assume CE

is ordered by decreasing savings in which case si and sj are
segments yielding the greatest savings when merged based
on the Clark Wright saving algorithm.

The coarsening process at each level defines the sets C
and CE and match segments corresponding to edges resulting

in the greatest savings. The set C at each level corresponds
to the segments created at the last level excluding the depot.
A match consists of fixing an edge between a chosen pair of
segments creating a new segment. Edges are fixed between
the end points of segments where the greatest saving were
found. Checks are done on the segments created to ensure
they do not exceed the constraints on the problem. When all
allowed matches are done at a given level, a level counter is
incremented indicating a new level. The segments created
from the last level are used to repeat the process while new
segments can be created respecting the problem constraints.

The coarsening process is similar to the one used for the
TSP [27]. However the depot is never aggregated during the
coarsening process. At the end of the coarsening phase
segments are formed having low average values with regard
to the objective function. These segments are then joined to
the depot to form the initial VRP routes.

III. REFINEMENT
Using the initial solution created from the coarsening

phase, the refinement process seeks to iteratively improve
the quality of the solution by reducing the total cost. The
process uses a combination of inter and intra route
optimisation heuristics to explore the neighbourhoods

214

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

accessible from the initial solution by the refinement
algorithm of Fig. 3.

0 :
1
2
3 exp
4
5
6 3 - -
7

i

set level counter i last level of coarsening
set initial solution S
do

and segments coarsened at level i
run Split procedure
do

refine routes with opt lambda shift
pe

8 ()
9 : - 1
10 (0)

rform cyclic transfer on routes
while improvement found

i i
while i

Fig. 3. Refinement algorithm.

The refinement process works through the solution levels
in the reverse order to that experienced during the
coarsening phase, starting at the highest level. As the
process descends though the levels the segments in each
route are checked to determine if they were coarsened at the
present level. If so, they are expanded to reveal their
constituting segments, which are used to replace the old
segments in the route. The improvement stage is then
executed while the cost of the solution can be reduced. The
3-opt exchange is used for intra-route optimisation.

A. Split Procedure
Given a Giant Tour [24]: a Hamiltonian cycle linking all

the segments and not the depot, it is possible to find the best
way to partition it into sections which are attached at their
ends to the depot so as to form routes. This can be done by
solving a set-partitioning problem [3] to select the optimal
combination of routes [18]. We refer to this procedure as the
Split Procedure that can be performed in O(n2) [16], [7]. The
routes it produces respect the capacity and cost constraints
of the problem.

Prins [16] has used this procedure to find improvements
to VRP solutions. He first removes all the edges from routes
which are incident at the depot creating sub-routes. The sub-
routes are then joined to form a Giant Tour by connecting
the sites at the ends of different sub-routes. Details of how
Prins chose the connecting edges were not published. We
have joined sub-routes by starting with an arbitrary sub-
route end as the start, then connecting the other end of the
sub-route to the nearest (using the least cost edge)
unconnected sub-route end which is not yet part of the Giant
Tour. We repeat the procedure for this extended sub-route
and so on. Eventually only the start will be available to
connect to, completing the tour. The Split Procedure is then
applied to this Giant Tour to recover a VRP solution
satisfying any constraints and hopefully of lower cost.

This procedure has the potential to introduce large

changes to a solution, for example it has sometimes been
seen to produce large ‘rotations’ of the routes. It has also
been useful for implementing rebalancing. A VRP solution
that violates the constraints can be used to form a Giant-
Tour as above, and then the Split Procedure is applied, but
now with the constraints tightened. The formation of a Giant
Tour followed by the split can be performed at any level.

B. Lambda – Shift
This is a heuristic created by Osman [15] that searches for

improvements by moving vertices between a given pair (p,
q) of routes. Osman considers all possible insertions in the
route q of a vertex from route p and vice -versa. He also
considers exchanges where two vertices on different routes
exchange places i.e. each is inserted into the other route with
the same neighbours as the removed vertex. Additional
transfers involving groups of neighbouring vertices are
considered.

Since at higher levels segments represent groups of
vertices and the ML algorithm operates on segments, we
restrict our attention to the case where only one segment is
removed from a route i.e. Lambda equal to one. Most
transfers executed at solution levels greater than zero, will
be equivalent to a shift of lambda greater than one for a non-
ML scheme.

If a transfer leading to an improvement is found, it is
immediately accepted and the 3-opt exchange is applied to
the affected routes. All pairs of routes are searched.

C. Cyclic Transfers
It has been found that most known low-cost solutions to

the VRP are composed of routes that are close to capacity.
Thus when searching for inter route improvements, the
transfer of a customer from one route to another will
normally require the removal of one or more customers from
the route into which it has been inserted. The ejected
customers will have to be inserted into another route, if the
solution is likely to be one of low cost, and so on.

This has lead to the construction of cyclic transfer
algorithms, in which the sets of allowed transfers between
routes forms a cycle – the customers ejected from the last
route are inserted into the first.

Two parameters influence the complexity of a cyclic
transfer algorithm; these are the number of customers
ejected from each route and the number of routes forming
the cycle (cycle depth). The cyclic transfer algorithm
implemented follows Thompson [22] but is restricted to the
case where only one segment (a multilevel customer/group
of customers) is transferred at a time. The number of routes
in the cycles is varied during the algorithm execution with
the first improvement found accepted.

The least cost insertion point of a customer in another
route, for each possible ejection is used. This can be
efficiently pre-calculated [22]. Unlike the lambda–shift
heuristic the segment can be inserted in a position in the
route that is different from the position of the ejected

215

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

segment. The search for cyclic transfers that reduce the cost
of a solution utilises techniques for finding elementary
circuits in graphs [23].

IV. SINGLE-LEVEL
In analysing the effect of the ML philosophy on a given

problem it helps to compare the performance of the single-
level (SL) counterpart with the ML version being analysed.

0
1
2 ()
3 ()
4

set problem P
construct initial solution S for P
While improvement found

refine S
end

Fig. 4. Single-level Algorithm.

The SL algorithm shown in Fig. 4 for the implemented
combined node-exchange composite heuristic (CNCH) can
be classed as an iterative improvement algorithm.
Algorithms of this kind find it difficult to escape local
optima. A first improvement approach is used in the
improvement phase of the CNCH SL and ML versions. This
is possibly the least effective approach to use.
Unsurprisingly the results of the overall SL approach are
poor, however the ML version designed on the same
principles produces results comparable to most
metaheuristics in the field.

For the SL version of the CNCH coarsening as seen from
a multilevel perspective is best viewed as a construction
process, in which the initial routes are created in one pass of
the algorithm being used. The side constraints in place are
satisfied at level zero, hence the results returned from the SL
coarsening phase is inline with standard implementation of
the Clark Wright saving algorithm.

The removal of lines 0, 2, 3, 9 and 10 from the refinement
algorithm of Fig. 3 yields the refinement algorithm for the
SL version. For the SL algorithm there is no concept of
levels and hence no extension process is required.

The SL algorithm implemented uses the Clark Wright
saving algorithm, the Split procedure, 3 - opt exchange,
lambda - shift and cyclic transfer algorithms. To convert the
CNCH into its ML counterpart consisted of a process of
modifying the CWS algorithm so that coarsening became an
iterative process across the levels, the implementation of an
extension algorithm, and then running the improvement
phase of the SL algorithm at each level.

V. BALANCING AND OVERLOADING
Problem constraints prevent moves that would otherwise

lower solution costs. This is particularly restrictive at higher
levels in ML algorithms when segments have for example in
the VRP, demands which are a substantial fraction of the
maximum route capacity. For the VRP inter-route moves
are prevented by these capacity constraints. With this in

mind we have implemented two changes to our algorithm
that were found to work well together, segment balancing
and route overloading. It was suggested by the results that
these heuristics are particularly effective in the cases where
the problems are clustered.

A. Segment Balancing
Segment balancing is the process of creating segments

during the coarsening phase of approximately the same
demand and cost. It was found that inter-route optimisation
heuristics reported improved results when using balanced
segments. The lambda-shift is used to outline the potential
gain from segment balancing

For a given pair (p, q) of routes it is assumed that the
demand and capacity of the routes are equal to the maximum
values allowed by the problem side constraints. Additionally
a lambda-shift exchange is attempted in transferring a
segment from p to q and one from q to p. In the case where
the segments are balanced if the transfer results in a solution
of lower cost the transfer would be successful. In the
unbalanced case however this transfer would most likely be
prevented by the side constraints.

B. Route Overloading and Balancing
Overloading is the process of gradually relaxing the

capacity constraints at each level during coarsening with a
view of creating routes with improved solution cost. For the
VRP overloading can be thought of as temporally ignoring
the bin-packing element of the problem, while obtaining the
best TSP solution possible for each route.

Route balancing is the complementary strategy to
overloading and is done during refinement. It gradually
brings the constraints back inline with the original values
imposed by the problem while attempting to preserve the
improvements found with regard to the cost function during
the overloading process. A feasible solution is found when
the constraints are sufficiently tightened to be inline with the
problem specified values. The Split Procedure is used to
implement route balancing at each level.

VI. RESULTS

The algorithms described above have been tested
extensively with a number of standard test cases used by
other authors for benchmarking VRP algorithms [5].

As part of this testing, many experiments were performed
to choose optimal parameter settings and algorithmic
configurations. For example, two heuristics were
implemented for the coarsening phase, namely the Clark
Wright Savings (CWS) algorithm and the Nearest
Neighbour (NN) algorithm. The results indicated that the
time spent during coarsening was a negligible percentage of
the overall solution time and since the CWS method
generally returns marginally better costs (about 0.5%) than
the NN it is the method used in the results produced below.

However, it is of interest to look at how different heuristic
approaches impact on the results and so in subsection A the

216

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

most significant findings are given. Then in subsection B the
best results are presented, both in terms of a fixed set of
parameters and following other authors’ (e.g. [15])
individual parameter settings for each problem.

A. Heuristic Approach Testing
The results in this section present the findings for tests

carried out using algorithmic configurations that feature
different combinations of segment balancing and route
overloading. These factors seem to be most significant in the
experimental testing of the algorithms.

Note that when segment balancing is employed, a level
demand must be specified. This is a factor governing the
targeted demand of segments created at each level and is
based on the average demand of customers in the problem.
A level demand of 1.2 indicates that the initial level demand
is 1.2 times the average demand of customers in the
problem. The initial level demand value is then doubled at
each level.

Similarly, when route overloading is in use an adjusted
capacity factor must be set. Thus the maximum allowed
demand for a route is increased at each level in the
coarsening phase up to a predefined limit. The maximum
allowed demand value is given by the adjusted capacity
factor times the problem stated capacity.

Finally, during testing of such algorithms it is important
to note that some evaluation of the trade-off between
solution quality and run-time must be made. Thus, for the
following results, costs are normalized with respect to the
best-known values for each problem and averaged over the
number of problems in the test suite.

TABLE I. A COMPARISON OF THE DIFFERENT HEURISTICS APPROACHES

Segment
balancing

Level
demand

Route
overloading

Adjusted
capacity
factor

Normalised
average
cost

0 - 0 - 1.114
0 - 1 1.6 1.087
1 1.4 0 - 1.085
1 1.2 1 1.2 1.076

Table I shows a comparison of the four different
configurations (a zero in the segment balancing and route
overloading columns indicates that the heuristic was not
used). The normalised cost averaged over all problem
instances is given in the final column and thus it can easily
be seen that using either segment balancing or route
overloading improves the results but that the best
configuration occurs when both are combined.

Indeed, when route overloading is used in combination
with segment balancing it has the effect of increasing the
value of the segment balancing level demand at each level
by a factor of the overloaded capacity allowed at that level.

In a situation where there is no overloading, at the start of
the refinement phase the total capacity in the solution (equal
to the problem capacity multiplied by the number of routes)

is close in value to the total demand of the solution. This
means that there is a high possibility inter route moves are
rejected because they violate the capacity constraint on the
routes. Where the solution is overloaded the total capacity of
the solution at the start of the refinement phase exceeds the
total demand of the solution. This spare capacity makes it
possible to implement inter-route improvement moves at the
upper levels. Finally, note that many different values for the
level demand and adjusted capacity factor settings were
tested but that the ones in the table gave the best results for
this configuration.

B. Best Results
In this section the best results are given, firstly using a

fixed set of parameters values: level demand = 1.2, adjusted
capacity factor = 1.2 and cyclic depth = 2. Then following
other authors (e.g. [16]) individual parameter settings for
each problem where the three parameters above are varied.
The algorithms are tested on the Christofides instances [5].

Table II shows a comparison of the results for the
multilevel (ML) and single level (SL) versions. The first two
columns give the problem number and size. Columns 3 and
4 compare the cost and runtime for the ML and SL
algorithms using the fixed set of parameters. Columns 5 and
6 present the best solutions found by the ML algorithm.

As can be seen for a constant set of parameters the ML
algorithm can get within an average of 7.13% of the best
known with an average runtime of 310 seconds. The SL
algorithm is considerably faster (by around a factor of 2, as
predicted by Walshaw in a general discussion of multilevel
schemes [25]) but gives much worse results. The SL
algorithm, when allowed to run for the same time as the ML
algorithm return an average cost of 18% above best known
values.

The results are particularly interesting for the larger test
cases. Prins results [16] while reporting better cost showed
large increases in runtimes for the larger test cases. The ML
algorithm presents a technique for dealing with larger
problems.

In the best case, the ML framework returns an average
cost 2.49 % above the best known results with an average
runtime of 280 seconds. This is comparable to the improved
petal heuristic [18] which reports an average cost of 2.43
above the best known values with an average runtime of 208
seconds.

The results indicated that where the problems are
clustered (problems 11, 12, 13, 14) there are improvements
to be found in the solution cost from using route overloading
and segment balancing. For the problems where the
segments are not clustered, overloading provides marginal
improvements in some cases.

Whilst more extensive testing needs to be done using
larger datasets of clustered problems the results above
appear likely to be further validated after increased testing
for the following reasons. Firstly, when inter-route heuristics

217

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

transfer balanced segments between routes, an improvement
is found once the costs of the new edges are less than the
costs of the edges being replaced in the affected routes. We
assume for a clustered problem that a region of clustered
segments exists requiring a given pair (p, q) of routes to
serve the demand within the region. New edges generated by
transfers of segments between the routes should be similar in
cost and similar to the cost of old edges as the segments of
each route are close to each other. On average, therefore,
most potential moves attempted should return an average
cost approximately equal to zero (no improvement or
deterioration in the cost function).

In some cases there may be slight differences in the cost
of the new edges compared to the old edges. In the cases
where this corresponds to a gain the solution is changed.
This allows the algorithm to explore areas of the search
space that might not have been possible in the case where
the problems are not clustered.

The second possible reason for the improvements found
could be due to the mechanics of route overloading as
applied to clustered regions. Route overloading is most
effective where the actual route capacity is increased. An
improving move is found when additional customers can be
added to the route that will respect the increased capacity
constraints without violating the cost constraints. It is not
unlikely, therefore, that in a clustered region (where the
average cost of the edges to any proposed new customer
should be lower than that in a non-clustered region) the
algorithm would have a greater likelihood of finding
improving moves compared to a non-clustered region.

VII. CONCLUSIONS

It can be seen from the results that the ML version greatly
improves the SL version and always returns an improved
cost for the equivalent runtime. It is also important to note
the differing experiences found from using the ML
algorithm on clustered VRP problems and using it on Graph
Partitioning Problems and Graph Colouring Problems of
high density. As was shown once overloading and segment
balancing were introduced the ML algorithm performed well
on the clustered problems. The ML algorithm did not
perform similarly on graphs of high density. While this
requires more investigation the results suggest that the
technique once allowed suitable relaxation of the constraints
bounding the objection function, does possess the ability to
refine problems of high density.

There are a number of areas that the framework could
address to achieve further improvements, namely
investigating the effect Node Ejection Chains [9] would
have in improving the handling of inter–route optimisation.
This is one heuristic that should benefit from the ML
algorithm, as at the upper levels ejecting a segment would
correspond to an entire section of a route being ejected,
hence the potential for achieving improvement with limited
runtime and ease of implementation.

We also plan to investigate how much influence the
clustering within a problem has on the results especially
since many real life problems are clustered.

TABLE II. COMPARISON OF THE ML AND SL FRAMEWORK FOR CONSTANT PARAMETER SETTINGS. BEST KNOWN VALUES TAKEN FROM [16]
Problem N Percentage Cost

above best known for
constant set of

parameters

Runtime for constant set
of parameters (s)

Percentage Cost
above best known

individual parameter
setting for each

problem

Runtime using
individual parameter

setting for each problem
(s)

Best known

 ML SL ML SL ML ML
1 50 7.28 8.29 27 27 0.48 29 524.61
2 75 7.86 14.68 76 55 3.40 69 835.26
3 100 3.27 15.81 230 149 1.97 210 826.14
4 150 7.17 22.42 562 237 4.56 442 1028.42
5 199 8.09 28.41 1499 687 6.28 1558 1291.45
6 50 1.92 10.54 26 16 1.38 19 555.43
7 75 5.99 8.78 42 44 3.01 48 909.68
8 100 11.08 13.34 91 86 3.79 161 865.94
9 150 12.08 10.30 318 181 3.83 385 1162.55
10 199 11.27 15.04 618 411 1.42 119 1395.85
11 120 5.96 47.43 391 353 0.93 518 1042.11
12 100 2.83 17.43 117 187 0.27 106 819.56
13 120 10.12 25.84 244 167 3.45 163 1541.14
14 100 5.03 19.04 106 102 0.20 101 866.37
Average 7.13 18.38 310 193 2.49 280

218

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

REFERENCES

[1] Brandt, A. (1977) Multilevel Adaptive Solutions to Boundary Value
Problems, Math. Comp, vol.31, pp.333-390.

[2] Blum, C. and Roli, A. (2003) Metaheuristics in combinatorial
optimization overview and conceptual comparison, ACM Computing
Surveys, Vol. 35, No. 3, pp. 268 - 308.

[3] Boctor, F.F. and Renaud, J. (2000), The column-circular subsets-
selection problem: complexity and solutions, Computers & Operations
Research, vol.27, pp. 383 – 398.

[4] Caseau, Y. and Laburthe, F. (1999), Heuristics for Large Constrained
Vehicle Routing Problems, Journal of Heuristics, vol.5, pp. 281-303.

[5] Christofides, N. Mingozzi, A. and Toth, P. (1979) The Vehicle routing
problem. In Combinatorial Optimization. Pp. 315-338. Wiley,
Chichester.

[6] Clark, G. and Wright, J.W. (1964) Scheduling vehicles from a central
depot to a number of delivery points. Oper. Res. vol. 12, pp – 568 –
581.

[7] Cormen, T. Leiserson, C. and Rivest, R.919900 Introduction to
algorithms. Cambridge, MA: MIT Press.

[8] Framinan, J. M. Leisten, R. and Ruiz- Usano, R. (2005) Comparison
of heuristics for flowtime minimisation in permutation flowshops.
Computer and Oper. Res. vol. 32, pp. 1237 – 1254`

[9] Funke, B. Grunert, T. and Irnich, S. (2005) Local Search for Vehicle
Routing and Scheduling Problems: Review and conceptual
integration, Journal of Heuristics, vol. 11, pp. 267 -306.

[10] Kilby, P. Prosser, P. and Shaw, P. (2000) A Comparison of Traditional
and Constraint-based Heuristic Methods on Vehicle Routing Problems
with Side Constraints, Constraints, vol,. 5, pp.
389–414.

[11] Karypis, G. Han, E. and Kumar,V. Multilevel refinement for
hierarchical clustering. Technical Report TR-99-020, Department
of Computer Science, University of Minnesota, Minneapolis,1999.

[12] Laporte, G. Gendreau, M. and Potvin, J.Y. (2000) Classical and
modern heuristics for the vehicle routing problem. International
Transactions in operational Research, vol.7, pp.285- 300.

[13] Lenstra, J. K. and Rinnooy, K.(1981) Complexity of vehicle routing
and scheduling problem. Networks, Vol. 11, pp. 221-227.

[14] Moulitsas,I. and Karypis, G (2001) Multilevel Algorithms for
Generating Coarse Grids for Multigrid Methods, sc, ACM/IEEE SC
2001 Conference (SC'01), pp. 15-24.

[15] Osman, I.H. (1993), Metastrategy simulated annealing and tabu search
algorithms for vehicle routing problem, Annals of Oper. Res. vol. 41
pp. 421– 451.

[16] Prins, C. (2004) A simple and effective evolutionary algorithm for the
vehicle routing problem, Computers & Operations Research,
vol.31,pp. 1985–2002.

[17] Rogers, D.F. Plante, R.D. Wong, R.T. and Evans, J.R.(1991)
Aggregation and disaggregation Techniques and Methodology in
Optimization, Oper. Res. vol.39, No. 4, pp. 553–582.

[18] Renaud, J. Boctor, F.F. and Laporte, G. (1996), An Improved Petal
Heuristic for the Vehicle Routing Problem, Journal of Operational
Research Society, Vol. 47, pp. 329–336.

[19] Renaud, J. Boctor, F.F. and Laporte, G. (1996) A fast composite
heuristics for the symmetric travelling salesman problem. INFORMS
Journal on computing, vol. 8, no.2, pp.134 – 143

[20] Silver, E. (2004) An overview of heuristic solution methods, Journal
of the Operational Research Society, vol.55, pp. 936–956.

[21] Teng, S. (1999). Coarsening, sampling and smoothing: elements of the
multilevel method. In: Heath MT, Ranade A and Schreiber RS (eds).
Algorithms for Parallel Processing. IMA Volumes in Mathematics and
its Applications, Vol. 105,Springer Publishing Co. Inc., New York, pp
247–276.

[22] Thompson, P.M. and Psaraftis, H.N. (1993), Cyclic transfer
Algorithms for Multivehicle Routing and Scheduling Problems, Oper.
Res. vol. 41, No.5, pp. 935-946.

[23] Tiernan, J.C. (1970) An efficient search algorithm to find elementary
circuits of a graph, Communications of the ACM, Vol.13, No. 12, pp.
722-726.

[24] Tore Gr nert, B.F. and Irnich, S. (2005) Local Search for Vehicle
Routing and Scheduling Problems: Review and Conceptual

Integration, Journal of Heuristics, Vol. 11, pp. 267-306.
[25] Walshaw, C. (2004) Multilevel Refinement for Combinatorial

Optimisation Problems, Annals of Oper. Res. vol. 131, pp. 325–3
[26] Walshaw, C (2002) A Multilevel Approach to the Travelling Salesman

Problem, Oper. Res. vol.50, no. 5, pp.862–877.
[27] Walshaw, C. and Cross, M. (2000) Mesh Partitioning: A Multilevel

balancing and refinement algorithm, SIAM J. SCI. COMPUT, Vol. 22,
No. 1, pp. 63-80.

219

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

