
Improving the Performance of Genetic Algorithm in Capacitated
Vehicle Routing Problem using Self Imposed Constraints

Ziauddin Ursani, Ruhul Sarker, and Hussein A. Abbass,

School of Information Technology and Electrical Engineering,
University of New South Wales,

ADFA Campus, Northcott Drive, Canberra, ACT 2600
Australia

Abstract The Capacitated Vehicle Routing Problem
(CVRP) is a well known member of the family of NP hard
problems. In the past few decades, a number of heuristics was
introduced to solve this problem but no heuristic can claim to
work well in all possible scenarios. In the literature, Genetic
Algorithm (GA) even lags behind the other heuristics. In this
paper, we reveal some of the reasons for the inferior
performance of GA, and propose a number of mechanisms to
improve its performance. A number of test problems are solved
to demonstrate the usefulness of the algorithm.

I. INTRODUCTION

The Vehicle Routing Problem (VRP) was first introduced

by Dantzig and Ramser [1], where the objective is to find
the route with the lowest cost for a number of homogeneous
vehicles, stationed at a depot, destined to satisfy
heterogeneous demand of customers, situated at
geographically dispersed locations, such that, the route of
each vehicle should start and end at the depot, and each
customer must be visited only once by only one vehicle. The
capacitated version of the problem is known as CVRP which
has the additional constraint that the route of any vehicle
should not contain the set of customers with demand greater
than the capacity of vehicle.

This problem has attracted enormous interest in the
research community, partially due to the simple definition,
practical importance and computational challenges to

achieve optimality. A number of heuristics and meta-
heuristics are applied to this problem. Those heuristics
include Local and Neighborhood Search, Simple and
Granular Tabu Search, Simulated and Deterministic
Annealing, Ant colony and artificial life systems,
evolutionary and population search etc. Some of the most
successful work produced among these are Parallel and
iterative search [2], Granular Tabu Search [3], Large Scale
Neighborhood Search [4], [5] and Evolutionary Strategy [6].
People have also applied GAs and hybrid GAs [7]-[9].
Although GA is a very popular global optimization
technique, it is not as successful as other heuristics on multi-
route problems, particularly in the case of CVRP. In this
paper we have analyzed the performance of GA and
identified the reasons for its inferior performance in CVRP.
We have also suggested a number of modifications to
improve the performance of GA on CVRP. The performance
of the proposed algorithm is validated by solving a number
of well known bench mark problems that have appeared in
the literature.

The first author acknowledges financial support by a University College
Post Graduate Research Scholarship, UNSW@ADFA.

Mr. Z. Ursani is a Ph.D. research candidate with the School of
Information Technology and Electrical Engineering (ITEE), Australian
Defence Force Academy (ADFA), University of New South Wales
(UNSW). (phone: +61262688180; fax: +6162688581; e-mail:
z.ursani@adfa.edu.au).

Dr. R. Sarker is a Senior Lecturer with the School of Information
Technology and Electrical Engineering (ITEE), Australian Defence Force
Academy (ADFA), University of New South Wales (UNSW). (phone:
+61262688051; fax: +61262688581; e-mail: r.sarker@adfa.edu.au).

Dr. H. Abbass is an Associate Professor with the School of Information
Technology and Electrical Engineering (ITEE), Australian Defence Force
Academy (ADFA), University of New South Wales (UNSW). (phone:
+61262688158; fax: +61262688581; e-mail: h.abbass@adfa.edu.au).

This paper is organized as follows: We analyze the
problem in section II. In section III we have explained our
algorithm. Experiments and results are detailed in section
IV. Finally in section V conclusions and future work is
specified.

II. PROBLEM ANALYSIS

GA performs relatively well on the traveling salesman
problem (TSP) but not so well on VRP. Among many other
reasons, ambiguous data representation is a key reason
behind its inferior performance. To date, Path
Representation (PR) is considered the most suitable
representation. However it has proved to be suitable for
single route problems only such as TSP. It is unable to
perform well in multiple routes mainly because of its
difficulty in identifying terminal points of each sub-route.
We explain this point using an example. Let us consider that
there are 9 customers numbered from 1 to 9, such that the
demand of each customer is equivalent to its number ID.
Now let us consider 235897614 is our chromosome. Let us
also consider that each vehicle can accommodate a
maximum demand of 25. Considering the above

220

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

chromosome, the first route will consist of customers 2358,
because if we add customer 9 to the route, the total demand
of the route will become 27, exceeding the vehicle capacity
of 25. The next route will consist of customers 9761. The
last customer number 4 cannot be included in this route
because if it does, the capacity constraint will be violated.
Hence the last route will consist of customer 4 alone. By
looking carefully at the chromosome, we can see that we can
divide this chromosome in several different sub-routes while
satisfying the capacity constraint and respecting the
sequence altogether. For example, it can be divided into sub-
routes 2358-976-14. These routes lie within the capacity
limit of the vehicle. It can also be divided into legal routes
235-897-614, 235-89-7614, 23-589-7614, and 2-3589-7614.
There are many other possibilities if we do not stick
ourselves to 3-route limit. Therefore, how can we find which
set of sub-routes represents the minimum cost solution? No
clear answer found to this question in the literature. This is
the major difficulty of representational issues in Genetic
Algorithms, because of which it cannot compete with other
heuristics. Prins [9] has come up with the idea of trying to
test all possible subsets of routes to find out the best set in
each evaluation. But this scheme is computationally
expensive, with a complexity of order (nb), where n is the
number of customers and b is the highest number of
customers present in any route. If we consider the 5th test
problem of Christofieds [10], which has 199 customers and
17 routes, then for one individual in a given generation, this
scheme will require around 199x199/17 = 2330 normal
fitness evaluations in its best case scenario. When compared
to real world situations, this data set is relatively small; and
the idea of Prins may fail in wider goods distribution
network.

To deal with this problem, we have come up with a novel
idea of imposing various constraints to identify the
terminator for each sub-route (i.e. it tells the GA where to
terminate the route). The terminator will be placed once any
of these constraints is about to be violated. We have
identified a number of constraints for this purpose, as
discussed bellow:

Route Constraint (RC): No route length should exceed
particular limit.

Active Route Constraint (ARC): Active route is the
route length starting from first customer and ending at
the last customer (omitting the leg distances from and
towards the depot). We can set a particular limit for the
active route also.

Edge Constraint (EC): The Euclidean distance between
any two consecutive customers should not exceed a
particular limit.

Customer Number Constraint (CNC): This constraint
limits number of customers in any route.

After identifying the constraints the next step is to decide
on suitable values for their parameters, which can guide the
GA towards good solutions. It is obvious that values for

these parameters will be different for each and every type of
problem. Although it is difficult to set the values, we have
successfully set them adaptively through a clustering
scheme. Clustering can also be used in routing for
initialization, but the proposed scheme has never been used
in any routing problem from this point of view. The scheme
is described below.

A. Clustering Scheme

This scheme is similar to the k-nearest neighbor algorithm
with the addition of a capacity on each bin of the cluster. It
consists of the following steps,

1) Randomly generate n points in the customer landscape,
where n should be the upper integer of the ratio of the total
customer demand to the vehicle capacity.

2) Allocate the customers to these points, in the order of
first to last customer. The customer must be allocated to the
point which is the nearest to it as compared to other points.
These allocations will form n clusters. A customer cannot be
allocated to a cluster if the total demand of the cluster
exceeds the capacity constraint of a vehicle.

3) Calculate the centroid of each of the cluster.
4) Reshuffle the order of customers, through random

insertion.
5) Taking these centroids as new points, repeat the steps 2

to 4, until the clustering stabilizes, i.e. difference between
new and old centroids become close to zero.

This is also called crisp clustering as each customer is
decisively assigned to a particular cluster [11]. The
clustering scheme described above is suitable for standard
CVRP only, i.e. the problem without externally imposed
route constraint. It is so because we have considered only
capacity constraint during clustering. But if we are solving
advanced version of CVRP - i.e. problems with externally
imposed route constraint - we will have also to consider
route constraints along with the capacity constraint in point
2 of the above clustering scheme. To impose a route
constraint we must estimate the optimized route length of
the route concerned. To know this value, we can test the
effect of adding a customer to each cluster before deciding
on which cluster to add the customer to. This may increase
the computational cost of clustering but will eliminate the
need for optimization of individual routes after clustering.

B. Self Imposed Constraints

After having the optimized cluster paths, we can say that
we have obtained the solution structure, which is not
necessarily optimal but a better individual in a good shape,
having some locally optimized properties. If we are able to
identify those properties or parameters, these parameter
values can be used in the GA as self imposed constraints for
deciding on when to terminate a route when reading and
evaluating a chromosome. To understand this point,
consider 1st christofied’s data set with 50 customers. After
applying the above clustering scheme, we got the solution
shown in figure-1. The best known solution found yet of the

221

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

above data set is shown in figure-2.
By comparing the two solutions we can see that they are

very similar in shape. Now let us compare the various
properties of the two solutions, which are consolidated in
table I.

As per table-1, the solution after clustering has slightly
greater values of longest route, longest active route and
longest edge as compared to the best known solution. If we
use these values of the sample solution as self imposed
constraints in our algorithm, then these constraints will
terminate the sub-routes at more suitable places, where we
can have low cost solutions. Consider the same previous
example of section II, where we were dealing with the
chromosome 235897614. Let us consider these customers
form 3 different clusters i.e. 235, 897 and 614. Then the
most suitable division of the chromosome into sub-routes
will be 235-897-614. However if we consider only the
capacity constraint, we will come up with a solution 2358-
9761-4. Now if we apply self imposed constraints of longest
route, longest active route and longest edge, the first route
2358 may violate one of these constraints and may end up to
be 235. Naturally then, the next customer, 8, will join the
second route. Again the second route will serve only the
following 3 customers i.e. 897 due to its capacity constraint
and the rest will move to the last route ending up in a
desirable solution of 235-897-614.

Fig. 1. Solution obtained after Clustering - Cost = 535.80

TABLE I
PROPERTY COMPARISON BETWEEN TWO SOLUTIONS

Solution after
clusteringProperty Best Solution

Longest Route 124.11 118.52
Longest Active Route 100.22 88.95
Longest Edge 20.10 15.03

Fig. 2. Best Known Solution – Cost = 524.61

III. PROPOSED ALGORITHM

The algorithm consists of 3 phases, as shown in figure-3.
The first phase is clustering, which is used to create initial
population. It is followed by a local GA. We call it local GA
(LGA) because it is applied to parts of the chromosome. The
3rd phase consists of local search (LS). If the solution is
improved in this phase, then it goes back to the local GA
and the procedure is repeated between LGA and LS until no
improvement is possible in LS. All of these phases are
described below in details.

Clustering

Local
GA LS End

Fig. 3. Over all Algorithm Scheme

A. Initial Population

The initial population is created through the clustering
scheme described in section II A. The population size is kept
equal to the total number of customers. After the creation of
the initial population, constraint values are calculated as
described in section II B from the best individual of the
population. The best individual is the one which gives the
minimum sum of all individual route distances.

222

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

B. Local Genetic Algorithm

The local genetic algorithm is applied to all possible pairs
of routes. We extract any two routes from the parent
chromosome and form a mini-dataset. Then we apply LGA
on that mini-dataset in two stages. In the first stage, all
constraints are relaxed and in the second stage constraints
are imposed. The first stage starts with random generation of
initial population. The population size is made equal to the
number of customers present in the mini-dataset.
Tournament Selection of team size 2 (binary tournament) is
used. The fitness cost is the total distance covered by
vehicles, only one vehicle at this stage as all constraints are
relaxed. Minimizing the fitness cost is our objective. For
binary genetic operators our choice is partially mapped
crossover. It is applied with probability equal to 0.6.
Combination of 3 unary operators, inversion, insertion and
swap mutations are applied with probabilities equal to 0.15,
0.1 and 0.05 respectively. Cloning of individuals is done
with probability of 0.1. The termination condition is set as
the number of non-improved generations equal to 5 times
the population size. Second stage gets evolved population
from the first. All the other parameters remain the same in
the second stage. But since all the constraints are applied at
this stage, the fitness cost will be the distances covered by
one or more vehicles whatever the case may be. Note that
the local GA is applied on the best solution of the population
only. If local GA brings multiple changes to the solution,
then multiple copies of solutions are developed each with a
single change. The best solution from these individuals is
selected for the application of LGA again. The process is
repeated till no improvement is possible through LGA.

C. Local Search

Local Search is applied to all the individuals, which are
products of local GA. It consists of the following operations.

1. Swap: Position of two or more consecutive customers
is swapped. In the usual neighborhood search terminology it
is called -opt neighborhood, if customers belong to the
same route and -interchange neighborhood if customers
belong to different routes [5], where is the number of
customers swapped.

2. Insertion: One or more customers are taken out from
their position and inserted in another position. In terms of
neighborhood search, it is called string relocation [5].

3. Inversion: Whole segment of customers between two
positions is inverted.

4. Swap-unequal: Two unequal strings of customers are
swapped. It is called string exchange in neighborhood search
[5].

The following new operations are introduced to enlarge
the neighborhood.

5. Swap-Partially Inverted (SPI): It is a combination of
segment exchange and inversion. A position of two equal or
unequal strings of customers are swapped, afterwards one of
them is inverted.

6. Swap-Fully Inverted (SFI): It is the same operation as
5, except that, both the swapped strings are inverted this
time.

7. Insertion-Inverted (II): It is a combination of inversion
and insertion. A string of customers is taken out from their
position and inserted at another place. Then it is inverted.

IV. EXPERIMENTS AND RESULTS

We coded the above algorithm in C++, with Microsoft
visual C++ v6 compiler. The operating system was
Microsoft Windows XP professional, version 2002. The
program was executed on Pentium-4, 3.2 GHz processor
with 1 GB RAM.

In our experiments, to see the effect of each and every
phase of our algorithm, we applied our algorithm in parts
and have studied their effect over the best and average
results. First we applied only phase-1 i.e. clustering. Table II
shows the results of these experiments. In our next set of
experiments, Local GA was applied after clustering. The
results of these experiments are shown in Table III. In our
next set of experiments, Local Search was also introduced to
improve the solution. The algorithm was allowed to iterate
between local GA and Local search as shown in figure-3.
The results of such experiments are shown in Table IV. In
our final set of experiments we allowed 1% deterioration of
solution through our local search mechanism. We also
introduced another self imposed constraint, i.e., Customer
Number Constraint. The results of such experiments are
shown in Table V.

For the above experiments, we chose 14 data sets of
Christofied. These results are based on the best solutions
among 30 program executions, which were run on different
randomly generated seeds. In these tables, column 1 shows
the serial number of the data set, column 2 shows the
number of customers, present in the data set. Column 3
shows the value of the best known solution appeared in the
literature. Column 4a shows the minimum solution value in
30 executions of the program, whereas column 4b shows the
difference in percentage of this solution against the best
known solution in literature. Finally columns 5a, 5b and 5c
show the average solution values of all 30 results, their
difference in percentage from best known solutions and the
average cpu times in seconds respectively.

One can see that after the clustering, the average of best
values obtained is 8.61% away from the best known
solutions. After the application of local GA, this value
decreases to 1.02%. The value is reduced to 0.85% after the
application of Local GA – Local Search cycle and finally it
touches the value of only 0.45% after allowing 1% solution
deterioration and introduction of an additional self imposed
constraint, i.e. a customer number constraint. This proves
that each part of algorithm contributes to the solution quality
positively and has its important role to play. It should be
noted that self imposed constraints are at work in both the
sections i.e. Local GA and Local Search.

223

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

TABLE II
RESULTS AFTER CLUSTERING

TABLE III
RESULTS AFTER CLUSTERING AND LOCAL GA

Now let us compare our results with 3 popular GAs [7]-
[9] applied to VRP, as appeared in the literature. The
comparisons are shown in Table-VI. The columns only
show percentage gap from best known solutions found so
far. Percentages of the 5th data set are recalculated for all
algorithms because a new solution [6] was found after the
publication of these algorithms. In the paper of Baker &
Ayechew [7], there was miscalculation in percentage
differences in solutions of 5th and 10th data sets, it is also
corrected here. Values from Christian Prins paper [9] are
given which he obtained under one setting, because we have

not configured settings of our algorithm separately for
different data sets. From the table, one can easily see that the
algorithm of self imposed constraints have got better
solutions than two GAs [7], [8]. However solutions still leg
behind the 3rd GA [9]. But as we discussed earlier in our
problem analysis, that evaluation process of Prins algorithm
i.e. checking all possible subsets of routes is
computationally expensive and may fail in real world
scenario, where we are dealing with several thousand
customers with several hundred routes, therefore our
algorithm can still be considered competitive and promising.

1

TABLE IV
RESULTS AFTER CLUSTERING AND LOCAL GA-LOCAL SEARCH CYCLE

TABLE V
RESULTS AFTER ALLOWING 1% DETERIORATION OF SOLUTION

2
.

3 4
Minimum

5
Average

Sr. Nr.
Nr. of
Custs

Best
Known

a
Dist

b
%diff

A
Dist

b
%diff

c
Time

1 50 524.61 524.61 0.00 533.44 1.68 0.42
2 75 835.26 881.32 5.51 903.18 8.13 10.82
3 100 826.14 884.65 7.08 892.24 8.00 8.44
4 150 1028.42 1132.7 10.14 1141.6 11.00 50.03
5 199 1291.29 1462.7 13.28 1497.1 15.94 310.22
6 50 555.43 567.32 2.14 578.25 4.11 0.81
7 75 909.68 957.56 5.26 976.57 7.35 7.39
8 100 865.94 950.31 9.74 977.99 12.94 14.63
9 150 1162.55 1300.5 11.87 1331 14.49 88.02

10 199 1395.85 1592.0 14.05 1643 17.71 278.08
11 120 1042.11 1068.8 2.56 1082.4 3.86 20.83
12 100 819.56 829.32 1.19 830.61 1.35 0.44
13 120 1541.14 2061.8 33.79 2167.5 40.65 21.5
14 100 866.37 900.39 3.93 916.02 5.73 16.61
Avg 8.61 10.93 59.16

1 2 3 4 5
Minimum Average

Sr. Nr.
Nr. of
Custs

Best
known

a
Dist

b
%diff

a
Dist

b
%diff

c
Time

1 50 524.61 524.61 0.00 526.74 0.41 1.92
2 75 835.26 845.46 1.22 860.64 3.04 18.01
3 100 826.14 840.76 1.77 849.30 2.80 32.40
4 150 1028.42 1059.40 3.01 1069.93 4.04 141.61
5 199 1291.29 1318.01 2.07 1335.87 3.45 579.98
6 50 555.43 555.43 0.00 564.49 1.63 2.81
7 75 909.68 930.64 2.30 945.32 3.92 12.78
8 100 865.94 867.41 0.17 892.14 3.03 42.98
9 150 1162.55 1182.33 1.70 1204.65 3.62 194.16

10 199 1395.85 1416.64 1.49 1453.05 4.10 547.08
11 120 1042.11 1043.57 0.14 1049.64 0.72 70.26
12 100 819.56 819.56 0.00 821.29 0.21 10.86
13 120 1541.14 1546.14 0.32 1571.62 1.98 121.39
14 100 866.37 866.79 0.05 875.97 1.11 36.96

Avg 1.02 2.43 129.51

1 2 3 4
Minimum

5
Average

Sr. Nr.
Nr. of
Cust.

Best
known

a
Dist

b
%diff

a
Dist

b
%diff

c
Time

1 50 524.61 524.61 0.00 526.71 0.40 1.83
2 75 835.26 845.46 1.22 859.76 2.93 19.69
3 100 826.14 839.60 1.63 846.71 2.49 41.89
4 150 1028.42 1042.78 1.40 1065.41 3.60 216.40
5 199 1291.29 1313.53 1.72 1330.72 3.75 788.05
6 50 555.43 555.43 0.00 563.73 1.49 2.81
7 75 909.68 930.64 2.30 944.02 3.78 17.22
8 100 865.94 867.41 0.17 888.95 2.66 60.17
9 150 1162.55 1182.12 1.68 1201.60 3.36 259.63

10 199 1395.85 1416.64 1.49 1446.95 3.66 747.19
11 120 1042.11 1042.11 0.00 1046.72 0.44 119.00
12 100 819.56 819.56 0.00 821.29 0.21 15.26
13 120 1541.14 1546.14 0.32 1569.94 1.87 165.00
14 100 866.37 866.37 0.00 875.13 1.01 47.85

Avg 0.85 2.26 178.72

1 2 3 4
Minimum

5
Average

Sr. Nr.
Nr. of
Cust.

Best
known

a
Dist

b
%diff

a
Dist

b
%diff

c
Time

1 50 524.61 524.61 0.00 524.84 0.04 3.20
2 75 835.26 835.77 0.06 855.53 2.43 32.00
3 100 826.14 833.14 0.85 841.09 1.81 85.13
4 150 1028.42 1038.65 0.99 1057.30 2.81 344.20
5 199 1291.29 1315.72 1.89 1333.00 3.23 1111.37
6 50 555.43 555.43 0.00 557.59 0.92 4.40
7 75 909.68 912.89 0.35 926.26 1.82 25.20
8 100 865.94 866.87 0.11 880.44 1.67 86.13
9 150 1162.55 1170.67 0.70 1197.08 2.97 395.10

10 199 1395.85 1410.66 1.06 1437.90 3.01 1382.10
11 120 1042.11 1042.11 0.00 1046.76 0.45 163.43
12 100 819.56 819.56 0.00 820.01 0.06 26.30
13 120 1541.14 1545.4 0.28 1565.98 1.61 209.23
14 100 866.37 866.37 0.00 868.67 0.27 61.30

Avg 0.45 1.65 280.65

224

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

TABLE VI
COMPARATIVE RESULTS WITH OTHER GAS

V. CONCLUSION AND FUTURE WORK

By looking at the results, one can easily conclude that the
algorithm scheme is quite suitable for the vehicle routing
problem. This research was intended to identify problems
with GA while dealing with multiple routes. We identified
some problems, such as difficulties in the identification of
terminal genes of sub-routes and proposed some new
mechanisms like self imposed constraints to deal with those
difficulties. However the paradigm of self imposed
constraints in the vehicle routing problem is still nascent and
needs to be developed further. We will continue to
investigate possibilities for other self imposed constraints,
such as the largest angle subtended by any edge, with
respect to the depot. If these new constraints are designed
and applied carefully, we may be able to improve the results
further. There also remains the great potential for reducing
the computational cost of the algorithm. For this, one may
consider the potential of using the clustering technique to
estimate the targets for self-imposed constraints without
using clustering for initialization. The idea of self imposed
constraints should also be applied on other variants of VRP
such as VRP with time windows etc, to test its robustness.
The Self Imposed Constraints also need to be supported by
some theoretical work to expand its area of application.

REFERENCES

[1] G. B Dantzig,, J. H. Ramser, “The truck dispatching problem,”
Management Science Vol. 6, 1959, 80.

[2] E. Taillard, “Parallel Iterative Search Methods for Vehicle Routing
Problems,”. Networks, Vol. 23, 1993, pp. 661-673.

[3] P . Toth, D. Vigo, “The Granular Tabu Search and Its Application to
the Vehicle-Routing Problem,” INFORMS Journal on Computing,
Vol. 15, 2003, pp. 333-346.

[4] F. Li, B. Golden., E. Wasil, “Very Large Scale Vehicle Routing: new
test problems, algorithms and results,” Computers and Operations
Research Vol. 32, 2005, pp. 1165-1179.

[5] R. Agarwal, R. K Ahuja., G. Laporte, Z. J. M. Shen, “A composite
Very Large Scale Neighborhood Search Algorithm for the Vehicle
Routing Problem,” Handbook of Scheduling, Algorithms, Models,
and Performance Analysis. Chapter 49, 2004.

[6] D. Mester, O. Braysy, “Active Guided Evolutionary Strategy for the
Large Scale Vehicle Routing Problems with Time Windows,”
Computers and Operations Research, Vol. 32, 2005, pp. 1593-1614.

[7] B. M. Baker, M.A. Ayechew, “A genetic algorithm for the vehicle
routing problem,” Computers & Operations Research, Vol. 30, 2003,
pp. 787-800.

[8] J. Berger, M. Barkaoui, “A Hybrid Genetic Algorithm for the
Capacitated Vehicle Routing Problem,” GECCO LNCS, 2003, pp.
646-656.

[9] C. Prins, “A simple and effective evolutionary algorithm for the
vehicle routing problem,” Computers & Operations Research, Vol.
31, 2004, pp. 1985-2002.

[10] N. Christofides, A. Mingozzi,, P. Toth,, “The vehicle routing
problem,” In: N. Christofides, A. Mingozzi,, P. Toth, , C Sandi.
(eds.): Combinatorial Optimisation. Wiley, chichesster, 1979.

[11] H. Maria, B. Yannis, V. Michalis, “On Clustering Validation
Techniques” Journal of Intelligent Information Systems, Vol. 17,
2001, pp. 107-145.

[12] Z. Michalewicz,, “Genetic Algorithms + Data Structures = Evolution
Programs,” 3rd edn. Springer-Verlag, Berlin Heidelberg New York,
1996.

1 2 3 4 5 6

Sr. Nr. Nr. of Custs
Baker &
Ayechew

Berger &
Barkaoui

Christian
Prins

Self
Imposed

Constraints
1 50 0.00 0.00 0.00 0.00
2 75 0.43 0.00 0.00 0.06
3 100 0.40 0.15 0.00 0.85
4 150 0.62 0.75 0.31 0.99
5 199 2.83 2.54 0.69 1.89
6 50 0.00 0.00 0.00 0.00
7 75 0.00 0.00 0.29 0.35
8 100 0.20 0.27 0.00 0.11
9 150 0.32 0.57 0.15 0.70

10 199 2.11 1.64 1.70 1.06
11 120 0.46 0.10 0.00 0.00
12 100 0.00 0.00 0.00 0.00
13 120 0.34 0.78 0.12 0.28
14 100 0.09 0.00 0.00 0.00

Avg 0.56 0.49 0.23 0.45

225

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

