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Abstract  The Capacitated Vehicle Routing Problem 
(CVRP) is a well known member of the family of NP hard 
problems. In the past few decades, a number of heuristics was 
introduced to solve this problem but no heuristic can claim to 
work well in all possible scenarios. In the literature, Genetic 
Algorithm (GA) even lags behind the other heuristics. In this 
paper, we reveal some of the reasons for the inferior 
performance of GA, and propose a number of mechanisms to 
improve its performance. A number of test problems are solved 
to demonstrate the usefulness of the algorithm. 

I. INTRODUCTION

The Vehicle Routing Problem (VRP) was first introduced 

by Dantzig and Ramser [1], where the objective is to find 
the route with the lowest cost for a number of homogeneous 
vehicles, stationed at a depot, destined to satisfy 
heterogeneous demand of customers, situated at 
geographically dispersed locations, such that, the route of 
each vehicle should start and end at the depot, and each 
customer must be visited only once by only one vehicle. The 
capacitated version of the problem is known as CVRP which 
has the additional constraint that the route of any vehicle 
should not contain the set of customers with demand greater 
than the capacity of vehicle.

This problem has attracted enormous interest in the 
research community, partially due to the simple definition, 
practical importance and computational challenges to 

achieve optimality. A number of heuristics and meta-
heuristics are applied to this problem. Those heuristics 
include Local and Neighborhood Search, Simple and 
Granular Tabu Search, Simulated and Deterministic 
Annealing, Ant colony and artificial life systems, 
evolutionary and population search etc. Some of the most 
successful work produced among these are Parallel and 
iterative search [2], Granular Tabu Search [3], Large Scale 
Neighborhood Search [4], [5] and Evolutionary Strategy [6]. 
People have also applied GAs and hybrid GAs [7]-[9]. 
Although GA is a very popular global optimization 
technique, it is not as successful as other heuristics on multi-
route problems, particularly in the case of CVRP. In this 
paper we have analyzed the performance of GA and 
identified the reasons for its inferior performance in CVRP. 
We have also suggested a number of modifications to 
improve the performance of GA on CVRP. The performance 
of the proposed algorithm is validated by solving a number 
of well known bench mark problems that have appeared in 
the literature. 
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This paper is organized as follows: We analyze the 
problem in section II. In section III we have explained our 
algorithm. Experiments and results are detailed in section 
IV. Finally in section V conclusions and future work is 
specified.

II. PROBLEM ANALYSIS

GA performs relatively well on the traveling salesman 
problem (TSP) but not so well on VRP. Among many other 
reasons, ambiguous data representation is a key reason 
behind its inferior performance. To date, Path 
Representation (PR) is considered the most suitable 
representation. However it has proved to be suitable for 
single route problems only such as TSP. It is unable to 
perform well in multiple routes mainly because of its 
difficulty in identifying terminal points of each sub-route. 
We explain this point using an example. Let us consider that 
there are 9 customers numbered from 1 to 9, such that the 
demand of each customer is equivalent to its number ID. 
Now let us consider 235897614 is our chromosome. Let us 
also consider that each vehicle can accommodate a 
maximum demand of 25. Considering the above 
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chromosome, the first route will consist of customers 2358, 
because if we add customer 9 to the route, the total demand 
of the route will become 27, exceeding the vehicle capacity 
of 25. The next route will consist of customers 9761. The 
last customer number 4 cannot be included in this route 
because if it does, the capacity constraint will be violated. 
Hence the last route will consist of customer 4 alone. By 
looking carefully at the chromosome, we can see that we can 
divide this chromosome in several different sub-routes while 
satisfying the capacity constraint and respecting the 
sequence altogether. For example, it can be divided into sub-
routes 2358-976-14. These routes lie within the capacity 
limit of the vehicle. It can also be divided into legal routes 
235-897-614, 235-89-7614, 23-589-7614, and 2-3589-7614. 
There are many other possibilities if we do not stick 
ourselves to 3-route limit. Therefore, how can we find which 
set of sub-routes represents the minimum cost solution? No 
clear answer found to this question in the literature. This is 
the major difficulty of representational issues in Genetic 
Algorithms, because of which it cannot compete with other 
heuristics. Prins [9] has come up with the idea of trying to 
test all possible subsets of routes to find out the best set in 
each evaluation. But this scheme is computationally 
expensive, with a complexity of order (nb), where n is the 
number of customers and b is the highest number of 
customers present in any route. If we consider the 5th test 
problem of Christofieds [10], which has 199 customers and 
17 routes, then for one individual in a given generation, this 
scheme will require around 199x199/17 = 2330 normal 
fitness evaluations in its best case scenario. When compared 
to real world situations, this data set is relatively small; and 
the idea of Prins may fail in wider goods distribution 
network.  

To deal with this problem, we have come up with a novel 
idea of imposing various constraints to identify the 
terminator for each sub-route (i.e. it tells the GA where to 
terminate the route). The terminator will be placed once any 
of these constraints is about to be violated. We have 
identified a number of constraints for this purpose, as 
discussed bellow:  

Route Constraint (RC): No route length should exceed 
particular limit. 

Active Route Constraint (ARC): Active route is the 
route length starting from first customer and ending at 
the last customer (omitting the leg distances from and 
towards the depot). We can set a particular limit for the 
active route also. 

Edge Constraint (EC): The Euclidean distance between 
any two consecutive customers should not exceed a 
particular limit. 

Customer Number Constraint (CNC): This constraint 
limits number of customers in any route. 

After identifying the constraints the next step is to decide 
on suitable values for their parameters, which can guide the 
GA towards good solutions. It is obvious that values for 

these parameters will be different for each and every type of 
problem. Although it is difficult to set the values, we have 
successfully set them adaptively through a clustering 
scheme. Clustering can also be used in routing for 
initialization, but the proposed scheme has never been used 
in any routing problem from this point of view. The scheme 
is described below. 

A. Clustering Scheme 

This scheme is similar to the k-nearest neighbor algorithm 
with the addition of a capacity on each bin of the cluster. It 
consists of the following steps, 

1) Randomly generate n points in the customer landscape, 
where n should be the upper integer of the ratio of the total 
customer demand to the vehicle capacity. 

2) Allocate the customers to these points, in the order of 
first to last customer. The customer must be allocated to the 
point which is the nearest to it as compared to other points. 
These allocations will form n clusters. A customer cannot be 
allocated to a cluster if the total demand of the cluster 
exceeds the capacity constraint of a vehicle. 

3) Calculate the centroid of each of the cluster. 
4) Reshuffle the order of customers, through random 

insertion. 
5) Taking these centroids as new points, repeat the steps 2 

to 4, until the clustering stabilizes, i.e. difference between 
new and old centroids become close to zero. 

This is also called crisp clustering as each customer is 
decisively assigned to a particular cluster [11]. The 
clustering scheme described above is suitable for standard 
CVRP only, i.e. the problem without externally imposed 
route constraint. It is so because we have considered only 
capacity constraint during clustering. But if we are solving 
advanced version of CVRP - i.e. problems with externally 
imposed route constraint - we will have also to consider 
route constraints along with the capacity constraint in point 
2 of the above clustering scheme. To impose a route 
constraint we must estimate the optimized route length of 
the route concerned. To know this value, we can test the 
effect of adding a customer to each cluster before deciding 
on which cluster to add the customer to. This may increase 
the computational cost of clustering but will eliminate the 
need for optimization of individual routes after clustering.  

B. Self Imposed Constraints

After having the optimized cluster paths, we can say that 
we have obtained the solution structure, which is not 
necessarily optimal but a better individual in a good shape, 
having some locally optimized properties. If we are able to 
identify those properties or parameters, these parameter 
values can be used in the GA as self imposed constraints for 
deciding on when to terminate a route when reading and 
evaluating a chromosome. To understand this point, 
consider 1st christofied’s data set with 50 customers. After 
applying the above clustering scheme, we got the solution 
shown in figure-1. The best known solution found yet of the 
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above data set is shown in figure-2. 
By comparing the two solutions we can see that they are 

very similar in shape. Now let us compare the various 
properties of the two solutions, which are consolidated in 
table I. 

As per table-1, the solution after clustering has slightly 
greater values of longest route, longest active route and 
longest edge as compared to the best known solution. If we 
use these values of the sample solution as self imposed 
constraints in our algorithm, then these constraints will 
terminate the sub-routes at more suitable places, where we 
can have low cost solutions. Consider the same previous 
example of section II, where we were dealing with the 
chromosome 235897614. Let us consider these customers 
form 3 different clusters i.e. 235, 897 and 614. Then the 
most suitable division of the chromosome into sub-routes 
will be 235-897-614. However if we consider only the 
capacity constraint, we will come up with a solution 2358-
9761-4. Now if we apply self imposed constraints of longest 
route, longest active route and longest edge, the first route 
2358 may violate one of these constraints and may end up to 
be 235. Naturally then, the next customer, 8, will join the 
second route. Again the second route will serve only the 
following 3 customers i.e. 897 due to its capacity constraint 
and the rest will move to the last route ending up in a 
desirable solution of 235-897-614. 

Fig. 1.  Solution obtained after Clustering - Cost = 535.80 

TABLE I
PROPERTY COMPARISON BETWEEN TWO SOLUTIONS

Solution after
clusteringProperty Best Solution

Longest Route 124.11 118.52
Longest Active Route 100.22 88.95
Longest Edge 20.10 15.03

Fig. 2.  Best Known Solution – Cost = 524.61 

III. PROPOSED ALGORITHM

The algorithm consists of 3 phases, as shown in figure-3. 
The first phase is clustering, which is used to create initial 
population. It is followed by a local GA. We call it local GA 
(LGA) because it is applied to parts of the chromosome. The 
3rd phase consists of local search (LS). If the solution is 
improved in this phase, then it goes back to the local GA 
and the procedure is repeated between LGA and LS until no 
improvement is possible in LS. All of these phases are 
described below in details. 

Clustering

Local
GA LS End

Fig. 3.  Over all Algorithm Scheme 

A.  Initial Population 

The initial population is created through the clustering 
scheme described in section II A. The population size is kept 
equal to the total number of customers. After the creation of 
the initial population, constraint values are calculated as 
described in section II B from the best individual of the 
population. The best individual is the one which gives the 
minimum sum of all individual route distances.  
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B. Local Genetic Algorithm 

The local genetic algorithm is applied to all possible pairs 
of routes. We extract any two routes from the parent 
chromosome and form a mini-dataset.  Then we apply LGA 
on that mini-dataset in two stages. In the first stage, all 
constraints are relaxed and in the second stage constraints 
are imposed. The first stage starts with random generation of 
initial population. The population size is made equal to the 
number of customers present in the mini-dataset. 
Tournament Selection of team size 2 (binary tournament) is 
used. The fitness cost is the total distance covered by 
vehicles, only one vehicle at this stage as all constraints are 
relaxed. Minimizing the fitness cost is our objective. For 
binary genetic operators our choice is partially mapped 
crossover. It is applied with probability equal to 0.6. 
Combination of 3 unary operators, inversion, insertion and 
swap mutations are applied with probabilities equal to 0.15, 
0.1 and 0.05 respectively. Cloning of individuals is done 
with probability of 0.1. The termination condition is set as 
the number of non-improved generations equal to 5 times 
the population size. Second stage gets evolved population 
from the first. All the other parameters remain the same in 
the second stage. But since all the constraints are applied at 
this stage, the fitness cost will be the distances covered by 
one or more vehicles whatever the case may be. Note that 
the local GA is applied on the best solution of the population 
only. If local GA brings multiple changes to the solution, 
then multiple copies of solutions are developed each with a 
single change. The best solution from these individuals is 
selected for the application of LGA again. The process is 
repeated till no improvement is possible through LGA. 

C. Local Search 

Local Search is applied to all the individuals, which are 
products of local GA. It consists of the following operations. 

1. Swap: Position of two or more consecutive customers 
is swapped. In the usual neighborhood search terminology it 
is called -opt neighborhood, if customers belong to the 
same route and -interchange neighborhood if customers 
belong to different routes [5], where  is the number of 
customers swapped.  

2. Insertion: One or more customers are taken out from 
their position and inserted in another position. In terms of 
neighborhood search, it is called string relocation [5]. 

3. Inversion: Whole segment of customers between two 
positions is inverted. 

4. Swap-unequal: Two unequal strings of customers are 
swapped. It is called string exchange in neighborhood search 
[5]. 

The following new operations are introduced to enlarge 
the neighborhood. 

5. Swap-Partially Inverted (SPI): It is a combination of 
segment exchange and inversion. A position of two equal or 
unequal strings of customers are swapped, afterwards one of 
them is inverted. 

6. Swap-Fully Inverted (SFI): It is the same operation as 
5, except that, both the swapped strings are inverted this 
time. 

7. Insertion-Inverted (II): It is a combination of inversion 
and insertion. A string of customers is taken out from their 
position and inserted at another place. Then it is inverted. 

IV. EXPERIMENTS AND RESULTS

We coded the above algorithm in C++, with Microsoft 
visual C++ v6 compiler. The operating system was 
Microsoft Windows XP professional, version 2002. The 
program was executed on Pentium-4, 3.2 GHz processor 
with 1 GB RAM. 

In our experiments, to see the effect of each and every 
phase of our algorithm, we applied our algorithm in parts 
and have studied their effect over the best and average 
results. First we applied only phase-1 i.e. clustering. Table II 
shows the results of these experiments. In our next set of 
experiments, Local GA was applied after clustering. The 
results of these experiments are shown in Table III. In our 
next set of experiments, Local Search was also introduced to 
improve the solution. The algorithm was allowed to iterate 
between local GA and Local search as shown in figure-3. 
The results of such experiments are shown in Table IV. In 
our final set of experiments we allowed 1% deterioration of 
solution through our local search mechanism. We also 
introduced another self imposed constraint, i.e., Customer 
Number Constraint. The results of such experiments are 
shown in Table V. 

For the above experiments, we chose 14 data sets of 
Christofied. These results are based on the best solutions 
among 30 program executions, which were run on different 
randomly generated seeds. In these tables, column 1 shows 
the serial number of the data set, column 2 shows the 
number of customers, present in the data set. Column 3 
shows the value of the best known solution appeared in the 
literature. Column 4a shows the minimum solution value in 
30 executions of the program, whereas column 4b shows the 
difference in percentage of this solution against the best 
known solution in literature. Finally columns 5a, 5b and 5c 
show the average solution values of all 30 results, their 
difference in percentage from best known solutions and the 
average cpu times in seconds respectively. 

One can see that after the clustering, the average of best 
values obtained is 8.61% away from the best known 
solutions. After the application of local GA, this value 
decreases to 1.02%. The value is reduced to 0.85% after the 
application of Local GA – Local Search cycle and finally it 
touches the value of only 0.45% after allowing 1% solution 
deterioration and introduction of an additional self imposed 
constraint, i.e. a customer number constraint. This proves 
that each part of algorithm contributes to the solution quality 
positively and has its important role to play. It should be 
noted that self imposed constraints are at work in both the 
sections i.e. Local GA and Local Search. 
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TABLE II
RESULTS AFTER CLUSTERING

TABLE III
RESULTS AFTER CLUSTERING AND LOCAL GA

Now let us compare our results with 3 popular GAs [7]-
[9] applied to VRP, as appeared in the literature. The 
comparisons are shown in Table-VI. The columns only 
show percentage gap from best known solutions found so 
far. Percentages of the 5th data set are recalculated for all 
algorithms because a new solution [6] was found after the 
publication of these algorithms. In the paper of Baker & 
Ayechew [7], there was miscalculation in percentage 
differences in solutions of 5th and 10th data sets, it is also 
corrected here. Values from Christian Prins paper [9] are 
given which he obtained under one setting, because we have 

not configured settings of our algorithm separately for 
different data sets. From the table, one can easily see that the 
algorithm of self imposed constraints have got better 
solutions than two GAs [7], [8]. However solutions still leg 
behind the 3rd GA [9]. But as we discussed earlier in our 
problem analysis, that evaluation process of Prins algorithm 
i.e. checking all possible subsets of routes is 
computationally expensive and may fail in real world 
scenario, where we are dealing with several thousand 
customers with several hundred routes, therefore our 
algorithm can still be considered competitive and promising.  

1

TABLE IV
RESULTS AFTER CLUSTERING AND LOCAL GA-LOCAL SEARCH CYCLE

TABLE V
RESULTS AFTER ALLOWING 1% DETERIORATION OF SOLUTION

2
.

3 4
Minimum 

5
Average

Sr. Nr. 
Nr. of 
Custs

Best
Known

a
Dist

b
%diff

A
Dist

b
%diff

c
Time 

1 50 524.61 524.61 0.00 533.44 1.68 0.42 
2 75 835.26 881.32 5.51 903.18 8.13 10.82 
3 100 826.14 884.65 7.08 892.24 8.00 8.44 
4 150 1028.42 1132.7 10.14 1141.6 11.00 50.03 
5 199 1291.29 1462.7 13.28 1497.1 15.94 310.22 
6 50 555.43 567.32 2.14 578.25 4.11 0.81 
7 75 909.68 957.56 5.26 976.57 7.35 7.39 
8 100 865.94 950.31 9.74 977.99 12.94 14.63 
9 150 1162.55 1300.5 11.87 1331 14.49 88.02 

10 199 1395.85 1592.0 14.05 1643 17.71 278.08 
11 120 1042.11 1068.8 2.56 1082.4 3.86 20.83 
12 100 819.56 829.32 1.19 830.61 1.35 0.44 
13 120 1541.14 2061.8 33.79 2167.5 40.65 21.5 
14 100 866.37 900.39 3.93 916.02 5.73 16.61 
Avg 8.61 10.93 59.16 

1 2 3 4 5
Minimum Average

Sr. Nr. 
Nr. of 
Custs

Best
known

a
Dist

b
%diff

a
Dist

b
%diff

c
Time 

1 50 524.61 524.61 0.00 526.74 0.41 1.92 
2 75 835.26 845.46 1.22 860.64 3.04 18.01 
3 100 826.14 840.76 1.77 849.30 2.80 32.40 
4 150 1028.42 1059.40 3.01 1069.93 4.04 141.61 
5 199 1291.29 1318.01 2.07 1335.87 3.45 579.98 
6 50 555.43 555.43 0.00 564.49 1.63 2.81 
7 75 909.68 930.64 2.30 945.32 3.92 12.78 
8 100 865.94 867.41 0.17 892.14 3.03 42.98 
9 150 1162.55 1182.33 1.70 1204.65 3.62 194.16 

10 199 1395.85 1416.64 1.49 1453.05 4.10 547.08 
11 120 1042.11 1043.57 0.14 1049.64 0.72 70.26 
12 100 819.56 819.56 0.00 821.29 0.21 10.86 
13 120 1541.14 1546.14 0.32 1571.62 1.98 121.39 
14 100 866.37 866.79 0.05 875.97 1.11 36.96 

Avg 1.02 2.43 129.51 

1 2 3 4
Minimum 

5
Average

Sr. Nr.
Nr. of 
Cust.

Best
known

a
Dist

b
%diff

a
Dist

b
%diff

c
Time 

1 50 524.61 524.61 0.00 526.71 0.40 1.83 
2 75 835.26 845.46 1.22 859.76 2.93 19.69 
3 100 826.14 839.60 1.63 846.71 2.49 41.89 
4 150 1028.42 1042.78 1.40 1065.41 3.60 216.40 
5 199 1291.29 1313.53 1.72 1330.72 3.75 788.05 
6 50 555.43 555.43 0.00 563.73 1.49 2.81 
7 75 909.68 930.64 2.30 944.02 3.78 17.22 
8 100 865.94 867.41 0.17 888.95 2.66 60.17 
9 150 1162.55 1182.12 1.68 1201.60 3.36 259.63 

10 199 1395.85 1416.64 1.49 1446.95 3.66 747.19 
11 120 1042.11 1042.11 0.00 1046.72 0.44 119.00 
12 100 819.56 819.56 0.00 821.29 0.21 15.26 
13 120 1541.14 1546.14 0.32 1569.94 1.87 165.00 
14 100 866.37 866.37 0.00 875.13 1.01 47.85 

Avg 0.85 2.26 178.72 

1 2 3 4
Minimum 

5
Average

Sr. Nr.
Nr. of 
Cust.

Best
known

a
Dist

b
%diff

a
Dist

b
%diff

c
Time 

1 50 524.61 524.61 0.00 524.84 0.04 3.20 
2 75 835.26 835.77 0.06 855.53 2.43 32.00 
3 100 826.14 833.14 0.85 841.09 1.81 85.13 
4 150 1028.42 1038.65 0.99 1057.30 2.81 344.20 
5 199 1291.29 1315.72 1.89 1333.00 3.23 1111.37 
6 50 555.43 555.43 0.00 557.59 0.92 4.40 
7 75 909.68 912.89 0.35 926.26 1.82 25.20 
8 100 865.94 866.87 0.11 880.44 1.67 86.13 
9 150 1162.55 1170.67 0.70 1197.08 2.97 395.10 

10 199 1395.85 1410.66 1.06 1437.90 3.01 1382.10 
11 120 1042.11 1042.11 0.00 1046.76 0.45 163.43 
12 100 819.56 819.56 0.00 820.01 0.06 26.30 
13 120 1541.14 1545.4 0.28 1565.98 1.61 209.23 
14 100 866.37 866.37 0.00 868.67 0.27 61.30 

Avg 0.45 1.65 280.65 
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TABLE VI
COMPARATIVE RESULTS WITH OTHER GAS

V. CONCLUSION AND FUTURE WORK

By looking at the results, one can easily conclude that the 
algorithm scheme is quite suitable for the vehicle routing 
problem. This research was intended to identify problems 
with GA while dealing with multiple routes. We identified 
some problems, such as difficulties in the identification of 
terminal genes of sub-routes and proposed some new 
mechanisms like self imposed constraints to deal with those 
difficulties. However the paradigm of self imposed 
constraints in the vehicle routing problem is still nascent and 
needs to be developed further. We will continue to 
investigate possibilities for other self imposed constraints, 
such as the largest angle subtended by any edge, with 
respect to the depot. If these new constraints are designed 
and applied carefully, we may be able to improve the results 
further. There also remains the great potential for reducing 
the computational cost of the algorithm. For this, one may 
consider the potential of using the clustering technique to 
estimate the targets for self-imposed constraints without 
using clustering for initialization. The idea of self imposed 
constraints should also be applied on other variants of VRP 
such as VRP with time windows etc, to test its robustness. 
The Self Imposed Constraints also need to be supported by 
some theoretical work to expand its area of application. 

REFERENCES

[1] G. B Dantzig,, J. H. Ramser, “The truck dispatching problem,” 
Management Science Vol. 6, 1959, 80. 

[2] E. Taillard, “Parallel Iterative Search Methods for Vehicle Routing 
Problems,”. Networks, Vol. 23, 1993, pp.  661-673. 

[3] P . Toth, D. Vigo, “The Granular Tabu Search and Its Application to 
the Vehicle-Routing Problem,” INFORMS Journal on Computing, 
Vol. 15, 2003, pp. 333-346. 

[4] F. Li, B. Golden., E. Wasil, “Very Large Scale Vehicle Routing: new 
test problems, algorithms and results,” Computers and Operations 
Research Vol. 32, 2005, pp. 1165-1179. 

[5] R. Agarwal, R. K  Ahuja., G. Laporte, Z. J. M. Shen, “A composite 
Very Large Scale Neighborhood Search Algorithm for the Vehicle 
Routing Problem,”  Handbook of Scheduling, Algorithms, Models, 
and Performance Analysis. Chapter 49, 2004. 

[6] D. Mester,  O. Braysy, “Active Guided Evolutionary Strategy for the 
Large Scale Vehicle Routing Problems with Time Windows,” 
Computers and Operations Research, Vol. 32, 2005, pp. 1593-1614. 

[7] B. M. Baker, M.A. Ayechew, “A genetic algorithm for the vehicle 
routing problem,” Computers & Operations Research, Vol. 30, 2003, 
pp. 787-800. 

[8] J. Berger, M. Barkaoui, “A Hybrid Genetic Algorithm for the 
Capacitated Vehicle Routing Problem,” GECCO LNCS, 2003, pp. 
646-656. 

[9] C. Prins, “A simple and effective evolutionary algorithm for the 
vehicle routing problem,” Computers & Operations Research, Vol. 
31, 2004, pp. 1985-2002. 

[10] N. Christofides, A. Mingozzi,, P. Toth,, “The vehicle routing 
problem,”  In: N. Christofides,  A. Mingozzi,, P. Toth, , C Sandi. 
(eds.): Combinatorial Optimisation. Wiley, chichesster, 1979. 

[11] H. Maria, B. Yannis, V. Michalis, “On Clustering Validation 
Techniques” Journal of Intelligent Information Systems, Vol. 17, 
2001, pp. 107-145. 

[12] Z. Michalewicz,, “Genetic Algorithms + Data Structures = Evolution 
Programs,” 3rd edn. Springer-Verlag, Berlin Heidelberg New York, 
1996. 

1 2 3 4 5 6

Sr. Nr. Nr. of Custs 
Baker & 
Ayechew

Berger & 
Barkaoui 

Christian
Prins

Self 
Imposed 

Constraints
1 50 0.00 0.00 0.00 0.00 
2 75 0.43 0.00 0.00 0.06 
3 100 0.40 0.15 0.00 0.85 
4 150 0.62 0.75 0.31 0.99 
5 199 2.83 2.54 0.69 1.89 
6 50 0.00 0.00 0.00 0.00 
7 75 0.00 0.00 0.29 0.35 
8 100 0.20 0.27 0.00 0.11 
9 150 0.32 0.57 0.15 0.70 

10 199 2.11 1.64 1.70 1.06 
11 120 0.46 0.10 0.00 0.00 
12 100 0.00 0.00 0.00 0.00 
13 120 0.34 0.78 0.12 0.28 
14 100 0.09 0.00 0.00 0.00 

Avg 0.56 0.49 0.23 0.45 
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