
Static Task Scheduling Using Genetic Algorithm

and Reinforcement Learning

Mohammad Moghimi Najafabadi

Mustafa Zali

Shamim Taheri

Fattaneh Taghiyareh

ECE Department

University of Tehran

Tehran, Iran

Email: {m.moghimi,zali,s.taheri}@ece.ut.ac.ir, ftaghyiar@ut.ac.ir

Abstract— Task scheduling in a multi processor system is
defined as assigning a set of tasks to a set of processors. The
goal is to minimize the execution time while meeting a set of
constraints. A wide variety set of deterministic and heuristic
methods are proposed to solve the problem. The main problem
is that the proposed methods cannot deal with big search spaces
and cannot guarantee to find the optimal solution. In this research
a novel approach based on reinforcement learning and genetic
algorithm is proposed. Being divided using genetic algorithm,
the smaller problems can be solved with reinforcement learner
scheduler. The result of the method is a set of task processor
pairs. Simulation results in standard problem set show that the
method outperforms some studied GA based scheduling methods.

I. INTRODUCTION

With increasing use of parallel processing in different fields

of applications, the optimum task scheduling such that the time

and cost limitations would be met is valuable. In this case, the

tasks scheduling is defined as the assignment of some tasks

to a limited number of processors [1]. The final goal is to

perform this scheduling in a way that the final time and cost

of the execution would be minimized and all the constraints,

such as prerequisites, are satisfied [2]. In this problem, the

scheduling is static, in such a way that the information on the

tasks, the way they are related to one another, the execution

time of each of them and the number of processors are known

before execution. However, there are a variety of problems in

the field of dynamic scheduling in which some information is

obtained in the tasks execution time[3].

The nature of the scheduling problem, even in the limited

cases, is NP-complete [4]. Nevertheless, many heuristic, ef-

ficient algorithms with acceptable results are proposed as its

solution. Some simplified cases of the problem can be solved

in polynomial time [4], [5], [6].

The solutions include various domains of algorithms such

as classical AI methods(A∗), clustering methods, genetic al-

gorithms and machine learning techniques(RL).

Since the scheduling problem is NP-complete and the

use of reinforcement learning method to find the optimum

solution for large state space problem is time-consuming, a

combination of genetic algorithm and reinforcement learning

has been used to solve the problem.

The reinforcement learning method learns the search policy

on the state space. The learning policy determines what should

be done in each case. In the process of learning, for each

action a reward signal is achieved. The aim of the agent is to

find a policy, in the execution time, to maximize the reward

in return for the actions [13]. In the scheduling problem, the

learned policy determines what the next action should be to

satisfy the timing measurement constraints in the best case.

To schedule a number of tasks in a multi processor system

using the reinforcement learning method, very large state space

is required. Searching the large state spaces is not possible,

due to the amount of memory occupied and the time needed

to visit all the states; therefore genetic algorithm is used to

find the optimum subproblems. Genetic algorithm may satisfy

the timing constraints in finding such subproblems.

This paper is organized as follows: A review of the previous

related work is presented in section II. Sections III and IV take

a glance at the reinforcement learning methods and genetic

algorithm. In section V the design method of the problem

solving algorithm for the combination of the two methods has

been discussed, and in the last two sections the implementation

results and the final conclusion have been presented.

II. RELATED WORK

The task scheduling problem in multi processor systems

is NP-complete and many semi-optimum solutions have been

offered for it. The correctness of the optimum solution cannot

be verified since time-consuming searching methods are re-

quired to fulfill the task. Wide studies have been performed to

solve this problem using heuristic solutions. Heuristic methods

are open fields to propose complementary discussions. One of

the problems of the heuristic solutions is that they cannot be

applied to the solution of different problems. These solutions

are appropriate only for solving the problem for which they

have been designed. On the other hand, many efforts have

been made to solve this problem using reinforcement learning

method. Solutions based on the reinforcement learning method

226

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

that have been already offered cannot be applied to the

problems with large state space.

The offered solutions include a wide range of algorithms, as

Ahmad and Kwok have made use of the modified A∗ algorithm

to solve the task scheduling problem[7]. Simulated Annealing

is a gradient-based method that can be used to optimize the

scheduling problem[14]. Genetic algorithm is also widely used

to search in nearly optimum solutions[9], [11]. Correa et al.

have used a direct acyclic graph representation to present

their crossover[9]. They used an integer string representation

to encode their chromosomes such that the number of the

processors in each chromosome is encoded and the tasks

assigned to each processor vary from one chromosome to the

other. They also proved that this representation cannot lead to

a complete set of problem solutions. They offered a full search

genetic algorithm(FSG) which consists of a string representa-

tion capable of searching in all possible assignments. Liu et

al. have shown the two phase scheduling effect and claimed

that it would work better than the single phase scheduling

algorithm [15]. Generally, they consider that at first there are

infinite number of identical processors connected completely

to each other. All the tasks in a cluster are performed on the

same processor. During the scheduling, if the number of the

clusters is less than or equal to the number of the processors,

all clusters are executed. In the single phase method, the

number of processors is an initial parameter given to the

algorithm. They claimed that the two phase method is faster

and more efficient than the other one. Their two phase method

consists of three parts: Integrating the clusters, assignment of

the processors and local scheduling.

Zomaya et al. have used an integer string matrix [11].

They gathered the ideas in the initial population production of

genetic algorithm and studied on how the efficiency of the ge-

netic algorithm varies by changing the parameters. They used

a reordering crossover, which they called RRANDS(Replace,

Release and Save). A set of algorithms such as the height

algorithm, the priority algorithm and the heuristic algorithm

have been also used.

Ahmad et al. have made use of direct acyclic graphs in

homogeneous multi processor systems and a problem space

genetic algorithm, which combines a list of heuristic schedul-

ing and a genetic algorithm for static scheduling [16].

Wu et al. offered a representation in which each chromo-

some consists of a set of cells [11]. Each cell is a processor-

task pair, (t, p), in which task t is assigned to processor

p. In their representation, the number of cells may vary

from one chromosome to the other, and hence the length of

chromosomes are different. Chromosome is read from left to

right, therefore the order in these cells is the same as the

order in which tasks are performed on each processor. While

the ordered sets are read from left to right, when two tasks are

performed on the same processor, the first task should be the

prerequisite of the second one. Otherwise, that chromosome

would be punished.

Zhang et al. used reinforcement learning method to solve

the task scheduling problem in which a critical path is con-

Fig. 1. Reinforcement Learning Framework

sidered first and the number of scheduling conflicts decrease

continuously [12].

III. REINFORCEMENT LEARNING

Reinforcement learning framework is shown in Figure 2.

In the learning cycle, the agent receives information from

environment, chooses an action corresponding to it and per-

forms the action. As a result of it, a reward signal is given

to the agent. The final goal of the agent is to maximize the

sum of the rewards in a period of time. The reinforcement

learning, unlike the supervised learning methods in which

the agent is told what to do, finds the best action in each

situation just by receiving rewards. In all different methods of

reinforcement learning, a mapping from the current state of

the agent to an action exists. This mapping is called policy

and determines what to perform in each state. The agent

should optimize his policy based on the received reward. There

is always a trade-off between exploration and exploitation

in reinforcement learning. The agent should make use of

available information to maximize its reward and search for

better actions in the current situation. A difficult problem

in reinforcement learning is that exploitation and exploration

should be performed successfully in balance.

Current reinforcement learning methods act in accordance

with discrete Markov chain model. In these methods, the

agent and the environment send and receive information in

discrete periods of time. In each period, the agent observes

the environment in state st and performs the action at. To

reply to this action, the environment goes to state st+1 and

gives the real number rt+1 to the agent as a reward [13].

One of the reinforcement learning implementations, called

Q-learning, is used here. In this method, a function maps the

value of an ordered pair of state-action to a real value. This

function is called Q∗. If Q∗(s, a) is the expected value for

state s, with action a, its approximate value can be obtained

by the following relation:

Q(st, at) = Q(st, at)+α[rt+1+γmaxaQ(st+1, a)−Q(st, at)]
(1)

in which γ is the discount factor, α is the learning rate and

rt+1 is the reward in time t+1. If each action in each state is

performed in infinite steps, the Q values will converge to the

Q∗ values.

227

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

Fig. 2. Tasks Dependencies Graph

IV. GENETIC ALGORITHM

Genetic Algorithm has come into existence with the inspira-

tion of biological comparative systems and the selection con-

cept in genetic evolutions. Hypothetical responses with con-

stant lengths are encoded as a vector. These vectors are called

chromosome. The initial population of these chromosomes are

determined randomly. They evolve through consecutive gener-

ations. In each generation, the fitness of each chromosome is

evaluated which is a factor for improvement rate of the target

function. The next generation will be produced through the

processes of selection, crossover and mutation in the previous

generation chromosomes.

The fitness of each chromosome determines the probability

of the combination of it. The crossover operator mixes the

information of a selected pair of chromosome by selecting

random parts of each, and makes them appear in the next

generation. Because of the presence of random parameters,

the produced children from the crossover operator may have a

fitness less than or greater than their parent chromosomes. The

mutation is used to help keep the diversity in population. Mu-

tation of random changes is in some parts of the chromosomes

[18].

V. METHODOLOGY

As indicated in the introduction, the scheduling problem is

NP-complete and hence the appropriate solution is applying to

intelligent methods. To solve the problem, the reinforcement

learning method is used. It can be proved that the state space

of the problem is very large and therefore cannot be solved

by reinforcement learning method. So the idea of dividing the

problem into smaller subproblem is proposed.

The tasks in the scheduling problem are only dependent on

their few previous tasks and dependencies are not too wide.

Thus, the problem can be divided into smaller subproblems

and each subproblem can be solved individually. To divide

problem into independent subproblems, a topological sort of

the tasks is required. For example, consider the graph in Figure

2. Figure 3 shows a topological sort of this graph.

Since there are no cycles in the tasks dependency graph, it

is always possible to find such an order. After constructing the

dependency graph, the number of each task can be changed in

Fig. 3. An Example of Task Topological sort

Fig. 4. An Example of Tasks Relabeling

a way that corresponds to the order presented in dependency

graph as indicated in Figure 4.

Now a subproblem cab be defined as a continuous set of

tasks in the form of ti to tj . Figure 5 shows how to devide

problem into subproblems.

Then smaller subproblems can be solved. It is evident that

dividing is not appropriate for the small problems such as

figure 3, but for some problems, e.g. Figure 7, suboptimum

solutions can be gained by dividing approach.

To find the best way of dividing, genetic algorithm is used.

The problem representation as a single chromosome is as

follows: A chromosome, whose length is equal to the number

of tasks, is composed of some zeros and ones, in which the

ones represent the places where the problem has been divided.

For instance, the chromosome of Figure. 2 can be represented

in the form of Figure 6.

To divide the problem into subproblems the single point

crossover has been used. This kind of crossover is meaningful

since if two children also benefits from high fitness, it is most

probable that their children also benefit from high fitness. This

is true based on the fact that if a suboptimum solution can be

achieved for the left and right sides of the dividing point, the

whole problem also has a suboptimum solution most probably.

The mutation point is selected by a uniformly distributed

probability and the mutation changes the bit located there.

To solve the optimum subproblem, as stated before, making

use of intelligent methods seems suitable. Here, to solve the

subproblems scheduling, the reinforcement learning method

has been used. To define a reinforcement learning problem, it

is necessary to determine the two main elements; the agent

Fig. 5. Graphical Representation of Subproblems

Fig. 6. The Representation of the Tasks in a Chromosome

228

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

Fig. 7. An Example of Suitable Problem

and the environment. In this problem, the agent performs as

scheduler and gets rewards from the environment as time

passes. In addition to these two elements, the scheduling

policy, reward and the value function should be defined.

Policy is the way of scheduling and here, by a constant

probability, is the best possible action in the current state

or selecting an action randomly. In this problem, the reward,

which determines the final goal, is considered as the negative

of the execution time.

The value function (Q∗ function) represents the efficiency

of each action in the current state and its approximate value is

obtained by Eq. 1. The definition of the reinforcement learning

problem would be completed when the space state of the agent

and the reward function are determined. Here, the state space

is the set of all the possible states of tasks related to the

processors.

If the number of the processors is |P |, then each tasks has

2|P | possible states. So when |T | tasks considered, the size

of the state space would be 2|P |×|T |. Assuming that there are

ten tasks and four processors, the state space size will be 240

which cannot be solved by the reinforcement learning method.

Therefore, dividing the problem into subproblems is necessary.

To make better use of memory, the state space may be stored

in a bit string in which there is a substring in correspondence

with each task. In each substring, there exists a bit for each

processor and the value of that bit shows whether the task

has been assigned to that processors. To realize the above

statements, an example will be explained.

Assume the processors set to be P = p1, p2 and the tasks

set to be T = t1, t2, t3, t4 and that the tasks dependencies obey

the graph. First the ordered pair (t1, p1) and then (t2, p2) are

selected. Therefore, the first state would be (00000001)2 and

the second state would be (0100001)2.

The legal actions in each state are to assign one task to one

processor. For each action, the following requirements should

be checked:

• That task should not has been assigned to that processor

TABLE I

THE SELECTED PROBLEM FOR EXPERIMENTS

p no. Reference Name tmin,tmax

P1 15 Tsuchiya, et al[19] Gauss-Jordan alg. (CD=25) 40,40

P2 15 Tsuchiya, et al[19] Gauss-Jordan alg. (CD=25) 40,40

P3 14 Tsuchiya, et al[19] LU Decomposition(CD=20) 10,50

P4 14 Tsuchiya, et al[19] LU Decomposition(CD=20) 10,50

P5 15 Kruatrachue et al[20] (CD=212) 80,101

P6 16 Wu and Gajski[21] Laplace (CD=40) 80,100

P7 16 Wu and Gajski[21] Laplace (CD=40) 80,100

• The previous actions of that action should be performed

Therefore, the maximum legal action in each state are |T |×
|P |.

VI. RESULTS

The experiments is compared to the results obtained from

[11], [17]. The list of selected problems is available in Table

I.

The parameters for GA such as mutation rate and way of

crossover is set by trial an error. Our experiments show that

setting mutation rate equal to 0.1 and using single cross over

is the best configuration for the proposed genetic algorithm.

Genetic algorithm has been performed 50 times for two

population, one with 100 and one with 400 individuals, and

for 100 generations. The mutation probability is considered

0.1 for both instance and the fitness function is the negative of

the execution time of each of the subproblems. The selecting

method is considered as a uniformly distributed probability.

The crossover, as stated above, obeys the single point model.

In solving subproblems with reinforcement learning method

to set a balance between the exploration and exploitation, the

search probability is ε = 0.1 and the learning rate and discount

factor are α = 1 and γ = 0.8, respectively.

The results of the simulation and the comparison to the

available methods are shown in Table II. For each problem

the minimum execution time, the time when the last task

is done, found by our method and other methods in [1]

and [17] indicated in the II. For each problem, the exact

information about tasks dependency graph, duration of tasks

and communication delay of transmitting the result of executed

tasks is available. Note that in the three last problems P5
to P6, convergence is obtained slower than the four ones

because that problems dependency graph have more complex

structures.

VII. CONCLUSION

In this problem, a new combinational method for solving

the scheduling problem based on genetic algorithm and re-

inforcement learning has been offered. This method is novel

because of the presentation of the idea of dividing the main

problem into subproblems and also due to the use of the rein-

forcement learning method. As the results that the simulation

229

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

TABLE II

THE COMPARATIVE EXPERIMENTAL RESULTS OF EXECUTION TIMES

Problem Best[1] Best[17] Best of Proposed Method

P1 300 300 300

P2 420 400 400

P3 260 260 260

P4 360 330 340

P5 438 438 444

P6 760 760 760

P7 1035 1040 1025

demonstrates, the proposed method is more efficient compared

to the others.

The idea of solving the problem using genetic algorithm can

be applied to different problems due to the existence of many

problems that can be solved locally. To solve the subproblems

intelligent algorithms are required, since their exact solution

has an exponential order. It is important to note that this

method, as the others, does not guarantee to find the best

solution. The future work is to find a method that is capable

of solving the dividing problem faster and discover a better

way of defining the problem as a reinforcement learning one.

REFERENCES

[1] Mehdi Salmani Jelodar, S. Najmeh Fakhraie, Faezeh Montazeri, Seid

Mehdi Fakhraie, Majid Nili Ahmadabadi A representation for genetic-
algorithm-based multiprocessor task scheduling, IEEE World Congress

on Computational Intelligence, WCCI’06, pp. 1044-1051, Vancouver,

BC, Canada, Jul. 2006.

[2] Faezeh Montazeri, Mehdi Salmani Jelodar, S. Najmeh Fakhraie and

S. Mehdi Fakhraie, Evolutionary Multiprocessor Task Scheduling, Intl.

Symp. on Parallel Computing in Electrical Engineering, IEEE PAR-

ELEC 2006, pp. 68-76, Poland, September, 2006.

[3] B.Hamzezadeh, L. Y. Kit and D. J. Lilja, dynamic task scheduling using
online optimization, IEEE Trans. Parallel and Distributed Systems, vol.

11, no. 11, pp. 1151-1162, Nov. 2000

[4] P.Chretienne et al.(Eds), cheduling Theory and its Applications,New

Yourk: Wiley, 1995.

[5] M,R Garey, D. S. Johnson,Computers and Intractability: A Guide to the
Theory of NP Completeness, New York: W.H.Freeman and Company,

1979.

[6] H.El- Rewini, T. G. Lewis, H. H.Ali,Task Scheduling in Parallel and
Distributed Systems., Englewood Cliffs, NJ: Prentice-Hall, 1994.

[7] Y. Kwok, and I. Ahmad,On multiprocessor task Scheduling Using
Efficient State Space Search Approaches,Parallel and Distributed Com-

puting, vol. 65, pp. 1515-1532, 2005.

[8] K. Ramamritham,Allocation and scheduling of precedence related peri-
odic tasks, IEEE Trans. Parallel and Distributed Systems, vol. 6, no. 4,

pp. 412-420, April 1995.

[9] R.C. Correa, A. Ferreira and P. Rebreyend,Scheduling Multiprocessor
Tasks with Genetic Algorithms, IEEE Trans. Parallel and Distributed

Systems, vol. 10, no. 8, pp. 825-837, August 1999.

[10] E.S. H.Hou, N. Ansari and H.Ren ,A genetic Algorithm for multipro-
cessor scheduling, IEEE Tran. Parallel and Distributed Systems, vol. 5,

no. 2, pp. 113-120, Feb. 1994

[11] A.Y. Zomaya, C. Ward, and B.Macey,Genetic Scheduling for Parallel
Processor Systems: Comparative Studies and Performance Issues,IEEE

Trans. Parallel and Distributed Systems, vol. 10, no. 8, August 1999.

[12] Wei Zhang, Thomas G. Dietterich,A Reinforcement Learning Approach
to job-shop Scheduling, Conf. on Artificial Intelligence, vol. 2 , pp.

1114-1120, 1995.

[13] Sutton, R.S., Barto, A.G.Reinforcement Learning: An Introduction, MIT

Press, 1998.

[14] M.DiNatale and J. A. Stankovic,Applicability of simulated annealing
methods to real-time scheduling and jitter control,Proc. 1995 IEEE Int.

Conf. Real-Time Systems Symposium, pp. 190-199, 1995.

[15] J.Liu, P. H. Chou, N. Bagherzadeh and F. Kurdahi,for power-aware
systems, In Proceedings of the 9th International Symposium on Hard-

ware/Software Codesign, pp. 153-158, Copenhagen, Denmark, 2001.

[16] I. Ahmad and M. K. Dhodhi,Short Communication Multiprocessor
Scheduling in a Genetic Paradigm, Parallel Computing, vol. 22, pp.

395-406, 1996.

[17] A. S. Wu, H. Yu, S.Jin, K. Lin and G. Schiavone,An Incremental Genetic
Algorithm Appraoch to Multiprocessor Scheduling, IEEE Trans. Parallel

and Distributed Systems, vol. 15, no. 9, pp. 824-834, September 2004.

[18] A. E. Eiben, J. E. Smith, Agoston E. Eiben, J. D. Smith, Introduction

to Evolutionary Computing, Spring 2003.

[19] T.Tsuchiya, T. Osada, and T. Kikuno,Genetic-based mutiprocessor
scheduling using task duplication, Microprocssors and Microsystems,

vol. 22, pp 197-207, 1998.

[20] B. Kruatrachue and T.G Lewis,Grain size determination for parallel
processing, IEEE Software, vol. 5, no. 1, pp. 23-32, 1998.

[21] M.Y Yu and D.D Gajski,Hypertool: a programming aid for message
passing system, IEEE trans. Parallel and Distributed Systems, vol. 1,

no. 3, pp 330-343, 1990.

230

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

