
Optimisation of Maintenance Scheduling Strategies on the Grid

Alex Shen�eld, Peter Fleming, Jeff Allan and Visakan Kadirkamanathan

Abstract— The emerging paradigm of Grid Computing pro-
vides a powerful platform for the optimisation of complex com-
puter models, such as those used to simulate real-world logistics
and supply chain operations. This paper introduces a grid-
based optimisation framework that provides a powerful tool
for the optimisation of such computationally intensive objective
functions. This framework is then used in the optimisation of
maintenance scheduling strategies for fleets of aero-engines,
a computationally intensive problem with a high-degree of
stochastic noise.

I. INTRODUCTION

A fundamental shift in emphasis within the aero-engine
manufacturing industry is leading to the adoption of power-
by-the-hour contracts, where airlines make regular �xed
payments to the engine manufacturers based on the hours
�own by an engine and, in return, the manufacturers of
the engine retain the responsibility for servicing and main-
tenance. As a result of this, the accurate prediction of
support costs over the life-cycle of an engine is of the up-
most importance. However, aero-engines operate in a highly
complex and unpredictable environment, and as such it is
impossible to produce a deterministic model for these support
costs. Instead, stochastic simulations can be performed to
provide cost estimates. It is also important for the engine
manufacturers to devise maintenance scheduling strategies
to minimise support costs and thus enable more competitive
pricing of these contracts.

Soft Computing techniques such as Neural Networks,
Fuzzy Logic, and Evolutionary Computation have been used
to solve many complex real-world engineering problems.
These techniques provide the engineer with a new set of
tools that often out-perform conventional methods in areas
where the problem domain is noisy, stochastic or ill-de�ned.
However, in the cases of Neural Networks and Evolutionary
Computation especially, these tools can be computationally
intensive.

Grid Computing offers a solution to the computationally
intensive nature of these techniques. The Grid Computing
paradigm is an emerging �eld of computer science that aims
to offer “a seamless, integrated computational and collabo-
rative environment” [1]. Ian Foster de�nes a computational
grid as “a hardware and software infrastructure that provides

The authors gratefully acknowledge the �nancial support of the DTI
funded BROADEN project.

Alex Shen�eld, Peter Fleming, Jeff Allan and Visakan Kadirkamanathan
are with the Rolls-Royce University Technology Centre in Control and
Systems Engineering, Department of Automatic Control and Systems En-
gineering, University of Shef�eld, Shef�eld, S1 3JD, UK
{a.shenfield, p.fleming, jeff.allen,

visakan}@sheffield.ac.uk

dependable, consistent, pervasive, and inexpensive access to
high-end computational capabilities” [2]. Grid Computing
is differentiated from conventional distributed computing by
its emphasis on co-ordinated resource sharing and problem
solving in dynamic, multi-institutional virtual organisations
[3]. These resources include software packages, compute
resources, sensor arrays, data and many others.

The purpose of this paper is to introduce a grid enabled
framework for optimisation of maintenance schedules. This
framework will then be used to assist decision makers in
planning maintenance scheduling strategies for aero-engines.
This problem presents many challenges due to to its highly
stochastic nature.

Section II will introduce evolutionary algorithms and give
a brief overview of their application to scheduling problems.
Section III will introduce Grid Computing and the core
concepts used in our optimisation framework. The MEAROS
simulation package used by Rolls-Royce to model the oper-
ational life-cycle of engines will be introduced in Section
IV, and the simple cost model used in this study will also
be outlined. Section V will describe the implementation of
our framework, and then Section VI will show its application
to the planning of maintenance schedules for aero-engines.
Section VII will present our conclusions and outline some
ideas for further work.

II. AN INTRODUCTION TO EVOLUTIONARY
ALGORITHMS

A. Evolutionary Algorithms

Evolutionary Algorithms (EAs) are an optimisation tech-
nique utilising some of the mechanisms of natural selection
[4]. EAs are an iterative, population based method of op-
timisation that are capable of both exploring the solution
space of the problem and exploiting previous generations of
solutions. Exploitation of the previous generation of solutions
is performed by a selection operator. This operator gives
preference to those solutions which have high �tness when
creating the next generation of solutions to be evaluated.
Exploration of the solution space is performed by a mutation
operator and a recombination operator and helps to ensure
the robustness of the algorithm by preventing the algorithm
from getting stuck in local optima.

Evolutionary Algorithms evaluate candidate solutions
based on pay-off information from the objective function,
rather than derivative information or auxiliary knowledge.
This ensures that EAs are applicable to many different prob-
lem domains, including those where conventional optimisa-
tion techniques (such as hill-climbing) may fail. Evolutionary
Algorithms are also robust in the presence of noise due

231

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

to their population based nature. Because EAs maintain a
population of candidate solutions, each generation contains
more information about the shape of the �tness landscape
than would be available to conventional, non-population
based methods such as hill-climbing [5].

Evolutionary Algorithms have been used to solve problems
across many different disciplines. GAs have been used in
such diverse �elds as Economics and Social Theory [6],
Robotics [7] and Art [8]. For many non-trivial real-world
applications the evaluation of the objective function is per-
formed by computer simulation of the system. For example,
in the optimisation of controller parameters for gas turbine
aero-engines [9], a computer model of the engine is used to
calculate the values of the objective functions for a given
controller design.

The use of computer simulations to evaluate the objective
function leads to some new issues. To ensure that the results
gained from the evolutionary algorithm are meaningful,
the simulation must be complex enough to capture all the
relevant dynamics of the true system. However, assuming
that this level of complexity is obtainable, the simulation may
be very computationally intensive. As EAs are population
based methods, the simulation must be run many times. In
a typical evolutionary algorithm this could involve running
the simulation 10,000 times.

B. Scheduling Applications of Evolutionary Algorithms

Finding good solutions to industrial scheduling problems
is of great importance, since both production rates and
plant costs are dependent on work schedules. Evolutionary
algorithms have had some success in solving the canonical
Job-Shop Scheduling Problem [10], [11], a problem that is
representative of industrial tasks ranging from assembling
cars, to scheduling aircraft maintenance. Recent focus in the
EC community has been on generating robust and �exible
job shop schedules [12]. Other scheduling problems solved
by EAs include planning maintenance for the (UK) national
grid [13] and university course timetabling [14].

C. Parallel Evolutionary Algorithms

The computationally intensive nature of the evaluation
process has motivated the development of parallel evolution-
ary algorithms. Early proposals for the implementation of
parallel EAs considered two forms of parallelisation which
still apply today: multiple communicating populations, and
single-population master-slave implementations [15].

The decision between which of these two types of paral-
lelisation to implement must consider several factors, such
as ease of implementation and use, and the performance
gained by parallelisation. Single-population parallel EAs are
often the easier to implement and use, as experience gained
with sequential EAs can be easily applied to these. In
contrast, the implementation and use of multiple commu-
nicating populations based parallel EAs involves choosing
appropriate values for additional parameters such as size
and number of populations, frequency of migration, and the
number of individuals involved in migration. This increases

the complexity of the parallel EA as each of these parameters
affects the ef�ciency of the algorithm and the quality of the
overall solution.

III. GRID TECHNOLOGIES

The concept of Grid Computing is not new. As far back
as 1969 Len Kleinrock suggested:

“We will probably see the spread of ‘computer
utilities’, which, like present electric and telephone
utilities, will serve individual homes and of�ces
across the country.” [16]

However, it is only recently that technologies such as the
Globus Toolkit [2] have emerged to enable this concept to be
achieved. The Globus Toolkit is an open-source, community-
based set of software tools to enable the aggregation of
compute, data, and other resources to form computational
grids. Since version 3, the Globus Toolkit has been based
on the Open Grid Services Architecture (OGSA) introduced
by the Globus Project. OGSA builds on current Web Service
concepts and technologies to support the creation, mainte-
nance, and application of ensembles of services maintained
by virtual organisations [17].

A. Web Services

A Web Service is de�ned by the W3C as “a software sys-
tem designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in
a machine-processable format (speci�cally WSDL). Other
systems interact with the Web service in a manner prescribed
by its description using SOAP messages” [18]. Web Services
are accessible through standards-based internet protocols
such as HTTP and are enabled by three core technologies
[19]:

• Simple Object Access Protocol (SOAP)
• Web Services Description Language (WSDL)
• Universal Description, Discovery, and Integration

(UDDI)

These technologies work together in an application as
shown in Figure 1. The Web Service client queries a UDDI
registry for the desired service. This can be done by service
name, service category, or other identi�er. Once this service
has been located the client queries the WSDL document to
�nd out how to interact with the service. The communication
between client and service is then carried out by sending and
receiving SOAP messages that conform to the XML schema
found in the WSDL document.

Web Service

Client

Application Service

WSDL

document

Web Service

Logic

HTTP request

HTTP response

SOAP processor

UDDI registry

Fig. 1. Interaction between Web Service Technologies

232

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

B. Open Grid Services Architecture

The Open Grid Services Architecture forms the basis
for the Globus Toolkit. OGSA represents computational
resources, data resources, programs, networks and databases
as services. These services utilise the Web Services tech-
nologies mentioned in Section III-A. There are three main
advantages to representing these resources as services:

1) It aids interoperability. A service-oriented view ad-
dresses the need for standard service de�nition mech-
anisms, local/remote transparency, adaptation to local
OS services, and uniform semantics [17].

2) It simplifies virtualisation. Virtualisation allows for
consistent resource access across multiple heteroge-
neous platforms by using a common interface to hide
multiple implementations [17].

3) It enables incremental implementation of grid function-
ality. The provision of grid functionality via services
means that the application developer is free to pick and
choose the services that provide the desired behaviour
to their application.

IV. LIFE-CYCLE SIMULATION OF
AERO-ENGINES

The Modular Engine Arisings, Repair and Overhaul Sim-
ulation (MEAROS) package was developed to enable Rolls-
Royce and the Ministry of Defence to evaluate the operation,
maintenance and supply of aircraft engines [20]. Although
designed for the aero-engine manufacturing industry, the
simulation can equally be applied to ships, land vehicles and
power generation [21].

The data collected during a simulation run falls into three
main categories:

• Operations Reports which describe the nature of the
operations undergone by the engines in the simulation
(such as number of hours �own).

• Arisings Reports which detail events that cause an
engine to be taken out of service.

• Maintenance Reports which detail what maintenance
actions were taken (such as the reconditioning or
scrapping of engine modules) and the times that these
occurred.

The modelling capability of the MEAROS software is
extensive. The software can be used to model the operation
of �eets of engines with an arbitrary number of modules
[20]. Theoretically there is no limit to the size of �eets that
can be modelled by the software, however in practice this
is limited by the computational effort needed to model large
numbers of engines.

Results produced by the simulation contain a lot of
stochastic noise due to the probabilistic models used to
simulate component failures. As such, the simulation has to
be run multiple times and averaged to reduce the effect of
this noise. Figure 2 shows that the standard deviation of the
aggregate maintenance cost reduces with the number of runs
of the model. It can also be seen from Figure 2 that the
improvement in the standard deviation tails off signi�cantly

after 100 passes. In practice this means that the bene�t from
running more than 100 passes of the model is outweighed
by the additional computational cost.

0 50 100 150 200 250
0

5

10

15
x 10

4

X: 100
Y: 1.395e+004

Standard Deviation of Cost vs Number of Runs

Number of Runs

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 C

os
t

X: 50
Y: 2.296e+004

Fig. 2. Plot of the Standard Deviation of Aggregate Maintenance Cost
Against Number of Runs of the Model

Originally MEAROS was used for predicting the number
of spares needed to maintain a set level of operational
availability. However, many of the parameters in the model
are customisable (such as the failure distributions of engine
modules, the stock levels, and the maintenance scheduling
strategies used) and can therefore be optimised with respect
to some objective (for instance the support costs or the
operational availability).

In this study we have chosen to use the maintenance
scheduling strategy in our optimisation because this is one
of the few easily modi�able parameters affecting operational
availability and support costs once an engine has gone in to
service. Maintenance in the simulation is performed after an
arising occurs. The main causes of arisings are either the
expiry of a hard-life1 or an in-service failure such as foreign
object damage [20].

Once an arising occurs, the engine must be removed from
the aircraft wing and the module that caused the arising must
be reconditioned or replaced. However, as the removal of the
engine from the wing is one of the most expensive parts of a
typical maintenance shop visit, this provides the ground crew
with the chance to perform opportunistic maintenance on the
other modules in the engine. If one of the other modules in
the engine has exceeded its soft-life2 then it should also be
reconditioned or replaced whilst the engine is removed from
the wing. [22] have shown that, for relatively small engine
module costs, there is likely to be an optimum value of soft-
life which minimises the maintenance cost of an engine.
Soft-lives that are too low result in engine modules being
reconditioned or replaced during every maintenance shop

1Hard-lives are usually assigned to safety critical components and repre-
sent the age at which that component must be replaced.

2Soft-lives represent the age whereby a component should be replaced at
the next opportunity.

233

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

visit, whilst soft-lives that are too high result in cheaper but
more frequent shop visits.

Table I shows a simple cost model developed in conjunc-
tion with Rolls-Royce for a hypothetical �ve module aero-
engine. The costs given represent the costs of removal and
reconditioning of the modules in the engine.

TABLE I

COST MODEL AND WEIBULL DISTRIBUTION PARAMETERS

Cost Scale Slope
Engine 3000 N/A N/A

Module 1 200 1000 1
Module 2 1000 800 2.5
Module 3 900 700 3
Module 4 800 2000 2
Module 5 1200 1500 1.5

V. IMPLEMENTATION OF A GRID BASED
OPTIMISATION FRAMEWORK

A. Parallelisation of the Evolutionary Algorithm

In section II-C it was found that there are two types of pos-
sible parallelisation strategies for evolutionary algorithms:
multiple communicating populations, and single-population
master-slave implementations. In the implementation of our
grid-enabled framework for optimisation using evolutionary
algorithms we have decided to parallelise our evolutionary al-
gorithm using the single-population master-slave implemen-
tation. This is also known as distributed �tness evaluation
or global parallelisation. This model uses the master-worker
paradigm (see Fig. 3) from parallel computing.

Master Node

Worker 1 Worker 2 Worker n

Fig. 3. The Master-Worker Programming Paradigm

A master-slave parallel evolutionary algorithm uses a
single population maintained globally by the master node
and parallelises the evaluation of the objective function by
distributing the population amongst the worker processes.
These are then assigned to the available processors for
execution (in the ideal case, one individual per processor).
The evolutionary operators - selection, recombination and
mutation - are then applied globally by the master node to
form the next generation of the population.

This model is particularly well suited for the parallelisation
of EAs as the evaluation of the objective function requires
only the knowledge of the candidate solution to be evaluated,
and therefore there is no need for inter-communication be-
tween worker processes. Communication only occurs when
the individuals are sent to the worker processes for evaluation

and when the results of those evaluations are returned to the
master node.

B. Service-Oriented Architecture

We have chosen to implement our Grid-enabled framework
for optimisation using evolutionary algorithms in a Service-
Oriented Architecture (SOA). We have implemented the
framework using the Java programming language, primarily
due to the portability of the code. This means that the
components of the framework can easily be run across
various heterogeneous platforms.

A service-oriented architecture is essentially a collection
of services that communicate with each other in order to
perform a complex task. SOA is an approach to building
loosely-coupled, distributed systems that combine services
to provide functionality to an application. IBM sees SOA
as key to interoperability and �exibility requirements for its
vision of an on demand business [23].

The SOA approach to grid computing is well suited to the
kind of master-worker parallelism used in our optimisation
framework. This service-oriented architecture view of grid
computing has the client acting as the master node, and
the service acting as the worker. In the implementation
of the optimisation framework (see Fig. 4) there are two
different types of service. One service type exposes the
operations of the evolutionary algorithm to the client, and the
other provides the ability to run evaluations of the objective
function on the resources of the computational grid.

E
v
a

lu
a

tio
n

F
a

c
to

ry
S

e
rv

ic
e

Evaluation
Instance 1

Evaluation
Instance 2

Evaluation
Instance n

GA Client

M
O

G
A

S

e
rv

ic
e

Create Service Instances

E
v
a

lu
a

tio
n

F
a

c
to

ry
S

e
rv

ic
e

GA Client

M
O

G
A

S

e
rv

ic
e

G
A

S

e
rv

ic
e

Send individuals
for evaluation

Evaluation
Resource 1

Evaluation
Resource 2

Evaluation
Resource n

Results of
evaluation

Generation to
be evaluated

E
v
a

lu
a

tio
n

R
e

s
o

u
rc

e
F

a
c
to

ry

Fig. 4. The Implementation of the Optimisation Framework

This SOA approach also provides �exibility both in how
the optimisation framework is used and in the maintenance
of the framework. The provision of the components of the
framework as services means that it is simple to add new
functionality to the system, and to improve upon existing
functionality, by adding new services. In the context of our
optimisation framework, this functionality could be anything
from the implementation of additional evolutionary opera-
tors, to the distribution and management of the objective
function evaluation.

Providing the optimisation framework as services also
means that the functionality can be accessed via the HTTP
protocol. This means that the services can be easily inte-
grated into an Internet portal so as to be accessible by any
device with a capable web browser (such as a PDA).

234

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

This SOA approach is used in providing access to grid
resources via the Globus Toolkit (see section III-B). The
Globus Toolkit has become a fundamental enabling technol-
ogy for grid computation, letting people carry out computa-
tions across geographically distributed resources in a secure
way. The success of the Globus Project has meant that the
project has become one of the driving forces in developing
standards for grid computing.

C. The White Rose Grid

The White Rose Grid [24] is a multi-institutional computa-
tional grid launched in 2002 by the universities of Shef�eld,
York and Leeds. The main objective of the White Rose
Grid project is to support e-Research by providing users
with access to large amounts of heterogeneous compute
resources. The White Rose Grid currently consists of �ve
high-performance compute nodes located at three different
sites (see Figure 5), and in 2003 was awarded the status of
e-Science Centre of Excellence.

Leeds Grid Nodes

Sheffield Grid Node

York Grid Node

Fig. 5. The Topology of the White Rose Grid

The three participating institutions in the White Rose Grid
consortium reserve 75% of their grid resources for users
within their institution and allocate the remaining 25% to
other users of the grid. These institutions are connected by
the high bandwidth Yorkshire and Humberside Metropolitan
Area Network (YHMAN).

VI. ALGORITHM IMPLEMENTATION AND
RESULTS

A. Evolutionary Algorithm Implementation

For the optimisation results presented in Section VI-B
a genetic algorithm architecture with real valued repre-
sentations of the decision variables was used. Fogel and
Ghoziel [25] have shown that there is no intrinsic advantage
in choosing one bijective representation over another, al-
though particular representations may be more computation-
ally tractable or ef�cient for certain problems. Consequently
modern EA practice emphasises choosing a representation

that is appropriate for the problem under consideration. As
the decision variables in the problem considered in this
paper are continuous it is intuitive to use a real-valued
representation [5].

Selection in our algorithm was performed using Stochastic
Universal Sampling [26] which guarantees sampling with
zero bias and minimum spread, and is generally considered
superior to other selection schemes for many problems [27].
The extended intermediate recombination operator and BGA
mutation operator from [28] were used to introduce variation
into the population and prevent the evolutionary process from
stagnating.

It is important to note that the implementation of our
Grid-based optimisation framework in a Service-Oriented
Architecture (see Section V-B) provides a high degree of
�exibility in the choice of algorithm architecture, representa-
tion, and evolutionary operators used. This �exibility means
it is simple to adapt our framework to other optimisation
problems.

B. Results

We have used our grid-enabled optimisation framework for
the optimisation of maintenance scheduling strategies across
a �eet of aero-engines (see Section VI-A for details of the EA
implementation). As mentioned earlier, we chose to modify
the maintenance scheduling strategy in the optimisation
process because it is one of the few parameters affecting
the support costs and operational availability that is easily
changeable. It is inexpensive to vary when compared to post-
production design changes, and can be quickly implemented
across an engine range [29].

The evaluation of candidate solutions in our optimisation
routine was performed using the MEAROS engine life-cycle
model (see Section IV) in conjunction with the simple cost
model shown in Table I. The MEAROS model was used to
simulate the operation of a �eet of 25 engines over a 10
year period, and was averaged over 100 passes of the model
to reduce the stochastic noise in the simulation (see Figure
2). Evaluation of a single candidate solution using the above
con�guration took in the order of 1.5 seconds on a Intel
Pentium 4 based PC running at 3.0GHz.

The EA was run multiple times with a population size
of 50 individuals. However, as similar results were obtained
from each execution of the algorithm, the following results
are from a single (representative) run of the EA only. Figure
6 shows that the mean value of the population (the solid
line in the �gure) exhibits convergence after around 15-
20 generations. It can also be seen from Figure 6 that the
diversity of the population (each individual is shown by
a dot in the �gure) is signi�cantly reduced as the search
progresses. Using one-at-a-time (OAT) sensitivity analysis
[30], it is possible to show that the �nal solution produced
by the EA is optimal (since varying the decision variables
does not yield a superior solution).

Our grid-based optimisation framework uses the resources
of the White Rose Grid (see Section V-C) to perform
the distributed evaluation of candidate solutions. Table II

235

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

0 5 10 15 20 25 30
6.5

7

7.5

8

8.5

9

9.5

10

10.5
x 10

6 Cost vs Generation

Generation

C
os

t

Fig. 6. Plot of Cost of Maintenance Scheduling Strategy Against Number
of Generations

shows a representative set of total execution times from
the optimisation of maintenance scheduling strategies for
our aero-engine problem, running for 30 and 50 generations
respectively3. As Table II shows, the use of our grid-
based optimisation framework has considerably reduced the
time taken to optimise our aero-engine maintenance strategy
problem.

TABLE II

EXECUTION TIMES FOR THE OPTIMISATION OF MAINTENANCE

SCHEDULING STRATEGIES

Local Machine Computational Grid
30 generations 50 generations 30 generations 50 generations
1974 seconds 3358 seconds 873 seconds 1423 seconds

VII. CONCLUSIONS AND FURTHER WORK

Table II has shown that signi�cant reductions in the
execution times of optimisation routines can be achieved
by using our grid-based optimisation framework. Whilst the
implementation of the framework described in this paper has
concentrated on the application of an evolutionary algorithm
to a single objective maintenance problem, our framework
is easily extensible (due to the use of a service-oriented ar-
chitecture approach) to both multi-objective problems and to
the implementation of alternative optimisation methods such
as ant-colony optimisation or particle swarm optimisation.
Further work is planned to extend this optimisation frame-
work to perform multi-objective optimisation of schedules
for complex logistic and supply chain operations. Another
area that has been identi�ed for further work is comparing the
performance of the global parallelisation strategy used in this
paper to other parallelisation strategies, such as those using

3These times are from single runs on both a local machine and on the
White Rose Grid. However, similar results were obtained from multiple
executions of the optimiser.

multiple communicating populations (for instance Island or
Diffusion EAs).

The grid-based framework described in this paper is
best suited to computationally expensive objective function
evaluations, such as the one described in this paper. This is
due to the communication overheads involved in executing
the objective function evaluations in a distributed manner,
and for some computationally trivial objective functions this
may result in a degradation in performance compared with
a sequential EA run on a single machine. These overheads
are due to the way in which job submission and man-
agement is performed in a grid computing environment.
Whilst further work will be conducted into determining
the scale of problems for which this framework is most
effective, it is expected that further research and devel-
opment of grid-middleware, job submission services, and
job management services will provide a reduction in these
communication overheads. This will allow our framework
to provide increased performance for less computationally
intensive problems. However, this framework is not intended
to replace sequential EAs in cases where the performance of
the sequential EA is satisfactory.

VIII. ACKNOWLEDGMENT

The authors gratefully acknowledge the input from the en-
gineers at Rolls-Royce PLC and Data Systems & Solutions.

REFERENCES

[1] M. Baker, R. Buyya, and D. Laforenza, “Grid and grid technologies for
wide-area distributed computing,” Software: Practice and Experience,
vol. 32, no. 15, pp. 1437 – 1466, 2002.

[2] I. Foster and C. Kesselman, “The Globus Toolkit,” in The GRID:
Blueprint for a New Computing Infrastructure, I. Foster and C. Kessel-
man, Eds. Morgan Kaufmann, 1999, ch. 11, pp. 259 – 278.

[3] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid:
Enabling scalable virtual organizations,” International Journal of
Supercomputer Applications, vol. 15, no. 3, pp. 200 – 222, 2001.

[4] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. Reading, MA.: Addison-Wesley, 1989.

[5] Z. Michalewicz and D. B. Fogel, How to Solve It: Modern Heuristics.
Berlin: Springer, 2000.

[6] R. Axelrod, “The evolution of strategies in the iterated prisoner’s
dilemma,” in Genetic Algorithms and Simulated Annealing, L. Davis,
Ed. Morgan Kaufmann, 1987, pp. 32 – 41.

[7] D. Pratihar, K. Deb, and A. Ghosh, “A genetic-fuzzy approach for
mobile robot navigation amongst moving obstacles,” International
Journal of Approximate Reasoning, vol. 20, no. 2, pp. 145 – 172,
1999.

[8] K. Sims, “Arti�cial evolution for computer graphics,” Computer
Graphics, vol. 25, no. 4, pp. 319 – 328, 1991.

[9] P. J. Fleming, R. C. Purshouse, A. J. Chipper�eld, I. A. Grif�n, and
H. A. Thompson, “Control systems desing with multiple objectives:
An evolutionary computing approach,” in Workshops of the 15th IFAC
World Congress, 2002.

[10] L. Davis, “Job shop scheduling with genetic algorithms,” in Proceed-
ings of the First International Conference on Genetic Algorithms, J. J.
Grefenstette, Ed. New Jersey: Lawrence Erlbaum Associates, 1985,
pp. 136 – 140.

[11] K. Mesghouni, S. Hammadi, and P. Borne, “Evolutionary algorithms
for job-shop scheduling,” International Journal of Applied Mathemat-
ics and Computer Science, vol. 14, no. 1, pp. 91 – 103, 2004.

[12] M. T. Jensen, “Generating robust and �exible job shop schedules using
genetic algorithms,” IEEE Transactions on Evolutionary Computation,
vol. 7, no. 3, pp. 275 – 288, 2003.

236

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

[13] W. B. Langdon, “Scheduling planned maintenance of the national
grid,” in Evolutionary Computing - AISB Workshop, ser. Lecture Notes
in Computer Science, T. C. Fogarty, Ed., vol. 993. Berlin: Springer-
Verlag, April 1995, pp. 132 – 153.

[14] R. Lewis and B. Paechter, “Application of the grouping genetic
algorithm to university course timetabling,” in Proceedings of the Fifth
European Conference on Evolutionary Computation in Combinatorial
Optimization (EvoCOP), ser. Lecture Notes in Computer Science,
G. R. Raidl and J. Gottlieb, Eds., vol. 3448. Berlin: Springer-Verlag,
2005, pp. 144 – 153.

[15] E. Cant’u-Paz and D. E. Goldberg, “On the scalability of parallel
genetic algorithms,” Evolutionary Computation, vol. 7, no. 4, pp. 429
– 449, 1999.

[16] L. Klienrock, “UCLA press release,” 1969. [Online]. Available:
http://www.lk.cs.ucla.edu/LK/Bib/REPORT/press.html

[17] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “Grid services for
distributed system integration,” IEEE Computer, vol. 35, no. 6, pp. 37
– 46, 2002.

[18] W. W. Group, “Web services architecture,” February 2004, viewed 18
October 2006. [Online]. Available: http://www.w3c.org/TR/ws-arch

[19] D. A. Chappell and T. Jewell, Java Web Services. O’Reilly, 2002.
[20] “Mearos model description version 8.31,” Rolls-Royce Internal Doc-

ument, 2002.
[21] J. P. M. Argyle, “Optimisation of operational cost with application

to an aerospace engine system,” Ph.D. dissertation, University of
Shef�eld, 2006.

[22] J. Crocker and U. D. Kumar, “Age-related maintenance versus relia-

bility centred maintenance: A case study on aero-engines,” Reliability
Engineering and Systems Safety, vol. 67, pp. 113 – 118, 2000.

[23] M. Colan, “Service oriented architecture expands the vision
of web services: Part 1,” IBM,” DeveloperWorks paper, 2004,
viewed 18 October 2006. [Online]. Available: http://www-
128.ibm.com/developerworks/library/ws-soaintro.html

[24] “White rose grid website,” viewed 18 October 2006. [Online].
Available: http://www.wrgrid.org.uk

[25] D. B. Fogel and A. Ghoziel, “A note on representations and variation
operators,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 2, pp. 159 – 161, 1997.

[26] J. E. Baker, “Reducing bias and inef�ciency in the selection algo-
rithm,” in Proceedings of the Second International Conference on
Genetic Algorithms, J. J. Grefenstette, Ed. New Jersey: Lawrence
Erlbaum Associates, 1987, pp. 14 – 21.

[27] P. J. B. Hancock, “An empirical comparison of selection methods in
evolutionary algorithms,” in Evolutionary Computing - AISB Work-
shop, ser. Lecture Notes in Computer Science, T. C. Fogarty, Ed., vol.
865. Berlin: Springer-Verlag, April 1994, pp. 80 – 94.

[28] H. Mühlenbein and D. Schlierkamp-Voosen, “Predictive models for
the breeder genetic algorithm I: Continuous parameter optimization,”
Evolutionary Computation, vol. 1, no. 1, pp. 25 – 49, 1993.

[29] J. P. M. Argyle and J. Tubby, “Integrated logistics support optimisa-
tion,” Rolls-Royce PLC, Tech. Rep. RRUTC/Shef/R/02006, 2002.

[30] A. Saltelli, K. Chan, and M. Scott, Sensitivity Analysis. John Wiley
& Sons, 2000.

237

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

