
 
 

 

  

Abstract— A metaheuristic approach including three 
different stages is introduced to assign the judges for the John 
Molson International Case Competition. The complexity of the 
mathematical formulation accounting for the rules to be 
followed in assigning the judges, leads us to use such an 
approach. The two different Tabu search methods in the first 
two stages are combined with a diversification strategy. 
Numerical results are provided to indicate the efficiency of the 
approach to generate very good solutions.  

I. INTRODUCTION 
Whenever competitions take place, judges have to be 

selected to evaluate the performance of the competitors and 
to identify a winner. According to the competition context, 
specific rules must be followed in assigning the judges. In 
general, it makes sense to have an odd number of judges 
having complementary expertises to cover as exhaustively as 
possible all the expertises required to evaluate the 
performances of the competitors. Furthermore, conflicts of 
interest should be avoided. In this paper, we analyze the 
judge assignment problem for the John Molson International 
Case Competition that takes place every year at Concordia 
University in Montreal (Canada) for the last 25 years. Even 
if the solution techniques are introduced for this specific 
context, they should nevertheless be easily adapted to other 
contexts by making proper minor adjustments to deal with 
slightly different specific rules.  
This competition involves 30 teams of business students 
coming from top international universities. This set of teams 
is partitioned into 5 groups, each including 6 teams. The first 
part of the competition consists in a round-robin tournament 
including 5 rounds where each team competes against each 
of the other 5 teams of its group. Thus, each round includes 
15 individual competitions where a pair of teams debate and 
propose solutions for a specified business case. The three 
best teams move to the finals in the second part of the 
competition. 

For each individual competition of a round, 3 or 5 judges 
are assigned according to the number of judges available for  
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that round. For each round, two sets of judges are available:  
the set of lead judges  
the set of other judges. 

Six (6) different fields of expertise for the judges are 
considered, and each judge has one of these expertises. 

The following rules must be followed in assigning the 
judges to the individual competitions of a specific round: 
• Hard rules or constraints that must be satisfied: 

o 3 or 5 judges must be assigned to each individual 
competition 

o A judge cannot be assigned to an individual 
competition involving a team coming from a 
University where he received his degree 

o A judge cannot be assigned to an individual 
competition involving a team coming from a 
University where he is a faculty member 

o At least one of the judges belongs to the set of lead 
judges. 

• Soft rules or constraints (or objective) to be satisfied as 
much as possible: 
o The expertises of the judges assigned should be as 

different as possible to cover as many of the 6 fields 
of expertise as possible 

o The number of individual competitions having 5 
judges assigned should be maximized. 

Finally, note that, for a specific round, once a lead judge has 
been assigned to each individual competition, the rest of the 
lead judges (if any are left) are available for assignment as 
other judges. 

This judge assignment problem has some similarity with 
the problem of forming maximally diverse groups (FMDG). 
This problem consists on partitioning a number of entities 
into a fixed number of groups having the same size where the 
objective is to maximize diversity within groups. Our 
problem would reduce to a (FMDG) if all judges were 
admissible for all competitions, if there was only one type of 
judges, and if the same number of judges was to be assigned 
to each competition. In this case the problem is simplified 
greatly.  

The (FMDG) has been shown to be NP-Complete [1], and 
heuristic procedures have been proposed for the problem 
specified in different contexts by several authors, see [2]. 
More recently, in [3], the authors use a network flow 
formulation (the dining problem) to solve efficiently the 
(FMDG). Since our problem is even more complex, in [4], 
we introduce heuristic procedures to construct good feasible 
solutions for this problem. In this paper we use a more 
powerful metaheuristic based on the Tabu Search principle 
[5] [6] to generate better solutions. 
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 In Section II we introduce a mathematical formulation 
and a metaheuristic procedure including three different 
stages. Section III includes a description of the methods used 
in the different stages. In the first stage, we use a structured 
neighborhood Tabu search to increase the number of 
individual competitions having 5 judges assigned. Another 
Tabu search is completed in the next stage to improve the 
diversity of the fields of expertise of the judges assigned to 
the same individual competition. Finally, a diversification 
strategy is applied in the third stage in order to reinitialize 
the procedure. Numerical results are given in Section IV. 
Four different variants are compared numerically. These 
variants are specified according to the process generating the 
initial solution, and to the strategies for selecting the solution 
in the neighborhood of the current solution. The numerical 
results indicate the efficiency of the approach to generate 
very good solutions. 

II. MODEL AND SOLUTION APPROACH 
Referring to the rules for assigning the judges in a specific 

round, the problem for a round can be formulated as a linear 
binary programming problem. The hard rules are used to 
specify the constraints of the problem. The objective 
function is specified in terms of the soft rules to reduce the 
number of times that several judges assigned to an individual 
competition share the same field of expertise, and to 
maximize the number of individual competitions having 5 
judges assigned. 

We use the following notation to formulate the problem: 
N: the total number of judges 
M: the number of individual competitions 
K: the number of fields of expertise 
i: judge index, i = 1, 2, …, N  
j: individual competition index, j = 1, 2, …, M 
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The mathematical model can be summarized as follows: 
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In the objective function (1), we minimize the number of 
times that several judges assigned to an individual 
competition share the same field of expertise, and we 
maximize the number of individual competitions with 5 
judges. The coefficient 5M for the second term of the 
objective function guarantees that an additional pair of 
judges would be added to some competition even if it would 
induce that the 5 judges in each competition share the same 
field of expertise. The constraints (2) indicate that a judge 
cannot be assigned to more than one individual competition, 
and the constraints (3) do not allow inadmissible judge to be 
assigned to an individual competition. At least one lead 
judge is assigned to each individual competition according to 
constraints (4).The constraints (5) and (6) guarantee that 3 or 
5 judges are assigned to each individual competition. 

The complexity of the model leads us to use a 
metaheuristic approach solving an equivalent model where 
the surplus of judges (if any) is assigned to a dummy 
individual competition (M+1) requiring no lead judge and 
for which all judges are admissible. Furthermore, in this new 
model, individual competitions with only one judge assigned 
are feasible but incur a very high cost R >>5M. To simplify 
the notation, the number of judges with field of expertise k 
assigned to individual competition j is denoted  
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Furthermore, for all j = 1,…, M, the variables 
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The new mathematical model can be summarized as 
follows: 
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 The solution procedure is a metaheuristic including three 
main stages. It is initiated with a feasible solution for the 
problem. In a first stage, we use a structured neighborhood 
Tabu search to improve the quality of the solution by 
reducing the number of individual competitions with 1 or 3 
judges assigned (i.e., to optimize the last two terms of the 
objective function). Then, a second Tabu search is used to 
improve the diversity of the fields of expertise of the judges 
assigned to the same individual competition (i.e., to optimize 
the first term of the objective function). Finally, a 
diversification strategy is used to generate a new initial 
solution to reinitialize the procedure. 

The procedure terminates whenever an optimal solution is 
generated or whenever the best solution generated is not 
improved during itermax successive iterations. Note that a 
solution is optimal if all individual competitions have 5 
judges assigned, or if all individual competitions have 3 or 5 
judges assigned and 10),1( or  =+ xMI , and if the value 

of { }∑ ∑ −
= =

M

j
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k
kjd
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0,1max  is equal to 0 or to a lower bound 

known a priori for the problem. 

III. SOLUTION METHODS FOR THE DIFFERENT STAGES 
 In this section, we describe the solution methods used in 

the different stages.  

A. Initial Solution 
In this paper we consider two different processes to 

generate an initial solution. In the first one denoted Random, 
an initial solution 0x  where each individual competition has 
only one lead judge assigned (i.e., MxM =)( 0

1  

and 0)()( 0
5

0
3 == xMxM ), is generated randomly. Here, 

lead judges are assigned sequentially to the individual 
competitions with a bias to deal with those with fewer lead 
judges admissible first. 

The second process is the HLA-HOA heuristic method 
introduced in [4]. The HLA method is used to assign a lead 
judge to each individual competition according to the 
following strategy: lead judges having the most common 
expertise k’ and being admissible for fewer individual 
competitions are assigned first to individual competitions 
having the smallest number of admissible other judges 
having the expertise k’ among those with the smallest 
number of admissible lead judges still available. These look 
ahead features make further assignments easier. The HOA is 
a two phases heuristic method using a similar strategy to 
assign additional pairs of judges to individual competitions 
accounting for the diversity requirement of the fields of 
expertise of the judges assigned to each individual 
competition. In the first phase, we try to assign an additional 
pair of judges to each individual competition, and in the 
second, a second pair is assigned to as many individual 
competitions as possible. 

B. Structured Tabu Search for Stage 1 
Recall that during the first stage, the objective is to reduce 

the number of individual competitions with 1 or 3 judges 
assigned by reassigning pairs of judges. Accordingly, the 
neighborhood of a feasible solution x is generated by 
reassigning a pair of judges (i,r) currently assigned to some 
individual competition j to another individual competition l. 
The new solution generated is denoted  
                                        ).,,,( ljrix ⊕  
The reassignment is feasible, and the solution generated 
belongs to the neighborhood of x if and only if it is feasible; 
i.e., if and only if 
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    A safeguard against cycling is provided by the short term 
Tabu status of recently used reassignments. We use a Tabu 
matrix ][ ijLTLT =  where  
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 assigned becan   judge h theafter whic iteration  the
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If we move from x to ),,,( ljrix ⊕ , then two elements of the 
Tabu matrix are modified as follows: 
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where curiter denotes the index of the current iteration, and 
21  and tt  are random integer numbers in ],[ maxmin tt . Also, 

referring to the current Tabu matrix LT, a neighbor solution 
),,,( ljrix ⊕ is Tabu at the iteration iter if 

                   .      and     iterLTiterLT rlil ≥≥  
 In our implementation, we use the classic aspiration 

criterion to override the Tabu status of a solution when its 
value is better than the current best solution found so far. 

We take advantage of the problem structure in order to 
partition the set of reassignments leading to different 
neighborhood structures. To be more specific, for a solution 
x, denote by V(x) the set of feasible reassignments. Given 
any pair of subsets of individual competitions 

{ }inoutinout MMMM ,by  denote ,  ,  the subset of feasible 
reassignments from outMj ∈  to ., ljMl in ≠∈  Accordingly, 
we consider the following partition:  
                                 )()(

8

1
xVxV

p
p ⊆

=

U  

where the subsets )(xVp  are specified in Table I.  

We use different neighborhood structures as in a variable 
neighborhood search [7], but here the strategy for moving 
from one neighborhood structure to another is different and 
strongly dependent on the partition and on the potential 
improvement associated with the reassignments in the 
different subsets. For any reassignment leading to the 
neighbor solution ),,,( ljrix ⊕ , denote by ),,,( ljriΔ the 
modification induced on the objective function 

).()),,,((),,,( xfljrixfljri −⊕=Δ  
Also, let ),,,(min

),,,(
ljri

pVljrip Δ=Δ
∈

 be the best modification 

that can be induced by any reassignment ).(),,,( xVljri p∈  
Referring to the values pΔ  given in the third column of 
Table I, it follows that the subsets are ordered in increasing 
order of these values. Furthermore, the reassignments in the 
first 3 subsets are improving reassignments (  0<Δ p , p = 1, 
2, 3), those in )()( 54 xVxV  and can be slightly improving or 
deteriorating, and those in the last 3 subsets are 
deteriorating reassignments (  0>Δ p , p = 6, 7, 8). This 

partition leads to the following search strategy of the 
neighborhood. The Tabu search in initiated by using 
sequentially the subsets 3. , 1,for  2)( =pxVp  Furthermore, 
the search in any of these subsets is exhaustive (in the sense 
that no more feasible non Tabu reassignments are available) 
before moving to the next. Once the exhaustive search of 

)(3 xV  is completed, then we use sequentially the other 
subsets. Now since the reassignments included in any of 
these subsets may be deteriorating, we are not completing an 
exhaustive search before moving to the next subset. Instead, 
after completing each reassignment in )(4 xV , we return to the 
second subset )(2 xV initializing a new exhaustive search 
using the subsets )(2 xV  and )(3 xV . Indeed, any reassignment 
in )(4 xV  implies that new individual competitions in  

)(3 xM  and )(5 xM  are created, and consequently, new 
feasible improving reassignments may become available in 

)(2 xV  and )(3 xV . Similarly, after completing any 

reassignment in U
8

5
)(

=p
p xV , we return to the first subset )(1 xV  

because any such reassignment implies that a new individual 
competition in )(1 xM  is created or new judges are moved to 
the dummy individual competition M + 1.  

We also consider two different strategies for selecting the 
solution in the neighborhood of the current solution x 
(generated by any subset of reassignments )).(xVp  The best 
improving strategy is to select one of the best non Tabu 
neighbor solutions or one of the best Tabu neighbor 
solutions satisfying the aspiration criterion. Even tough in 
general this strategy require generating all neighbor 
solutions, we can interrupt the generation whenever a 
solution inducing a modification )(xpΔ of the objective 
function is reached. The first improving strategy is to select 
the first non Tabu solution improving the value of the current 
solution or the first Tabu solution satisfying the aspiration 
criterion. If no such solution exists, then the best non Tabu 
solution in the neighborhood is selected. 

 Finally, the stopping criterion for the method is specified 
in terms of a maximal number nitermax of successive 
iterations where the objective function does not improve. 
The procedure also terminates whenever all individual 
competitions have 5 judges assigned, or when all individual 
competitions have 3 or 5 judges assigned and 

10),1( or  =+ xMI . 

C. Tabu Search for Stage 2 
The solution generated in the first stage is used to 

initialize the Tabu search of the second stage where the 
objective is to improve the diversity of the fields of expertise 
of the judges assigned to each individual competition. 
Accordingly, the neighborhood of a feasible solution x is 
generated by exchanging two judges i and r currently 
assigned to different individual competitions j and l, 
respectively. The new solution generated is denoted  
                                        ).,,,( lrjix ⊕  

TABLE I 
PARTITION OF V(X) 

p )(xVp  )(xpΔ  

1 { })(,1 1 xMM +  – R 
2 { })(),( 15 xMxM  – R + 5M – 2 

3 { })(,1 3 xMM +  – 5M 

4 { })(),( 35 xMxM  – 2 

5 { })(),( 13 xMxM  – 1 

6 { }1),(5 +MxM  5M – 2 

7 { })(),( 33 xMxM  –5M + R –1 

8 { }1),(3 +MxM  R – 2 
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The exchange is feasible, and the solution generated belongs 
to the neighborhood of x if and only if it is feasible; i.e., if 
and only if 
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where curiter denotes the index of the current iteration, and 
21  and tt  are random integer numbers in ],[ maxmin tt . Also, 

referring to the current Tabu matrix LT, a neighbor solution 
),,,( lrjix ⊕ is Tabu at the iteration iter if 

                   .iterLTiterLT rjil ≥≥       and      
Furthermore, we use the same aspiration criterion, and we 

consider the same strategies for selecting the solution in the 
neighborhood of the current solution x. Here, in the best 
improving strategy we can interrupt the generation whenever 
a solution inducing a modification 2)( −=Δ x  of the 
objective function is reached. 

 Finally, the stopping criterion for the method is specified 
in terms of a maximal number nitermax of successive 
iterations where the objective function does not improve. 
The procedure also terminates whenever the value of 

{ }∑ ∑ −
= =

M

j

K

k
kjd

1 1
0,1max  is equal to 0 or to a lower bound known 

a priori for the problem. 

D. Diversification Strategy in Stage 3 
Once the first two stages of the solution procedure are 

completed, and the best solution generated is not optimal, we 
use the following diversification strategy to search more 
extensively the feasible domain. A new initial solution is 
generated to reinitialize the first stage of the solution 
procedure.  

Denote by Γ the set of the ρ best solutions generated so far 
during the procedure, and by xbest Γ∈ the best solution in Γ. 
First a new assignment 0x of the judges (not necessarily 
feasible) is generated by applying a uniform crossover 
operator to the pair of solutions xbest and xbestx ≠ selected 
randomly in Г. More specifically, select randomly a subset of 

⎥⎥
⎤

⎢⎢
⎡

+1countiter
Mβ  individual competitions 

{ },1,,1 +⊂ MM best L  where countiter denotes the number 
of recent successive iterations where the value of the best 

solution generated by the procedure is not improved.  For 
each individual competition ,1,,1 += Mj L  

⎩
⎨
⎧ ∈

=
otherwise.           

 if    
),(

),(
),( 0

xjI
MjxbestjI

xjI best  

Now 0x may not be feasible because the same judge i may 
be assigned to two different individual competitions 

 bestMj ∈1 and ;2 bestMj ∉ i.e., ).,(),( 0
2

0
1 xjIxjIi I∈  Each 

such judge i is eliminated from 21 jj or  as follows. In order 
to favor the presence of the assignments found in xbest, we 
eliminate unless  from 2ji             

   toassigned judge  one  than           
 more is  thereand   toassigned judge only   theis  or        

1            

1

2

1

jlead
jleadi

Mj +=

in which case .1ji  from eliminated is  

But 0x may still be infeasible because some individual 
competitions have no lead judge assigned or some have 2 or 
4 judges assigned. In this case, we apply the following repair 
process including two phases. In the first one, a lead judge is 
assigned to each individual competition. Denote 

{ }.assigned judge  no has  and ,1: leadjMjjU +≠=  
At each iteration of the first phase, select randomly an 

individual competition .Ul ∈  Permute randomly the set of 
lead judges i admissible for l ).1( =ila i.e.,  Consider 
sequentially the lead judges i: 

• If i is assigned to M + 1, then assign i to l  
• If i is assigned to an individual competition j having 

several lead judges assigned, then assign i to l 
• If i is the only lead judge assigned to j, and if r is 

another lead judge assigned to another individual 
competition j  having several lead judges assigned 
or assigned to M + 1, and if 1=rja , then assign r to 

j  and i to l. 
Once every individual competition has a lead judge assigned, 
we proceed to phase 2 to deal with the individual 
competitions having 2 or 4 judges assigned. (Note that it is 
always possible to assign a lead judge to each individual 
competition by assumption.) 

In phase 2, denote  
{ }.,1: assigned judges 4or  2 having  jMjjW +≠=  

At each iteration, select randomly .Wl ∈  If there exists 
,1),1( 0 =+∈ ilaxMIi such that   then assign i to l. 

Otherwise, select randomly ),( 0xlIr ∈ that is not the only 
lead judge in l, and assign r to M +1. At the end of phase 2, 

0x is feasible and can be used to reinitialize the stage 1 of 
the procedure. 

IV. NUMERICAL RESULTS 
Four different variants are compared numerically. These 

variants are specified according to the process generating the 
initial solution (HLA-HOA and Random denoted H and R, 
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respectively), and to the strategies for selecting the solution 
in the neighborhood of the current solution x (best improving 
strategy and first improving strategy denoted Best and First, 
respectively): H-Best, H-First, R-Best, and R-First. 
Furthermore, since (1) – (8) is a linear binary model, we try 
to solve it using CPLEX 9.0 for the sake of comparison with 
the four variants.  

The numerical tests are completed using 3 different sets of 
problems P1, P2 , and P3 where each set includes 4 different 
subsets (each subset including 10 different problems) with 
15, 50, 150, and 500 individual competitions, respectively. 
The problems are generated such that for problems in P1, 
there exists a solution where no pair of judges assigned to the 
same competition share the same expertise (i.e., the first term 
of the objective function (1) is equal to 0), and for problems 
in P2 and P3, no such solution exists. Furthermore, for 
problems in P2, there always exists a solution where all 
competitions have 5 judges assigned, and for problems in P1 
and P3, some competitions have only 3 judges assigned.  

All the problems are randomly generated. For each team 
of each individual competition, its University corresponds to 
a random number in the intervals [1, 10], [1, 10], [1, 30], and 
[1, 100] for the problems with 15, 50, 150, and 500 
individual competitions, respectively. The number of lead 
judges available is equal to a random number in the intervals 
[15, 50], [50, 60], [150, 160], and [500, 510] for the 
problems with 15, 50, 150, and 500 individual competitions, 
respectively. Similarly, the number of other judges available 
is equal to a random number in the intervals [60, 300], [100, 
220], [300, 620], and [100, 2020] for the problems with 15, 
50, 150, and 500 individual competitions, respectively. For 
each judge available, the Universities where he received his 
degree and where he is a faculty member correspond to 
random numbers in the intervals [1, 10], [1, 10], [1, 30], and 
[1, 100] for the problems with 15, 50, 150, and 500 
individual competitions, respectively. Finally, the field of 
expertise of each judge is a random number in the interval 
[1, 6]. Note that for problems P2 and P3, the number of 
judges having the same field of expertise is fixed a priori for 
each field in order to compute a lower bound of the optimal 
value. 

The four variants are implemented in Java, and the tests 
are completed on a 2 GHz processor AMD Athlon 3200+ 

with 2 GB of memory working under a Linux operating 
system.  

The constant R (used in the model to penalize the number 
of individual competitions having only one judge assigned) 
and the parameter ρ (the number of the best solutions 
generated so far during the procedure) are fixed to the 
values 250M  and (M +1), respectively. To fix the other 
parameters, we consider the 18 different combinations 
generated with the two values for the interval ],[ maxmin tt  
( ⎣ ⎦ ⎡ ⎤[ ]NN 2.1,8.0 and ⎣ ⎦ ⎡ ⎤[ ]NN 1.1,9.0 ), the three pairs of 
values for (nitermax, itermax) ((N, 15), (5N, 10), and (10N, 
5)), and the three values for β (0.55, 0.65, and 0.75). For 

each combination, each problem is solved once with the 
variant R-First. The best results are obtained with the 
following combination: 

• ],[ maxmin tt  = ⎣ ⎦ ⎡ ⎤[ ]NN 2.1,8.0   
• (nitermax, itermax) = (N, 15) 
• β = 0.65. 

Hence we complete the rest of the numerical tests using these 
values for the parameters. 

Afterward, each problem is solved 5 times using different 
initial solutions to compare the efficiency of the four 
variants. Note that each problem is solved only once with 
CPLEX. Moreover, in the two variants R-First and H-First, 
for each resolution, we use different orders in which the 
judges and the individual competitions are considered. The 
efficiency of the four variants is compared with respect to 
three different criteria: 
i.   Average deviation:  

Ave dev: the average deviation of the values of the 
solutions generated from the optimal value or from 
the lower bound. 

ii. Number of problems where the optimal value or the          
lower bound is achieved. For each set of problems we 
compute: 

NB1: the number of problems where the optimal 
value or the lower bound is achieved for at least one 
of the 5 solutions generated 
NB5: the number of problems where the optimal 
value or the lower bound is achieved for each of the 
5 solutions generated 

100
10

(%) 1
1

×=
NB

Opt  

 .100
10

5(%)5 ×=
NB

Opt  

iii.  Average solution time (CPU) 
For each set of problems we compute the average 
CPU time Ave CPU (sec.) over all the resolutions. 

Note that the first two criteria do not apply to CPLEX as 
indicated by NA in Tables II and III. 
 
The numerical results for these criteria are summarized in 

Tables II and III where a column is associated with each 
method. In Table II, the results are given for each subset of 
problems. These results are used to compute the values of 
the different criteria for each problem size (15, 50, 150, and 
500) given in Table III. 

Consider the numerical results generated with CPLEX. 
Referring to Table II, we observe that CPLEX can solve all 
the problems in the set P2 (for which there always exists a 
solution where all competitions have 5 judges assigned), but 
that it fails to solve several problems in the sets P1 and P3 
due to running out of memory. Furthermore, the failure rate 
is non decreasing with the size of the problems.  

If we consider only the subsets of problems where CPLEX 
is able to solve the 10 problems (subsets of  P1 and P3 with 
15 individual competitions, and the subsets in P2), the results 
in Table II indicate that the Ave dev  is rather small for the 
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four variants. Furthermore, the Ave CPU of CPLEX is 
smaller than that of the four variants for problems in the 
subset of P2 with 50 individual competitions (except for the 
variant R-First) and in the subset of P2 with 150 individual 
competitions, but it is larger for the other subsets. To verify 
if the Ave CPU of some method A is significantly smaller 
than that of some other method B, we can carry out a 
statistical analysis based on the nonparametric method of the 
Wilcoxon signed-rank test [8] on the numerical results. In 
our case, this test indicates with a 5% level of confidence 
that the CPU of CPLEX is not different than that of each 
variant in the subsets of P2 with 50 and 150 individual 
competitions, and that it is different in the other subsets 
except for the variant R-Best in the subset of P2 with 15 
individual competitions.   

 
TABLE II 

COMPARING EFFICIENCY FOR PROBLEM SETS 

  Size 
H-

Best
R-

Best
H- 

First
R-

First CPLEX
15 0 0.04 0 0 NA
50 0 0 0 0 NA

150 0 0 0 0 NA
P1

500 0 0 0 0 NA
15 0 0.14 0 0 NA
50 0.08 0 0.04 0 NA

150 0.14 0.4 0 0 NA
P2

500 0.14 0.04 0.02 0.02 NA
15 0 0.02 0 0 NA
50 0 0.04 0 0 NA

150 0 0.56 0.02 0.22 NA

Av
e 

de
v 

P3

500 0.02 0.92 0.06 0.12 NA
15 100 80 100 100 NA
50 100 100 100 100 NA

150 100 100 100 100 NA
P1

500 100 100 100 100 NA
15 100 70 100 100 NA
50 80 100 80 100 NA

150 80 40 100 100 NAP2

500 60 80 90 90 NA
15 100 90 100 100 NA
50 100 90 100 100 NA

150 100 70 90 70 NA

O
pt

5%
 

P3

500 90 30 90 90 NA
15 0.03 0.04 0.02 0.03 93.80
50 0.24 0.33 0.24 0.28 3.27(1)

150 0.62 0.61 0.59 0.57 85.57(2)P1

500 10.71 1.37 10.33 6.64 7714(3)

15 0.05 0.24 0.04  0.08 0.65
50 2.14 2.36 2.34 1.62 1.95

150 43.61 85.01 68.63 61.22 31.24P2

500 1651.40 1457.04 4009.32 3395.30 15696.50
15 0.02 0.04 0.03 0.03 7.34
50 0.29 0.77 0.26 0.57 10389.48(4)

150 2.80 64.45 21.17 103.13 314.97(5)

Av
e 

C
PU

 (s
ec

) 

P3

500 660.99 3831.36 4777.32 7391.73 13698.85(6)

(1) Only 6 of the 10 problems were solved 
(2) Only 2 of the 10 problems were solved 
(3) Only 2 of the 10 problems were solved 
(4) Only 7 of the 10 problems were solved 
(5) Only 5 of the 10 problems were solved 
(6) Only 2 of the 10 problems were solved  

Consequently, it seems to be worth using the metaheuristic 

approach since it can generate solutions of very good quality 
and since it is faster than CPLEX, in general.  

Now, considering the four variants, we observe that they 
generate results of excellent quality since the Ave dev is 
always smaller than 1. This means that on the average, the 
solution generated for each problem includes at most one 
individual competition where one judge has the same field of 
expertise as another judge assigned to it. Furthermore, the 
three variants H-Best, H-First, and R-first are very robust 
in the sense that for each problem, the value of (%)

1
Opt is 

equal to 100%, indicating that the optimal value or the lower 
bound is achieved for at least one of the 5 solutions 
generated. The variant R-Best is also quite robust since this 
is also true for all problems except for 2 instances in the 
subset of problems P3 with 150 individual competitions and 
for 1 in the subset of problems P3 with 500 individual 
competitions. (Note that the values of (%)

1
Opt are not 

reported in Tables II and III for this reason.) 
To further clarify the relationship among the four variants, 

we can apply the Friedman test [8] to the set of solutions 
generated by the four variants for each problem size. This 
test shows that with a 5% level of confidence, a statistically 
significant difference exists among the results except for the 
problems of size 50. This is in line with the results in Table 
III indicating that for problems of size 50, the four variants 
are quite competitive in terms of solution quality and 
solution time. Hence we refer to the problems of size 15, 150 
and 500 for comparing the variants. Note that this is the 
reason why we elected to use also problems of larger 
dimension than those found in the specific application of the 
John Molson International Case Competition to complete the 
tests. 

 
TABLE III 

COMPARING EFFICIENCY FOR PROBLEM SIZES 

    H-Best R-Best H-First R-First CPLEX

15 0.000 0.067 0.000 0.000 NA

50 0.027 0.013 0.013 0.000 NA

150 0.047 0.320 0.007 0.073 NA

Ave 
dev 

500 0.053 0.320 0.027 0.047 NA

15 100 80 100 100 NA

50 93.3 96.7 93.3 100 NA

150 93.3 70 96.7 90 NA

Opt5
% 

500 83.3 70 93.3 93.3 NA

15 0.03 0.11 0.03 0.05 33.93

50 0.89 1.15 0.95 0.82 3464.90(7)

150 15.68 50.02 30.13 54.97 143.93(7)

Ave 
CPU 
(sec)

500 774.37 1763.26 2932.32 3597.89 12369.78(7)

(7) The average reported is taken over the problems solved 
 
On the one hand, the variants H-Best and H-First 

dominate the variants R-Best and R-First, respectively, 
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showing that it is worthy of initializing the solution approach 
with better initial solution. On the other hand, when 
comparing the strategies for selecting the solution in the 
neighborhood of the current solution x, it is more difficult to 
verify that one is dominating the other. Indeed, H-First and 
R-First generate better solutions but require more solution 
time than H-Best and R-Best, respectively.  

Consider the variants H-First and H-Best. For problems 
of size 150, the variant H-First can improve by a factor of 7 
the Ave dev of the variant H-Best, but the solution time 
increases by a factor of 2. Similarly, for problems of size 
500, the Ave dev is improved by a factor of only 2, but the 
solution time is increased by a factor of 4. Hence the 
improvement of the solution quality induced by the variant 
H-First seems to be more expensive in solution time as the 
problem size increases. Furthermore, considering the facts 
that the Ave dev of the variant H-Best is always smaller than 
1 and that this variant is very robust, it seems more 
interesting to use this variant than the variant H-First as the 
problem size increases. Similar conclusion can be drawn 
when comparing R-First and R-Best. 

Note that all the conclusions above rely on average values 
(Ave dev or Ave CPU). But whenever necessary we can carry 
out a matched-pairs signed-rank Wilcoxon test to verify that  
the performance (Ave dev or Ave CPU) of two different 
variants are statistically different or not. Now in each case 
discussed above, the result of the test indicates that the 
hypothesis is verified with a 5% level of confidence. 

In summary, all the variants generate solutions of excellent 
quality, but considering the solution time required, it seems 
that the variant H-Best is slightly dominating the others. 

V.  CONCLUSION 
In this paper we introduce a metaheuristic approach for 

assigning judges to individual competitions in the context of 
a round of the John Molson International Case Competition. 
This approach can be adapted to other contexts by making 
proper adjustments to deal with slightly different specific 
rules of assignment. For instance, additional soft rules can be 
dualized by introducing associated penalty terms in the 
objective function. All the variants of the approach are very 
efficient, but the variant H-Best is slightly dominating the 
others. 

We are currently extending the approach to solve the 
problem associated with the 5 rounds of the John Molson 
International Case Competition. Adjustments are required to 
account for additional constraints connecting the round sub 
problems in order to reduce the number of rounds where a 
judge evaluates the same team and to reduce the number of 
rounds where the same pair of judges works together, for 
instance. We are also testing the approach using real data 
obtained from the John Molson International Case 
Competition organization, and the people seem to be fully 
satisfied by the results produced. These results should be 
included in a forthcoming publication.   
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