

Abstract— A metaheuristic approach including three
different stages is introduced to assign the judges for the John
Molson International Case Competition. The complexity of the
mathematical formulation accounting for the rules to be
followed in assigning the judges, leads us to use such an
approach. The two different Tabu search methods in the first
two stages are combined with a diversification strategy.
Numerical results are provided to indicate the efficiency of the
approach to generate very good solutions.

I. INTRODUCTION
Whenever competitions take place, judges have to be

selected to evaluate the performance of the competitors and
to identify a winner. According to the competition context,
specific rules must be followed in assigning the judges. In
general, it makes sense to have an odd number of judges
having complementary expertises to cover as exhaustively as
possible all the expertises required to evaluate the
performances of the competitors. Furthermore, conflicts of
interest should be avoided. In this paper, we analyze the
judge assignment problem for the John Molson International
Case Competition that takes place every year at Concordia
University in Montreal (Canada) for the last 25 years. Even
if the solution techniques are introduced for this specific
context, they should nevertheless be easily adapted to other
contexts by making proper minor adjustments to deal with
slightly different specific rules.
This competition involves 30 teams of business students
coming from top international universities. This set of teams
is partitioned into 5 groups, each including 6 teams. The first
part of the competition consists in a round-robin tournament
including 5 rounds where each team competes against each
of the other 5 teams of its group. Thus, each round includes
15 individual competitions where a pair of teams debate and
propose solutions for a specified business case. The three
best teams move to the finals in the second part of the
competition.

For each individual competition of a round, 3 or 5 judges
are assigned according to the number of judges available for

Manuscript received October 13, 2006. This work was supported by
NSERC Grant (OGP0008312) from Canada

Amina Lamghari is with the Département d’informatique et de
recherche opérationnelle of the Université de Montréal, C.P. 6128, Succ.
Centre-Ville, Montréal, CANADA H3C 3J7 (e-mail:
lamghara@iro.umontreal.ca).

Jacques A. Ferland is with the Département d’informatique et de
recherche opérationnelle of the Université de Montréal, C.P. 6128, Succ.
Centre-Ville, Montréal, CANADA H3C 3J7 (Corresponding Author.
Phone: 514-343-5687; fax: 514-343-5834; e-mail:
ferland@iro.umontreal.ca).

that round. For each round, two sets of judges are available:
the set of lead judges
the set of other judges.

Six (6) different fields of expertise for the judges are
considered, and each judge has one of these expertises.

The following rules must be followed in assigning the
judges to the individual competitions of a specific round:
• Hard rules or constraints that must be satisfied:

o 3 or 5 judges must be assigned to each individual
competition

o A judge cannot be assigned to an individual
competition involving a team coming from a
University where he received his degree

o A judge cannot be assigned to an individual
competition involving a team coming from a
University where he is a faculty member

o At least one of the judges belongs to the set of lead
judges.

• Soft rules or constraints (or objective) to be satisfied as
much as possible:
o The expertises of the judges assigned should be as

different as possible to cover as many of the 6 fields
of expertise as possible

o The number of individual competitions having 5
judges assigned should be maximized.

Finally, note that, for a specific round, once a lead judge has
been assigned to each individual competition, the rest of the
lead judges (if any are left) are available for assignment as
other judges.

This judge assignment problem has some similarity with
the problem of forming maximally diverse groups (FMDG).
This problem consists on partitioning a number of entities
into a fixed number of groups having the same size where the
objective is to maximize diversity within groups. Our
problem would reduce to a (FMDG) if all judges were
admissible for all competitions, if there was only one type of
judges, and if the same number of judges was to be assigned
to each competition. In this case the problem is simplified
greatly.

The (FMDG) has been shown to be NP-Complete [1], and
heuristic procedures have been proposed for the problem
specified in different contexts by several authors, see [2].
More recently, in [3], the authors use a network flow
formulation (the dining problem) to solve efficiently the
(FMDG). Since our problem is even more complex, in [4],
we introduce heuristic procedures to construct good feasible
solutions for this problem. In this paper we use a more
powerful metaheuristic based on the Tabu Search principle
[5] [6] to generate better solutions.

Structured Neighborhood Tabu Search for Assigning
Judges to Competitions

Amina Lamghari and Jacques A. Ferland

238

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

 In Section II we introduce a mathematical formulation
and a metaheuristic procedure including three different
stages. Section III includes a description of the methods used
in the different stages. In the first stage, we use a structured
neighborhood Tabu search to increase the number of
individual competitions having 5 judges assigned. Another
Tabu search is completed in the next stage to improve the
diversity of the fields of expertise of the judges assigned to
the same individual competition. Finally, a diversification
strategy is applied in the third stage in order to reinitialize
the procedure. Numerical results are given in Section IV.
Four different variants are compared numerically. These
variants are specified according to the process generating the
initial solution, and to the strategies for selecting the solution
in the neighborhood of the current solution. The numerical
results indicate the efficiency of the approach to generate
very good solutions.

II. MODEL AND SOLUTION APPROACH
Referring to the rules for assigning the judges in a specific

round, the problem for a round can be formulated as a linear
binary programming problem. The hard rules are used to
specify the constraints of the problem. The objective
function is specified in terms of the soft rules to reduce the
number of times that several judges assigned to an individual
competition share the same field of expertise, and to
maximize the number of individual competitions having 5
judges assigned.

We use the following notation to formulate the problem:
N: the total number of judges
M: the number of individual competitions
K: the number of fields of expertise
i: judge index, i = 1, 2, …, N
j: individual competition index, j = 1, 2, …, M

⎪⎩

⎪
⎨
⎧

=

=

otherwise
n competitio

 individualfor admissible is judge if

 where]

0

1
[

j
i

a

aA

ij

ij

 Note that judge i is admissible for individual
 competition j if i did not receive a degree or is
 not a faculty member of neither team universities

⎩
⎨
⎧

=
otherwise0

judgeaisjudgeif1 leadi
li

⎩
⎨
⎧

= otherwise.
 expertise has judge if

0
1 kieik

The mathematical model can be summarized as follows:

∑∑∑ ∑
== = =

−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
M

j

j
M

j

K

k

N

i
ijik yMxeMin

1
5

1 1 1

50,1)(max

(1)

Subject to ∑
=

≤
M

j
ijx

1

1 Ni ,...,1= (2)

 0)1(
1

=−∑
=

ij

M

j
ij xa Ni ,...,1= (3)

 1
1

≥∑
=

ij

N

i
i xl Mj ,...,1= (4)

 jj
N

i
ij yyx 53

1

53 +=∑
=

 Mj ,...,1= (5)

 153 =+ jj yy Mj ,...,1= (6)

 1or0=ijx Ni ,...,1=

Mj ,...,1= (7)

 1or0, 53 =jj yy Mj ,...,1= (8)
 where for i = 1,…, N and j = 1,…, M, the variables

⎩
⎨
⎧

= otherwise
toassignedisjudgeif

0
1 jixij

and for all j = 1,…, M, the variables

⎩
⎨
⎧

= otherwise
toassignedarejudges3if

0
1

3
jy j

⎩
⎨
⎧

= otherwise.
toassignedarejudges5if

0
1

5
jy j

In the objective function (1), we minimize the number of
times that several judges assigned to an individual
competition share the same field of expertise, and we
maximize the number of individual competitions with 5
judges. The coefficient 5M for the second term of the
objective function guarantees that an additional pair of
judges would be added to some competition even if it would
induce that the 5 judges in each competition share the same
field of expertise. The constraints (2) indicate that a judge
cannot be assigned to more than one individual competition,
and the constraints (3) do not allow inadmissible judge to be
assigned to an individual competition. At least one lead
judge is assigned to each individual competition according to
constraints (4).The constraints (5) and (6) guarantee that 3 or
5 judges are assigned to each individual competition.

The complexity of the model leads us to use a
metaheuristic approach solving an equivalent model where
the surplus of judges (if any) is assigned to a dummy
individual competition (M+1) requiring no lead judge and
for which all judges are admissible. Furthermore, in this new
model, individual competitions with only one judge assigned
are feasible but incur a very high cost R >>5M. To simplify
the notation, the number of judges with field of expertise k
assigned to individual competition j is denoted

 ij

N

i
ikkj xed ∑

=

=
1

.

Furthermore, for all j = 1,…, M, the variables

⎩
⎨
⎧

= otherwise.
toassignedisjudge1if

0
1

1
jy j

The new mathematical model can be summarized as
follows:

239

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

{ } ∑ ∑∑∑
= == =

+−−=
M

j

M

j

jj
M

j

K

k
kj yRyMdxfMin

1 1
15

1 1

50,1max)((9)

Subject to ∑
+

=

=
1

1

1
M

j
ijx Ni ,...,1= (10)

 0)1(
1

=−∑
=

ij

M

j
ij xa Ni ,...,1= (11)

 1
1

≥∑
=

ij

N

i
i xl Mj ,...,1= (12)

 jjj
N

i
ij yyyx 531

1

53 ++=∑
=

 Mj ,...,1= (13)

 1531 =++ jjj yyy Mj ,...,1= (14)

 1or0=ijx Ni ,...,1=

Mj ,...,1= (15)

 1or0,, 531 =jjj yyy Mj ,...,1= (16)

 For any feasible solution x, we denote

⎭
⎬
⎫

⎩
⎨
⎧

= xj
iixjI solution in n competitio

 individual toassigned is judge:),(

assigned. judges 5
 with 1 nscompetitio individual ofset)(

assigned judges 3
 with 1 nscompetitio individual ofset)(

assigned judge)(1
 with 1 nscompetitio individual ofset)(

5

3

1

+≠=

+≠=

+≠=

MjxM

MjxM
lead

MjxM

 The solution procedure is a metaheuristic including three
main stages. It is initiated with a feasible solution for the
problem. In a first stage, we use a structured neighborhood
Tabu search to improve the quality of the solution by
reducing the number of individual competitions with 1 or 3
judges assigned (i.e., to optimize the last two terms of the
objective function). Then, a second Tabu search is used to
improve the diversity of the fields of expertise of the judges
assigned to the same individual competition (i.e., to optimize
the first term of the objective function). Finally, a
diversification strategy is used to generate a new initial
solution to reinitialize the procedure.

The procedure terminates whenever an optimal solution is
generated or whenever the best solution generated is not
improved during itermax successive iterations. Note that a
solution is optimal if all individual competitions have 5
judges assigned, or if all individual competitions have 3 or 5
judges assigned and 10),1(or =+ xMI , and if the value

of { }∑ ∑ −
= =

M

j

K

k
kjd

1 1
0,1max is equal to 0 or to a lower bound

known a priori for the problem.

III. SOLUTION METHODS FOR THE DIFFERENT STAGES
 In this section, we describe the solution methods used in

the different stages.

A. Initial Solution
In this paper we consider two different processes to

generate an initial solution. In the first one denoted Random,
an initial solution 0x where each individual competition has
only one lead judge assigned (i.e., MxM =)(0

1

and 0)()(0
5

0
3 == xMxM), is generated randomly. Here,

lead judges are assigned sequentially to the individual
competitions with a bias to deal with those with fewer lead
judges admissible first.

The second process is the HLA-HOA heuristic method
introduced in [4]. The HLA method is used to assign a lead
judge to each individual competition according to the
following strategy: lead judges having the most common
expertise k’ and being admissible for fewer individual
competitions are assigned first to individual competitions
having the smallest number of admissible other judges
having the expertise k’ among those with the smallest
number of admissible lead judges still available. These look
ahead features make further assignments easier. The HOA is
a two phases heuristic method using a similar strategy to
assign additional pairs of judges to individual competitions
accounting for the diversity requirement of the fields of
expertise of the judges assigned to each individual
competition. In the first phase, we try to assign an additional
pair of judges to each individual competition, and in the
second, a second pair is assigned to as many individual
competitions as possible.

B. Structured Tabu Search for Stage 1
Recall that during the first stage, the objective is to reduce

the number of individual competitions with 1 or 3 judges
assigned by reassigning pairs of judges. Accordingly, the
neighborhood of a feasible solution x is generated by
reassigning a pair of judges (i,r) currently assigned to some
individual competition j to another individual competition l.
The new solution generated is denoted
).,,,(ljrix ⊕
The reassignment is feasible, and the solution generated
belongs to the neighborhood of x if and only if it is feasible;
i.e., if and only if

{ } .1such that ,),(:n competitio individual

 the toassignedleft thoseamong judge a exists there)
;1:n competitio

 individual for the admissible are and judges)

=−∈∃

==

i

rlil

lrixjIij

leadii
aal

rii

 A safeguard against cycling is provided by the short term
Tabu status of recently used reassignments. We use a Tabu
matrix][ijLTLT = where

.n competitio individual theto
 assigned becan judge h theafter whic iteration the

j
iLTij =

If we move from x to),,,(ljrix ⊕ , then two elements of the
Tabu matrix are modified as follows:

2

1

tcuriterLT
tcuriterLT

rj

ij
+=
+=

240

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

where curiter denotes the index of the current iteration, and
21 and tt are random integer numbers in],[maxmin tt . Also,

referring to the current Tabu matrix LT, a neighbor solution
),,,(ljrix ⊕ is Tabu at the iteration iter if

 . and iterLTiterLT rlil ≥≥
 In our implementation, we use the classic aspiration

criterion to override the Tabu status of a solution when its
value is better than the current best solution found so far.

We take advantage of the problem structure in order to
partition the set of reassignments leading to different
neighborhood structures. To be more specific, for a solution
x, denote by V(x) the set of feasible reassignments. Given
any pair of subsets of individual competitions

{ }inoutinout MMMM ,by denote , , the subset of feasible
reassignments from outMj ∈ to ., ljMl in ≠∈ Accordingly,
we consider the following partition:
)()(

8

1
xVxV

p
p ⊆

=

U

where the subsets)(xVp are specified in Table I.

We use different neighborhood structures as in a variable
neighborhood search [7], but here the strategy for moving
from one neighborhood structure to another is different and
strongly dependent on the partition and on the potential
improvement associated with the reassignments in the
different subsets. For any reassignment leading to the
neighbor solution),,,(ljrix ⊕ , denote by),,,(ljriΔ the
modification induced on the objective function

).()),,,((),,,(xfljrixfljri −⊕=Δ
Also, let),,,(min

),,,(
ljri

pVljrip Δ=Δ
∈

 be the best modification

that can be induced by any reassignment).(),,,(xVljri p∈
Referring to the values pΔ given in the third column of
Table I, it follows that the subsets are ordered in increasing
order of these values. Furthermore, the reassignments in the
first 3 subsets are improving reassignments (0<Δ p , p = 1,
2, 3), those in)()(54 xVxV and can be slightly improving or
deteriorating, and those in the last 3 subsets are
deteriorating reassignments (0>Δ p , p = 6, 7, 8). This

partition leads to the following search strategy of the
neighborhood. The Tabu search in initiated by using
sequentially the subsets 3. , 1,for 2)(=pxVp Furthermore,
the search in any of these subsets is exhaustive (in the sense
that no more feasible non Tabu reassignments are available)
before moving to the next. Once the exhaustive search of

)(3 xV is completed, then we use sequentially the other
subsets. Now since the reassignments included in any of
these subsets may be deteriorating, we are not completing an
exhaustive search before moving to the next subset. Instead,
after completing each reassignment in)(4 xV , we return to the
second subset)(2 xV initializing a new exhaustive search
using the subsets)(2 xV and)(3 xV . Indeed, any reassignment
in)(4 xV implies that new individual competitions in

)(3 xM and)(5 xM are created, and consequently, new
feasible improving reassignments may become available in

)(2 xV and)(3 xV . Similarly, after completing any

reassignment in U
8

5
)(

=p
p xV , we return to the first subset)(1 xV

because any such reassignment implies that a new individual
competition in)(1 xM is created or new judges are moved to
the dummy individual competition M + 1.

We also consider two different strategies for selecting the
solution in the neighborhood of the current solution x
(generated by any subset of reassignments)).(xVp The best
improving strategy is to select one of the best non Tabu
neighbor solutions or one of the best Tabu neighbor
solutions satisfying the aspiration criterion. Even tough in
general this strategy require generating all neighbor
solutions, we can interrupt the generation whenever a
solution inducing a modification)(xpΔ of the objective
function is reached. The first improving strategy is to select
the first non Tabu solution improving the value of the current
solution or the first Tabu solution satisfying the aspiration
criterion. If no such solution exists, then the best non Tabu
solution in the neighborhood is selected.

 Finally, the stopping criterion for the method is specified
in terms of a maximal number nitermax of successive
iterations where the objective function does not improve.
The procedure also terminates whenever all individual
competitions have 5 judges assigned, or when all individual
competitions have 3 or 5 judges assigned and

10),1(or =+ xMI .

C. Tabu Search for Stage 2
The solution generated in the first stage is used to

initialize the Tabu search of the second stage where the
objective is to improve the diversity of the fields of expertise
of the judges assigned to each individual competition.
Accordingly, the neighborhood of a feasible solution x is
generated by exchanging two judges i and r currently
assigned to different individual competitions j and l,
respectively. The new solution generated is denoted
).,,,(lrjix ⊕

TABLE I
PARTITION OF V(X)

p)(xVp)(xpΔ

1 { })(,1 1 xMM + – R
2 { })(),(15 xMxM – R + 5M – 2

3 { })(,1 3 xMM + – 5M

4 { })(),(35 xMxM – 2

5 { })(),(13 xMxM – 1

6 { }1),(5 +MxM 5M – 2

7 { })(),(33 xMxM –5M + R –1

8 { }1),(3 +MxM R – 2

241

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

The exchange is feasible, and the solution generated belongs
to the neighborhood of x if and only if it is feasible; i.e., if
and only if

{ } { }

{ } { } .1such that),(

1such that),(

 and nscompetitio individualin judge a exists there)

);1(n competitio individualfor judge and
),1(n competitio individualfor admissible is judge)

=−∈∃

=−∈∃

=

=

i

i

rj

il

lirxlIi

lrixjIi

ljleadii
ajr

alii

U

U

 As in stage 1, we use a Tabu matrix][ijLTLT = where

.n competitio individual theto
 assigned becan judge h theafter whiciteration the

j
iLTij =

If we move from x to),,,(lrjix ⊕ , then two elements of the
Tabu matrix are modified as follows:

2

1

tcuriterLT
tcuriterLT

rl

ij

+=

+=

where curiter denotes the index of the current iteration, and
21 and tt are random integer numbers in],[maxmin tt . Also,

referring to the current Tabu matrix LT, a neighbor solution
),,,(lrjix ⊕ is Tabu at the iteration iter if

 .iterLTiterLT rjil ≥≥ and
Furthermore, we use the same aspiration criterion, and we

consider the same strategies for selecting the solution in the
neighborhood of the current solution x. Here, in the best
improving strategy we can interrupt the generation whenever
a solution inducing a modification 2)(−=Δ x of the
objective function is reached.

 Finally, the stopping criterion for the method is specified
in terms of a maximal number nitermax of successive
iterations where the objective function does not improve.
The procedure also terminates whenever the value of

{ }∑ ∑ −
= =

M

j

K

k
kjd

1 1
0,1max is equal to 0 or to a lower bound known

a priori for the problem.

D. Diversification Strategy in Stage 3
Once the first two stages of the solution procedure are

completed, and the best solution generated is not optimal, we
use the following diversification strategy to search more
extensively the feasible domain. A new initial solution is
generated to reinitialize the first stage of the solution
procedure.

Denote by Γ the set of the ρ best solutions generated so far
during the procedure, and by xbest Γ∈ the best solution in Γ.
First a new assignment 0x of the judges (not necessarily
feasible) is generated by applying a uniform crossover
operator to the pair of solutions xbest and xbestx ≠ selected
randomly in Г. More specifically, select randomly a subset of

⎥⎥
⎤

⎢⎢
⎡

+1countiter
Mβ individual competitions

{ },1,,1 +⊂ MM best L where countiter denotes the number
of recent successive iterations where the value of the best

solution generated by the procedure is not improved. For
each individual competition ,1,,1 += Mj L

⎩
⎨
⎧ ∈

=
otherwise.

 if
),(

),(
),(0

xjI
MjxbestjI

xjI best

Now 0x may not be feasible because the same judge i may
be assigned to two different individual competitions

 bestMj ∈1 and ;2 bestMj ∉ i.e.,).,(),(0
2

0
1 xjIxjIi I∈ Each

such judge i is eliminated from 21 jj or as follows. In order
to favor the presence of the assignments found in xbest, we
eliminate unless from 2ji

 toassigned judge one than
 more is thereand toassigned judge only theis or

1

1

2

1

jlead
jleadi

Mj +=

in which case .1ji from eliminated is

But 0x may still be infeasible because some individual
competitions have no lead judge assigned or some have 2 or
4 judges assigned. In this case, we apply the following repair
process including two phases. In the first one, a lead judge is
assigned to each individual competition. Denote

{ }.assigned judge no has and ,1: leadjMjjU +≠=
At each iteration of the first phase, select randomly an

individual competition .Ul ∈ Permute randomly the set of
lead judges i admissible for l).1(=ila i.e., Consider
sequentially the lead judges i:

• If i is assigned to M + 1, then assign i to l
• If i is assigned to an individual competition j having

several lead judges assigned, then assign i to l
• If i is the only lead judge assigned to j, and if r is

another lead judge assigned to another individual
competition j having several lead judges assigned
or assigned to M + 1, and if 1=rja , then assign r to

j and i to l.
Once every individual competition has a lead judge assigned,
we proceed to phase 2 to deal with the individual
competitions having 2 or 4 judges assigned. (Note that it is
always possible to assign a lead judge to each individual
competition by assumption.)

In phase 2, denote
{ }.,1: assigned judges 4or 2 having jMjjW +≠=

At each iteration, select randomly .Wl ∈ If there exists
,1),1(0 =+∈ ilaxMIi such that then assign i to l.

Otherwise, select randomly),(0xlIr ∈ that is not the only
lead judge in l, and assign r to M +1. At the end of phase 2,

0x is feasible and can be used to reinitialize the stage 1 of
the procedure.

IV. NUMERICAL RESULTS
Four different variants are compared numerically. These

variants are specified according to the process generating the
initial solution (HLA-HOA and Random denoted H and R,

242

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

respectively), and to the strategies for selecting the solution
in the neighborhood of the current solution x (best improving
strategy and first improving strategy denoted Best and First,
respectively): H-Best, H-First, R-Best, and R-First.
Furthermore, since (1) – (8) is a linear binary model, we try
to solve it using CPLEX 9.0 for the sake of comparison with
the four variants.

The numerical tests are completed using 3 different sets of
problems P1, P2 , and P3 where each set includes 4 different
subsets (each subset including 10 different problems) with
15, 50, 150, and 500 individual competitions, respectively.
The problems are generated such that for problems in P1,
there exists a solution where no pair of judges assigned to the
same competition share the same expertise (i.e., the first term
of the objective function (1) is equal to 0), and for problems
in P2 and P3, no such solution exists. Furthermore, for
problems in P2, there always exists a solution where all
competitions have 5 judges assigned, and for problems in P1
and P3, some competitions have only 3 judges assigned.

All the problems are randomly generated. For each team
of each individual competition, its University corresponds to
a random number in the intervals [1, 10], [1, 10], [1, 30], and
[1, 100] for the problems with 15, 50, 150, and 500
individual competitions, respectively. The number of lead
judges available is equal to a random number in the intervals
[15, 50], [50, 60], [150, 160], and [500, 510] for the
problems with 15, 50, 150, and 500 individual competitions,
respectively. Similarly, the number of other judges available
is equal to a random number in the intervals [60, 300], [100,
220], [300, 620], and [100, 2020] for the problems with 15,
50, 150, and 500 individual competitions, respectively. For
each judge available, the Universities where he received his
degree and where he is a faculty member correspond to
random numbers in the intervals [1, 10], [1, 10], [1, 30], and
[1, 100] for the problems with 15, 50, 150, and 500
individual competitions, respectively. Finally, the field of
expertise of each judge is a random number in the interval
[1, 6]. Note that for problems P2 and P3, the number of
judges having the same field of expertise is fixed a priori for
each field in order to compute a lower bound of the optimal
value.

The four variants are implemented in Java, and the tests
are completed on a 2 GHz processor AMD Athlon 3200+

with 2 GB of memory working under a Linux operating
system.

The constant R (used in the model to penalize the number
of individual competitions having only one judge assigned)
and the parameter ρ (the number of the best solutions
generated so far during the procedure) are fixed to the
values 250M and (M +1), respectively. To fix the other
parameters, we consider the 18 different combinations
generated with the two values for the interval],[maxmin tt
(⎣ ⎦ ⎡ ⎤[]NN 2.1,8.0 and ⎣ ⎦ ⎡ ⎤[]NN 1.1,9.0), the three pairs of
values for (nitermax, itermax) ((N, 15), (5N, 10), and (10N,
5)), and the three values for β (0.55, 0.65, and 0.75). For

each combination, each problem is solved once with the
variant R-First. The best results are obtained with the
following combination:

•],[maxmin tt = ⎣ ⎦ ⎡ ⎤[]NN 2.1,8.0
• (nitermax, itermax) = (N, 15)
• β = 0.65.

Hence we complete the rest of the numerical tests using these
values for the parameters.

Afterward, each problem is solved 5 times using different
initial solutions to compare the efficiency of the four
variants. Note that each problem is solved only once with
CPLEX. Moreover, in the two variants R-First and H-First,
for each resolution, we use different orders in which the
judges and the individual competitions are considered. The
efficiency of the four variants is compared with respect to
three different criteria:
i. Average deviation:

Ave dev: the average deviation of the values of the
solutions generated from the optimal value or from
the lower bound.

ii. Number of problems where the optimal value or the
lower bound is achieved. For each set of problems we
compute:

NB1: the number of problems where the optimal
value or the lower bound is achieved for at least one
of the 5 solutions generated
NB5: the number of problems where the optimal
value or the lower bound is achieved for each of the
5 solutions generated

100
10

(%) 1
1

×=
NB

Opt

 .100
10

5(%)5 ×=
NB

Opt

iii. Average solution time (CPU)
For each set of problems we compute the average
CPU time Ave CPU (sec.) over all the resolutions.

Note that the first two criteria do not apply to CPLEX as
indicated by NA in Tables II and III.

The numerical results for these criteria are summarized in

Tables II and III where a column is associated with each
method. In Table II, the results are given for each subset of
problems. These results are used to compute the values of
the different criteria for each problem size (15, 50, 150, and
500) given in Table III.

Consider the numerical results generated with CPLEX.
Referring to Table II, we observe that CPLEX can solve all
the problems in the set P2 (for which there always exists a
solution where all competitions have 5 judges assigned), but
that it fails to solve several problems in the sets P1 and P3
due to running out of memory. Furthermore, the failure rate
is non decreasing with the size of the problems.

If we consider only the subsets of problems where CPLEX
is able to solve the 10 problems (subsets of P1 and P3 with
15 individual competitions, and the subsets in P2), the results
in Table II indicate that the Ave dev is rather small for the

243

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

four variants. Furthermore, the Ave CPU of CPLEX is
smaller than that of the four variants for problems in the
subset of P2 with 50 individual competitions (except for the
variant R-First) and in the subset of P2 with 150 individual
competitions, but it is larger for the other subsets. To verify
if the Ave CPU of some method A is significantly smaller
than that of some other method B, we can carry out a
statistical analysis based on the nonparametric method of the
Wilcoxon signed-rank test [8] on the numerical results. In
our case, this test indicates with a 5% level of confidence
that the CPU of CPLEX is not different than that of each
variant in the subsets of P2 with 50 and 150 individual
competitions, and that it is different in the other subsets
except for the variant R-Best in the subset of P2 with 15
individual competitions.

TABLE II

COMPARING EFFICIENCY FOR PROBLEM SETS

 Size
H-

Best
R-

Best
H-

First
R-

First CPLEX
15 0 0.04 0 0 NA
50 0 0 0 0 NA

150 0 0 0 0 NA
P1

500 0 0 0 0 NA
15 0 0.14 0 0 NA
50 0.08 0 0.04 0 NA

150 0.14 0.4 0 0 NA
P2

500 0.14 0.04 0.02 0.02 NA
15 0 0.02 0 0 NA
50 0 0.04 0 0 NA

150 0 0.56 0.02 0.22 NA

Av
e

de
v

P3

500 0.02 0.92 0.06 0.12 NA
15 100 80 100 100 NA
50 100 100 100 100 NA

150 100 100 100 100 NA
P1

500 100 100 100 100 NA
15 100 70 100 100 NA
50 80 100 80 100 NA

150 80 40 100 100 NAP2

500 60 80 90 90 NA
15 100 90 100 100 NA
50 100 90 100 100 NA

150 100 70 90 70 NA

O
pt

5%

P3

500 90 30 90 90 NA
15 0.03 0.04 0.02 0.03 93.80
50 0.24 0.33 0.24 0.28 3.27(1)

150 0.62 0.61 0.59 0.57 85.57(2)P1

500 10.71 1.37 10.33 6.64 7714(3)

15 0.05 0.24 0.04 0.08 0.65
50 2.14 2.36 2.34 1.62 1.95

150 43.61 85.01 68.63 61.22 31.24P2

500 1651.40 1457.04 4009.32 3395.30 15696.50
15 0.02 0.04 0.03 0.03 7.34
50 0.29 0.77 0.26 0.57 10389.48(4)

150 2.80 64.45 21.17 103.13 314.97(5)

Av
e

C
PU

 (s
ec

)

P3

500 660.99 3831.36 4777.32 7391.73 13698.85(6)

(1) Only 6 of the 10 problems were solved
(2) Only 2 of the 10 problems were solved
(3) Only 2 of the 10 problems were solved
(4) Only 7 of the 10 problems were solved
(5) Only 5 of the 10 problems were solved
(6) Only 2 of the 10 problems were solved

Consequently, it seems to be worth using the metaheuristic

approach since it can generate solutions of very good quality
and since it is faster than CPLEX, in general.

Now, considering the four variants, we observe that they
generate results of excellent quality since the Ave dev is
always smaller than 1. This means that on the average, the
solution generated for each problem includes at most one
individual competition where one judge has the same field of
expertise as another judge assigned to it. Furthermore, the
three variants H-Best, H-First, and R-first are very robust
in the sense that for each problem, the value of (%)

1
Opt is

equal to 100%, indicating that the optimal value or the lower
bound is achieved for at least one of the 5 solutions
generated. The variant R-Best is also quite robust since this
is also true for all problems except for 2 instances in the
subset of problems P3 with 150 individual competitions and
for 1 in the subset of problems P3 with 500 individual
competitions. (Note that the values of (%)

1
Opt are not

reported in Tables II and III for this reason.)
To further clarify the relationship among the four variants,

we can apply the Friedman test [8] to the set of solutions
generated by the four variants for each problem size. This
test shows that with a 5% level of confidence, a statistically
significant difference exists among the results except for the
problems of size 50. This is in line with the results in Table
III indicating that for problems of size 50, the four variants
are quite competitive in terms of solution quality and
solution time. Hence we refer to the problems of size 15, 150
and 500 for comparing the variants. Note that this is the
reason why we elected to use also problems of larger
dimension than those found in the specific application of the
John Molson International Case Competition to complete the
tests.

TABLE III

COMPARING EFFICIENCY FOR PROBLEM SIZES

 H-Best R-Best H-First R-First CPLEX

15 0.000 0.067 0.000 0.000 NA

50 0.027 0.013 0.013 0.000 NA

150 0.047 0.320 0.007 0.073 NA

Ave
dev

500 0.053 0.320 0.027 0.047 NA

15 100 80 100 100 NA

50 93.3 96.7 93.3 100 NA

150 93.3 70 96.7 90 NA

Opt5
%

500 83.3 70 93.3 93.3 NA

15 0.03 0.11 0.03 0.05 33.93

50 0.89 1.15 0.95 0.82 3464.90(7)

150 15.68 50.02 30.13 54.97 143.93(7)

Ave
CPU
(sec)

500 774.37 1763.26 2932.32 3597.89 12369.78(7)

(7) The average reported is taken over the problems solved

On the one hand, the variants H-Best and H-First

dominate the variants R-Best and R-First, respectively,

244

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

showing that it is worthy of initializing the solution approach
with better initial solution. On the other hand, when
comparing the strategies for selecting the solution in the
neighborhood of the current solution x, it is more difficult to
verify that one is dominating the other. Indeed, H-First and
R-First generate better solutions but require more solution
time than H-Best and R-Best, respectively.

Consider the variants H-First and H-Best. For problems
of size 150, the variant H-First can improve by a factor of 7
the Ave dev of the variant H-Best, but the solution time
increases by a factor of 2. Similarly, for problems of size
500, the Ave dev is improved by a factor of only 2, but the
solution time is increased by a factor of 4. Hence the
improvement of the solution quality induced by the variant
H-First seems to be more expensive in solution time as the
problem size increases. Furthermore, considering the facts
that the Ave dev of the variant H-Best is always smaller than
1 and that this variant is very robust, it seems more
interesting to use this variant than the variant H-First as the
problem size increases. Similar conclusion can be drawn
when comparing R-First and R-Best.

Note that all the conclusions above rely on average values
(Ave dev or Ave CPU). But whenever necessary we can carry
out a matched-pairs signed-rank Wilcoxon test to verify that
the performance (Ave dev or Ave CPU) of two different
variants are statistically different or not. Now in each case
discussed above, the result of the test indicates that the
hypothesis is verified with a 5% level of confidence.

In summary, all the variants generate solutions of excellent
quality, but considering the solution time required, it seems
that the variant H-Best is slightly dominating the others.

V. CONCLUSION
In this paper we introduce a metaheuristic approach for

assigning judges to individual competitions in the context of
a round of the John Molson International Case Competition.
This approach can be adapted to other contexts by making
proper adjustments to deal with slightly different specific
rules of assignment. For instance, additional soft rules can be
dualized by introducing associated penalty terms in the
objective function. All the variants of the approach are very
efficient, but the variant H-Best is slightly dominating the
others.

We are currently extending the approach to solve the
problem associated with the 5 rounds of the John Molson
International Case Competition. Adjustments are required to
account for additional constraints connecting the round sub
problems in order to reduce the number of rounds where a
judge evaluates the same team and to reduce the number of
rounds where the same pair of judges works together, for
instance. We are also testing the approach using real data
obtained from the John Molson International Case
Competition organization, and the people seem to be fully
satisfied by the results produced. These results should be
included in a forthcoming publication.

REFERENCES
[1] C.C. Kuo, F. Glover, K.S. Dhir, “Analysis and modeling the

maximum diversity problem by zero-one programming,” Decision
Sciences, vol. 24, pp. 1171 – 1185, Nov./Dec. 1993.

[2] R.R. Weitz, S. Lakshminarayanan, “An empirical comparison of
heuristic methods for creating maximally diverse groups,” Journal of
Operational Research Society, vol. 49, pp. 635 – 646, June 1998.

[3] J. Bhadury, E.J. Mighty, H. Damar, “Maximizing workforce diversity
in project teams: a network flow approach,” Omega, vol. 28, pp. 143
– 153, April 2000.

[4] A. Lamghari, J.A. Ferland, “Heuristic techniques to assign judges in
competitions,” in Proc. of the Third International Conference on
Computational Intelligence, Robotics and Autonomous System
(CIRAS), Singhapore, December 2005.

[5] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers,
Boston, June 1998.

[6] P. Hansen, “The steepest ascent mildest descent heuristic for
combinatorial programming,” presented at Congress on Numerical
Methods in Combinatorial Optimization, Capri, Italy, 1986.

[7] P. Hansen, N. Mladenovic, “Variable neighborhood search: principles
and applications,” European Journal of Operational Research, vol.
130, pp. 449 – 467, May 2001.

[8] R Development Core Team, “R: A language and environment for
statistical computing”. Available: http://www.R-project.org

245

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

