
Abstract— We describe an optimal path design for a GMPLS 
network that uses the Lagrangian relaxation method, which can 
estimate the lower bounds of the solution to a  problem.  This 
feature  helps the designer of the problem to take the accuracy 
of the solution obtained by the calculation into consideration 
when he makes a decision to assign the solution to a real 
network in critical situations.  A formulation of the problem and 
how to solve it using the Lagrangian Relaxation method is 
described, and the results obtained by a prototype and 
considerations are shown in this paper. 

I. INTRODUCTION

EMARKABLE progress has been made on the Internet.  

The bandwidth of networks and the scale of networks 

have greatly increased.  The core network of the Internet is 

evolving.  The physical network architecture uses 

wavelength-routing switches at routing nodes, which enable 

the establishment of circuit-switched, all-optical, 

wavelength-division multiplexed (WDM) channels, called 

paths.  The virtual topology consists of a set of such paths, 

and they may be used to carry packet-switched traffic through 

the network.  Generalized multiprotocol label switching 

(GMPLS) is a technology that provides enhancements to 

multiprotocol label switching (MPLS) to support network 

switching for time, wavelength, and space switching as well 

as for packet switching [1][2].  In the network for the GMPLS, 

paths, which have to be set beforehand, are basically static. 

Techniques for designing the virtual topology of the paths are 

a significant problem for successful networking.  The 

important goals of designing the paths for the GMPLS are to 

achieve the requested specifications that link one end-node to 

the other end-node of the network and to achieve a sufficient 

rest margin for the network capacity to enable alternative 

paths to be provided in case of emergency.  Therefore, the 

problem of the paths design for the GMPLS can be 

formulated as an optimization problem that aims at efficient 

use of network resources [3][4][5].  However, this type of 

optimization problem is generally known as an NP-hard 

problem [6], and probabilistic search algorithms or heuristic 

algorithms are often applied to the problem to obtain practical 

approximate solutions [7][8][9], which is not usually 
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guaranteed to be optimal.  Furthermore, we have no means to 

measure how far the solution obtained by these algorithms is 

from the optimal one.  Indeed, this is not a serious problem in 

case of typical situations to network management, because we 

have enough time to search for such a practical approximate 

solution.  In emergencies, however, evaluating the gap 

between such a practical approximate solution and the 

optimal solution is meaningful in terms of penalty cost, which 

network carriers have to pay, because the penalty cost 

depends on the degree of actual damage to customers.   

We present a formulation of such an optimization problem 

for the paths design of a GMPLS network and an algorithm 

that solves it and evaluates the gap between the practical 

approximate solution and the optimal solution using the 

Lagrangian relaxation method [10][11].  The Lagrangian 

relaxation method determines the lower bound of feasible 

solutions for the optimization problem using a heuristic 

search.   We can therefore determine the gap between them 

even if we break a calculation of the optimization problem at 

any timing we wish before the optimal solution is found.  We 

can hereby evaluate the gap to determine if there is still room 

for improving that solution, and we can judge whether or not 

to assign the paths obtained by the calculation to the actual 

network. 

In the next section of this paper, we will describe the 

formulation of the optimization problem, which is the optimal 

paths design for the GMPLS network, and we present a way 

to solve the problem using the Lagrangian relaxation method 

in the 3rd section.  After that, we show our results for sample 

cases and describe some considerations. 

II. FORMULATION OF THE PROBLEM

Optical signals of traffic are switched by optical routers for 

the GMPLS network according to the wavelength of lights, 

and all of paths have to be set correspondingly from source 

nodes to terminal nodes.  However, if we give them the 

shortest paths from source nodes to termination nodes 

without any intelligence, the use of network resources will be 

deflected, and adding new paths or providing alternative 

paths might be difficult in the event of network trouble.  

Therefore, we should set appropriate paths, not shortest paths. 

In this section, we describe the formulation for this as an 

optimization problem, using principles from 

                                                                                                  
N. Komoda is with the Graduate School of Information Science and 

Technology, Osaka University, 2-1, Yamadaoka, Suita-shi, Osaka-fu, Japan, 

565-0871 (e-mail: komoda@ist.osaka-u.ac.jp).

Optimal Paths Design for a GMPLS Network using the Lagrangian 
Relaxation Method 

Takashi Fukumoto, non-Member, and Norihisa Komoda, Member, IEEE

R

246

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE



multi-commodity flow for physical routing of paths. 

We use the following notation. 

i denotes a node, which means a router of the network, and 

N denotes a set of the nodes.  j denotes a branch between the 

nodes, which means an optical line in the network, and E
denotes a set of the branches.  r denotes a request to link a 

source node to a termination node, and R denotes a set of the 

requests.  s(r) and t(r) denote source and termination nodes of 

the request r .  xj
r
, which is a variable to be determined, is 1 if 

the request r uses the branch j, or 0 if the request r does not 

use the branch j. uj denotes the capacity of the branch j. A-
(i)

denotes a set of branches, the start node of which is i , and 

A+
(i) denotes a set of branches, the destination node of which 

is i.
The optimization problem of this paper can be described by 

using a flow conservation law and constraint conditions of the 

optical lines. 
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Herein, bi
r
, which is a constant, is 1 in the case that i is 

equal to s(r), -1 in the case that i is equal to t(r), or 0 otherwise.  

f(x) is an appropriate cost function of the problem that avoids 

an over concentration of paths to particular branches.  We use 

the following function, which is equation (5), to equalize 

ratios of consumption of each branch. 
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III. SOLUTION USING THE LAGRANGIAN RELAXATION 

METHOD

We apply the Lagrangian relaxation method to the optimal 

paths design problem described in section 2. It determines the 

lower bound of the problem.  The Lagrangian relaxation 

method uses Lagrange multipliers to reduce a part of the 

constraint conditions by including the conditions in the cost 

function and divides the original problem, that is a primary 

problem, into sub problems independent of respective 

variables. The optimal solution is obtained by solving its dual 

problem.  To divide the problem (P1), we introduce artificial 

variables, vj, which indicates the number of remaining 

wavelengths that can be assigned in the line, and we 

transform problem (P1) into problem (P2).  
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We then use Lagrange multipliers, ),...1(0 mjj , to 

relax the equation (8), and obtain the Lagrangian relaxation 

problem (P3). 
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where function h is as follows. 
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We can hereby divide this Lagrangian relaxation problem 

(P3) into sub problems independent of either vj or xj, which 

are (P4) and (P5). 

(P4)

)(min vp
v

 (20) 

)(10s.t.
j

j
jj u

v
zz  (21) 

(P5)

)(min xq r

xr
 (22) 

r
i

iAj

r
j

iAj

r
j bxx

)()(

s.t.  (23) 

1,0
r

jx  (24) 

247

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Scheduling (CI-Sched 2007)



Sub problem (P4) is just a simple problem to calculate the 

minimum value of the quadratic function, and sub problem 

(P5) is a problem to search the minimum cost flow of a single 

commodity flow where the cost of branches is j , which is 

just a shortest path problem.  Thus we can easily solve sub 

problem (P5) by using Dijkstra's algorithm. 

We can then obtain the solution to primary problem (P2) 

by solving Lagrangian dual problem (P6), which is a 

maximum problem for the Lagrange multipliers. 
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The solution to primary problem (P2) is obtained by 

solving Lagrangian dual problem (P6), which is a maximum 

problem for the Lagrange multipliers.  By using subgradient 

optimization to improve the Lagrange multipliers for 

equation (27), we can find a good solution to Lagrangian dual 

problem (P6). 
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where T is an adequate parameter to adjust the widths for 

improving the Lagrange multipliers.  The improvement in the 

multipliers is repeated until the value of the cost function for 

Lagrangian dual problem (P6), which is known to a lower 

bound of the primary problem, is equal to the value of the cost 

function for problem (P2), or the difference in both is small 

enough.

We list the algorithm to solve the problem of the optimal 

paths design for the GMPLS Network below. 

The algorithm 
 for the optimal paths design problem 

INPUT:
Set of nodes and branches (N, E)

Set of requests, R 
The capacity of branches, u 

OUTPUT:
Paths for requests 

ALGORITHM:
Step 1:  Initialize the Lagrange multipliers, j  . 

Step 2:  For a given j  , calculate the solution to 

Lagrangian relaxation problem (P4)  and (P5), 
which is (v, x)L .

Step 3: Transform (v, x)L to a feasible solution for primary 
problem (P2) using  the  heuristic algorithm later 
described. 

Step 4:  Calculate the value of the cost function for g(v) in 
equation (6) and h( , v, x) in equation (11).  If the 
difference between g and h is small enough, or if 
the number of repetitions is big enough, then finish 
this process. 

Step 5: Improve the Lagrange multipliers  by the 
subgradient optimization and return to step 2. 

The heuristic algorithm used in step 3 is as follows. 

Paths pr
L , which correspond to the request r, obtained as a 

solution to the Lagrangian relaxation problem, are 

transformed so as to be accepted in order of their lengths 

according to the following rules. 

(1)  If there are remaining wavelengths to be assigned in 
all the branches for a path pr

L, let the path  pr
L be 

accepted without transformation as the path pr
E , which 

is a feasible path for the primary problem, and let the 
number of the remaining wavelengths of those branches 
be decreased.

(2)  In cases except for (1), search the shortest path, whose 
source and termination node are the same as pr

L , for the 
network. If the shortest path can be found, it is accepted 
as the feasible path pr

L .
(3) In cases except for (2), the network is divided into parts 

by the branches that have no remaining wavelength to 
be stored. First Pick a path already accepted and find its 
alternative path, which gives these branches remaining 
wavelength.  Then, search the  shortest path, whose 
source and termination node are the same as the path 
pr

L .

Practically, in this search of the shortest path, we give a 

weighted cost to branches proportional to remaining 

wavelength to be stored in order to avoid concentrating an 

assignment of paths to particular branches. 

IV. RESULTS OF SIMULATION AND CONSIDERATIONS

We made a prototype for the algorithm described in section 

3.  In this section, we mention the results of our simulation for 

sample data, and our considerations for them. 

Figure 1 is a sample network used in our simulation.   

There are 14 nodes and 21 branches.  The capacities of  the 

248

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Scheduling (CI-Sched 2007)



branches are all 5.  We give this sample network 12 requests, 

all source nodes of which are node A, shown in the left side of 

the figure, and all termination nodes of which are node B, 

shown in the right side of the figure. 

Fig. 1 Sample network 

We solved the optimal paths design problem under these 

assumptions and obtained outputs that are shown in figure 2. 

Fig. 2 Results of simulation with sample data 

In figure 2,  five requests use branch “a”, that is linked to  

node A, and nothing remains of  branch “a” to be stored.  Four 

of those five requests achieve the shortest path from node A 

to node B, both of  which have a lengths of three hops, and 

one of them takes a roundabout path through branch “a”, 

whose length is five hops.  The other seven requests also take 

roundabout paths.   The lengths of six of their requests are 

four hops, and the length of one of their requests is five hops 

from node A to node B. 

These results indicate that only 1 branch, that being branch 

“a”, runs short of its capacity and that the other branches still 

have some remaining wavelengths to be stored. 

Fig. 3 Results when branch “d” is cut off 

Figure 3 also shows the results of the simulation under the 

other assumptions that branch “d” is unusable in a situation 

such as down of line.  In this simulation, four requests take 

the shortest paths from node A to node B, four requests take 

four hops, two requests take five hops, and two requests take 

eight hops.  Three branches, labeled “a”, “b”, and “c” in 

figure 3, have no remains to be stored, but the other 18 

branches have some remains. 

We show the difference between the value of the cost 

function for the Lagrangian relaxation problem and the lower 

bound obtained from the Lagrangian dual problem in figure 4.  

The vertical axis indicates the differences scaled by the lower 

bound, and the horizontal axis indicates the number of 

iterations in our algorithm. 

Fig. 4 Transition in differences between cost value for (P2) 

and lower bound of (P6)  

The difference decreases to zero as the repetitions are done. 

In the end, the value of the cost function is equal to the lower 

bound.  In fact, we arrived at the optimal solution early on 

during this repetition because of the heuristic algorithm used 

in step 3 that makes a feasible solution, and the remaining 

repetition improved the lower bound of this case.  

Thus, we determined that the solution obtained in this 

simulation is optimal.  However, obtaining the same results in 

a large-scale problem would likely be impossible.  The 
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solution obtained by our algorithm would not likely be 

optimal because we use the heuristic algorithm in the step 3.  

However, as shown in the figure 4, we can evaluate the 

accuracy of the obtained solution quantitatively by measuring 

the differences between the value of the cost function and the 

lower bound.  For example, for figure 4, the difference 

becomes less than 0.1 after the 64 repetitions.  We can obtain 

a provisional solution close enough to the optimal solution, 

that is probably applicable.  Although we need a designer 

who assigns paths in an actual network to decide whether the 

evaluation is good or not, we can provide one of the judgment 

materials when he adopts the solution to the problem and 

applies it. 

V. CONCLUSION

We presented a formulation of the paths design for a 

GMPLS network and an algorithm that uses the Lagrangian 

relaxation method, which measures the gap between a 

practical approximate solution and the optimal solution to 

help us determine the accuracy of the solution.  Although we 

use a heuristic algorithm to obtain a feasible solution, albeit 

not the optimal solution, we can also obtain the lower bound 

of the problem.  Therefore, we can evaluate the gap by 

comparing both of them, even if a calculation of the algorithm 

stops before an optimal solution is found. 
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