

Abstract— In this paper, a discrete differential evolution
(DDE) algorithm is presented to solve the no-wait flowshop
scheduling problem with the total flowtime criterion. The DDE
algorithm is hybridized with the variable neighborhood descent
(VND) algorithm to solve the well-known benchmark suites in
the literature. The DDE algorithm is applied to the 110
benchmark instances of Taillard [1] by treating them as the
no-wait flowshop problem instances with the total flowtime
criterion. The solution quality is evaluated with optimal
solutions, lower bounds and best known solutions provided by
Fink & Voß [2]. The computational results show that the DDE
algorithm generated better results than those in Fink & Voß [2].

I. INTRODUCTION
mong all types of scheduling problems, no-wait
flowshop has important applications in different
industries including chemical processing by Rajendran

[3], food processing by Hall & Sriskandarayah [4], concrete
ware production by Grabowski & Pempera [5], and
pharmaceutical processing by Raaymakers & Hoogeveen [6].
In a no-wait flowshop, each of n jobs consists of m operations
owning a predetermined processing order through machines.
Each job is to be processed without preemption and
interruption on or between m machines. That is, once a job is
started on the first machine, it has to be continuously
processed through machines without interruption. In addition,
each machine can handle no more than one job at a time and
each job has to visit each machine exactly once. Therefore,
when needed, the start of a job on the first machine must be
delayed in order to meet the no-wait requirement. Given that
the release time of all jobs is zero and set-up time on each
machine is included in the processing time, the no-wait
flowshop problem is to schedule jobs that minimize the
makespan or total flowtime over all jobs. For the
computational complexity of the no-wait flowshop

M. Fatih Tasgetiren is with the Department of Operations Management

and Busısness Statistics, Sultan Qaboos University, P.O.Box 20, Al Khod
123, Muscat, Sultanate of Oman: mfatih@squ.edu.om

Quan-Ke Pan is with the College of Computer Science, Liaocheng,
University, Liaocheng, Shandong Province, 252059, P. R. China;
qkpan@lctu.edu.cn

P. N. Suganthan is with the School of Electrical and Electronic
Engineering Nanyang Technological University, Singapore 639798;
epnsugan@ntu.edu.sg .

Yun Chia-Liang is with the Department of Industrial Engineering and
Management, Yuan Ze University, 135 Yuan-Tung Road, Chungli, Taoyuan,
320 Taiwan, R.O.C. ycliang@saturn.yzu.edu.tw

scheduling problem, Garey and Johnson [7] proved that it is
NP-Hard. Therefore, only small-sized instances of the
no-wait flowshop problem can be solved optimally with
reasonable computational time using exact algorithms. When
the problem size increases, the computational time of exact
methods grows exponentially. On the other hand, heuristic
algorithms have generally acceptable time and memory
requirements to reach a near-optimal or optimal solution. In
past decades, most research focused on developing heuristic
algorithms. These solution techniques can be broadly
classified into two groups referred to as constructive method
and improvement method. In the first group, heuristics were
introduced for the makespan criterion by Bonney & Gundry
[8], King & Spacins [9], Gangadharan & Rajendran [10], and
Rajendran [3]. As for the flowtime objective, Rajendran and
Chaudhuri [11] proposed a simple construction heuristic with
two priority rules, and Fink & Voß [2] used several simple
construction heuristics such as nearest neighbor (NN),
cheapest insertion (Chins), and pilot method (Pilot). The
second group has grown quickly with the development of
computer technology. The literature related to the makespan
criterion consists of simulated annealing (SA) by Aldowaisan
& Allahverdi [12], genetic algorithm (GA) by Aldowaisan &
Allahverdi [12], hybrid GA and SA (GASA) by Schuster &
Framinan [13], variable neighbourhood search (VNS) by
Schuster & Framinan [13], descending search (DS) by
Grabowski & Pempera [14], and tabu search (TS) by
Grabowski & Pempera [14]. When considering the total
flowtime criterion, the literature is limited. However, Chen et
al. [15] used a GA, Fink & Voß [2] presented SA and TS
algorithms and Pan et al. [16] proposed a discrete particle
swarm optimization (DPSO) algorithm to test a set of
benchmark problems proposed by Taillard [1]. In addition, a
comprehensive survey of the no-wait flowshop scheduling
problem can be found in Hall & Sriskandarayah [4].
Differential evolution (DE) is one of the latest evolutionary
optimization methods proposed by Storn and Price [17]. Like
other evolutionary-type algorithms, DE is a
population-based, stochastic global optimizer. In a DE
algorithm, candidate solutions are represented as
chromosomes based on floating-point numbers. In the
mutation process of a DE algorithm, the weighted difference
between two randomly selected population members is added
to a third member to generate a mutated solution followed by
a crossover operation to combine the mutated solution with
the target solution so as to generate a trial solution. Then a
selection operator is applied to compare the fitness values of
both competing solutions, namely, target and trial solutions to
determine the winner to survive for the next generation.

A Discrete Differential Evolution Algorithm for the No-Wait
Flowshop Scheduling Problem with Total Flowtime Criterion

M. Fatih Tasgetiren, Quan-Ke Pan, P. N. Suganthan, and Yun-Chia Liang

A

251

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

Since DE was first introduced to solve the Chebychev
polynomial fitting problem by Storn and Price [17, 18], it has
been successfully applied to solve a variety of applications by
Corne et al. [19], Lampinen [20], Babu and Onwubolu [21],
and Price et al. [22].

The applications of DE on combinatorial optimization
problems are still considered limited, but the advantages of
DE include a simple structure, immediately accessible for
practical applications, ease of implementation, speed to
acquire solutions, and robustness as demonstrated in the
literature. However, the major obstacle of successfully
applying a DE algorithm to solve combinatorial problems in
the literature is due to its continuous nature. To remedy this
drawback, this research proposes a novel discrete differential
evolution (DDE) algorithm to solve the no-wait flowshop
scheduling problem with the objective of minimizing total
flowtime.

The paper is organized as follows. Section II introduces
the no-wait flowshop scheduling problem. Section III gives
the details of the proposed DDE and VND algorithms. The
computational results over benchmark problems are
discussed in Section IV. Finally, Section V summarizes the
concluding remarks.

II. NO-WAIT FLOWSHOP SCHEDULING PROBLEM

The no-wait flowshop scheduling problem can be described
as follows: Given the processing times ()k,jp for job j and
machine k, each of n jobs ()n,...,2,1j = will be sequenced
through m machines ()m,...,2,1k = . Each job j has a sequence
of m operations ()jm2j1j o,..,o,o . To satisfy the no-wait
restriction, the completion time of the operation jko must be
equal to the earliest time to start of the operation

1k,jo + for 1m,..,2,1k −= . In other words, there must be no
waiting time between the processing of any consecutive
operation of each of n jobs. The problem is then to find a
schedule such that the processing order of jobs is the same on
each machine and the maximum completion time or total
flowtime is minimized.
Suppose that the job permutation { }nππππ ,...,, 21=
represents the schedule of jobs to be processed. Let

()jjd ππ ,1− be the minimum delay on the first machine

between the start of jobs jπ and 1j−π restricted by the

no-wait constraint when the job jπ is directly processed after

the job 1j−π . To compute the minimum delay, we propose an

alternatıve approach. As shown in Fig. 1, the max///2 CPm
problem is equavalent to the max///2 CPwaitnom −
problem. Let ()mM ijj ,,1 π− denotes the makespan of two

independent jobs in the permutation flowshop,
() Π∈∀ − jj ππ ,1 in the max///2 CPm problem. Since the

makespan for the permutation flowshop and no-wait
flowshop problems is the same as shown in Fig. 1, the
minimum delay can be computed by substracting the total

processing time of job jπ from the the makespan

()mM jjj ,,1 π− as follows:

() () ∑
=

−− −=
m

k
jkjjjjj pmMd

1
,11 ,, πππ (1)

for nj ,..,2= . Then, the total flow time of n jobs can be given
by

() () () ()∑ ∑∑
= = =

− +−+=
n

j

n

j

m

k
jj kjpdjnTF

2 1 1
1 ,,1 πππ (2)

Therefore, the no-wait flowshop scheduling problem with
the total flowtime criterion is to find a permutation *π in the
set of all permutations Π such that

() () .* Π∈∀≤ πππ TFTF (3)

.

j
j

j

j
dj-1,j

m4

t

j-1
j-1

j-1
j-1

Makespan

m3

m2

m1

a. No-wait flow shop with only two jobs

b. Permutation flow shop with only two jobs

Fig.1. Computation of Delay

III. DISCRETE DIFFERENTIAL EVOLUTION ALGORITHM

Currently, there exist several mutation variations in DE. The
DE/rand/1/bin schemes of Storn and Price [17] is presented
below. The DE algorithm starts with initializing the initial
population with the size of NP. Each individual has an
n-dimentional vector with parameter values determined
randomly and uniformly between predefined search range.

To generate a mutated individual, the DE mutates vectors
from the target population by adding the weighted difference
between two randomly selected target population members to
a third member as follows:

()111 −−− −+= t
cj

t
bj

t
aj

t
ij xxFxv (4)

 where a , b , and c are three randomly chosen individuals

252

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

from the population such that ()()NPcba ,..,1∈≠≠ . 0>F
is a mutation scale factor which affects the differential
variation between two individuals.

Following the mutation phase, the crossover operator is
applied to obtain the trial individual such that:

⎪⎩

⎪
⎨
⎧ =≤

= − Otherwisex
DjorCRrifv

u t
ij

j
t

ij
t
ijt

ij ,
,

1 (5)

where jD refers to a randomly chosen dimension (j=1,..,n),

which is used to ensure that at least one parameter of each
trial individual t

iju differs from its counterpart in the previous

generation 1−t
iju . CR is a user-defined crossover constant in

the range [0, 1], and t
ijr is a uniform random number between

0 and 1. In other words, the trial individual is made up with
some parameters of mutant individual, or at least one of the
parameters randomly selected, and some other parameters of
the target individual.

To decide whether or not the trial individual t
iju should be

a member of the target population for the next generation, it is
compared to its counterpart target individual 1−t

ijx at the

previous generation. The selection is based on the survival of
the fitter one among the trial population and target population
such that:

() ()
⎪⎩

⎪
⎨
⎧ ≤

= −

−

otherwisex
xfufifu

x t
ij

t
ij

t
ij

t
ijt

ij ,
,

1

1
 (6)

The pseudo code of the DE algorithm is given in Fig. 2.

Initialize parameters
Initialize target population
Evaluate target population
Do {
 Obtain mutant population
 Obtain trial population
 Evaluate trial population
 Make selection

Apply local search (optional)
While (Not Termination)

Fig. 2. Standard DE Algorithm.

It is obvious that standard DE equations cannot be used to
generate a discrete job permutation since positions are
real-valued. Instead we propose a DDE algorithm whose
solutions are based on discrete job permutations. In the DDE
algorithm, the target population is constructed based on the
discrete job permutation as represented
by []NPi XXXX ,,,, 21= . For the mutant population the
following equations can be used:

()1
1

−⊕= t
ip

t
i XFmV (7)

()1
1

−⊕= t
ap

t
i XFmV (8)

()1
1

−⊕= t
p

t
i GFmV (9)

where 1−t
aX is randomly chosen individual from the target

population; 1−tG is the global best solution; 1m is the
mutation probability; and pF is the mutation operator with

the mutation strength of p. In other words, a uniform random
number r is generated between [0, 1]. If r is less than 1m then
the mutation operator with the mutation strength is applied to
generate the mutant individual. In other words, mutation
operator is applied p times. In this paper, the

()1
1

−⊕= t
p

t
i GFmV version of mutation operators is

employed in order to provide the target population with
information about the global best. In the mutation equation, k
represents the mutation strength, which is the key to the
success of the algorithm. The higher the value of p is, the
lower the possibility that the algorithm would escape from the
local minima. On the other hand, the lower the value of p is,
the higher the possibility that the algorithm would have
excessive randomness. So care must be taken in the choice of
the value of the mutation strength.

Following the mutation phase, the trial individual is
obtained such that:

()t
i

t
i

t
i VXCRcU ,1

1
−⊕= (10)

where CR is the crossover operator, and 1c is the crossover
probability. In other words, the ith individual is recombined
with its corresponding mutant individual to generate the trial
individual.

Finally, the selection is based on the survival of the fitter
one among the trial and target solutions such that:

() ()
⎪⎩

⎪
⎨
⎧

≤≤
≤

= −

−

NPi
otherwiseX

XfUfifUX t
i

t
i

t
i

t
it

i 11

1
(11)

The two-cut PTL crossover proposed by Pan et al. [16] is
used in the DDE algorithm.The PTL crossover is able to
produce a pair of distinct permutations even from two
identical parents. An illustration of the two-cut PTL
crossover is shown in Table I.

TABLE I
PTL CROSSOVER OPERATOR

Two-Cut PTL Crossover Two-Cut PTL Crossover

P1 5 1 4 2 3 P1 5 1 4 2 3

P2 3 5 4 2 1 P2 5 1 4 2 3

O1 3 5 2 1 4 O1 5 2 3 1 4

O2 1 4 3 5 2 O2 1 4 5 2 3

In the PTL crossover, a block of jobs from the first parent
is determined by two cut points randomly. This block is either
moved to the right or left corner of the permutation. Then the
offspring permutation is filled out with the remaining jobs
from the second parent. This procedure will always produce
two distinctive offspring even from the same two parents as
shown in Table I. In this paper, one of these two unique
offspring is chosen randomly with equal probability.

253

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

To demonstrate how the individuals are updated in the
DDE algorithm, an example is illustrated in Table II2.
Assume that the mutation and crossover probabilities are 1.0,
two-cut PTL crossover operator and insert mutation operator
are employed. Given the individual and the global best
solution, the individual is first mutated. For example, in Table
2, the job 3 is inserted after the job 4 in the global best
solution G, thus generating the mutant individual iV . Then the
individual iV is recombined with its corresponding
individual in the target population to generate the trial
individual iU . Finally, the target individual iX is compared
to the trial individual iU to determine which one would
survive for the next generation based on the survival of the
fitter one.

TABLE II
DDE OPERATORS

iX 3 1 4 2 5

G 1 3 2 4 5

Insert Mutation

G 1 3 2 4 5

iV 1 2 4 3 5
Two-Cut PTL Crossover F

iX 3 1 4 2 5 45

iV 1 2 4 3 5

iU 2 3 5 1 4 40
Selection

() () So,UX45Xf40Uf iiii ==<=

iX 2 3 5 1 4

A. Initial Population
The initial population is constructed by two popular

heuristics, namely the nearest neighbor (NN), and the NEH
insertion heuristic of Nawaz et al. [23]. The NN heuristic
appends at each step an unscheduled job with a minimal
inevitable delay to the last job of the partial sequence
unscheduled yet. On the other hand, the NEH heuristic has
two phases. In phase I, jobs are ordered in descending sums
of their processing times. In phase II, a job sequence is
established by evaluating the partial schedules based on the
initial order of the first phase. Suppose a current sequence is
already determined for the first k jobs, k+1 partial sequences
are constructed by inserting job k+1 in k+1 possible slots of
the current sequence. Among the k+1 sequence, the one
generating the minimum total flowtime is kept as the current
sequence for the next iteration. Then job k+2 from phase I is
considered and so on until all jobs have been sequenced.

The target population is constructed as follows: Starting
from the first job of an identity permutation (1,2,...,n), the NN
heuristic is applied to build a complete NN permutation; then
the first phase of the NEH heuristic is ignored and the second
phase of the NEH heuristic is applied to the NN permutation
to generate a final permutation of the individuals to be
included in the initial target population. We repeat the

heuristics for all possible jobs in the identity permutation as
the first job to construct the initial target population. By doing
so, the diversity of the population is achieved. For this reason,
the target population size is taken to be equal to the number of
dimensions/jobs (n). The pseudo code used to generate the
initial population is given in Figure 3.

{()initpop
1=i

 {do
 { }ns ,..,2,10 =
 iJ =)1(;

 (){ }101 Jss −=

() ()112 sNNJs +=

() (){ }2123 JJss +−=

() (){ } ()321 sNEHJJX i ++=
1+= ii

} () }NPiWhile ≤

Fig. 3. Initial Population.

B. VND Local Search for DDE Algorithm
 VNS is a recent meta-heuristic proposed by Mladenovic
& Hansen [24] systematically exploiting the idea of
neighborhood change, both in descent to local minima and in
escape from the valleys containing them. Let kN ,

max,..,2,1 kk = be a set of neighborhood structures and
()sNk denote a set of solutions in the kth neighborhood of s .

Then VNS systematically exploits the following
observations:
1. A local minimum with respect to one neighborhood

structure is not necessary so for another;
2. A global minimum is a local minimum with respect to all

possible neighborhood structures;
3. For many problems, local minima with respect to one or

several neighborhoods are relatively close to each other.
VND, a deterministic variant of VNS, is based on the

observation (1) above. That is, a local optimum within the
neighborhood ()sN1 is not necessary one within the
neighborhood ()sN 2 . Thus, it may be advantageous to
combine descent heuristics [24].

It should be noted that Tasgetiren et al. [25] recently
developed a PSO algorithm for the unrestricted permutation
flowshop sequencing problem with makespan and total
flowtime criteria. In their PSO algorithm, the VNS algorithm
was embedded in the PSO algorithm to improve the solution
quality where detailed results have been reported on both the
benchmark suites of Taillard [1] and Watson et al. [26],
consisting of more than 14,000 problem instances in total.
According to the results, the VNS version of the PSO
algorithm was proven to be efficient and was able to improve
the best known solutions of Taillard [1] and Watson et al. [26]
for total flowtime and makespan criteria, respectively. Since
the no-wait flowshop problem is a special case of the classical

254

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

flowshop scheduling problem, the deterministic variant,
VND, of the VNS algorithm was also embedded as a local
search in the DDE algorithm in order to obtain competitive or
better results than those recently reported in the literature.

It is obvious that the performance of the local search
algorithms depends on the choice of neighborhood structure.
For the no-wait flowshop scheduling problem, the following
neighborhood structure was considered:
• Swap two jobs between thη and thκ dimensions, κη ≠

(Swap)
• Remove the job at the thη dimension and insert it in the

thκ dimension κη ≠ (Insert)
The sequence of VND neighborhood structures is chosen

as Swap+Insert. It should be noted that the VND local search
for the no-wait flowshop scheduling problem was only
applied to the global best solution, tG at each iteration t. The
pseudo code of the VND local search is given in Fig. 4.

{

()

{
()

() (){

}

} ()
() ()

() ()()()
}sG

thenTGfsfrandomifelse

sGthenGfsfif

kkwhile
kk

else
k

ss
sfsfif

sNs
do
k

sonperturbatis
kkNChoose

Gs

VND

t

t

tt

k

K

t

=

−−<

=≤

≤
+←

←
←

≤
←

←
=

=
=

/exp

1

1

1

,..,1,

max

1

1

1

0

max

0

Fig. 4. VND Local Search.

In the VND algorithm in Fig. 4, the global best solution
tG at each iteration t is assigned to the incumbent solution 0s .

After choosing the neighborhood structure
kN (Swap+Insert), the incumbent solution was perturbed to

avoid getting trapped at a local minimum. The perturbation
strength was 5 insertions to the global best solution. Then the
VND algorithm was applied to the perturbed solution s .
Furthermore, ()sNk is concerned with applying the
neighborhood structure kN to the perturbed solution s. For
the swap neighborhood, the size of the local search is

2/)1(−nn whereas it is ()21−n for the insert neighborhood.
It should be noted that the complete search of both
neighborhood structure in a VND algorithm consumes
significant amount of CPU time. In order to accelerate the
search process in the VND algorithm, the speed-up methods

proposed in Pan et al. [16] are used to compute the total
flowtime. The speed-up methods proposed in Pan et al. [16]
are significant contributions to the no-wait flowshop
literature and they have enhanced the performance of the
VND local search significantly.

In addition, a constant temperature is used in the simulated
annealing type of acceptance criterion in the VND algorithm
as suggested by Osman and Potts [27]:

h
mn

p
T

n
j

m
k jk

*
*

1 1∑ ∑= == (12)

where 9.2=h . In this way, the global best solution is
diversified by giving chances to some inferior solutions
during the search to escape from the local minima.

For simplicity, the DDE algorithm with the VND local
search is denoted as DDEVND throughout the paper from now
on.

IV. EXPERIMENTAL RESULTS

The DDE and DDEVND algorithms for the no-wait flowshop
scheduling problem were coded in Visual C++ and run on an
Intel P IV 3.0 GHz PC with 512MB memory. Regarding the
parameters of the DDE and DDEVND algorithms, 1m and 1c
are taken as 0.8. Insert mutation operator (F) with the
mutation strength of p=3 is used. As a crossover operator, the
two-cut PTL is employed. Finally, the population size was the
number of dimensions/jobs due to the nature of the
construction of the initial population. The DDE and DDEVND
algorithms were applied to the 110 benchmark instances of
Taillard [1] by treating them as no-wait flowshop problem
instances with the total flowtime criterion. The solution
quality was evaluated with the optimal solutions, lower
bounds, and best known solutions provided by Fink & Voß
[2]. The maximum number of generations was carefully set to
1000 for the DDE and DDEVND algorithms with the total
flowtime criterion.

R=5 runs were conducted for each problem instance
consistent with the Fink & Voß [2] and each run was
compared to the optimal solution, or the lower bound, or the
best known solution reported by Fink & Voß [2]. The average
relative percent deviation denoted by avg∆ and the average
CPU time to reach the best objective function value in each
run averaged over R runs denoted by avgt were given as
statistics for performance measures. The average relative
percent deviation was computed as follows:

()
R

TF
TFTFR

i ref

refi
avg /

100*

1
∑

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=∆ (13)

where iTF was the total flowtime generated by the DDE or
DDEVND algorithm in each run whereas refTF was the value
of optimal, lower bound or best known total flowtime
reported by Fink & Voß [2], and R was the number of runs.
The CPU time requirements were compared using the

255

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

conversion factor since different machines with different
speeds are used.

Fink & Voß [2] have presented some construction methods
and metaheuristics for the no-wait flowshop scheduling
problem with the total flowtime criterion. Construction
methods presented were the nearest neighbor (NN), the
cheapest insertion (Chins), and the pilot (Pilot) heuristics
whereas metaheuristics investigated were steepest descent
(SD), iterated steepest descent (ISD), simulated annealing
(SA), and tabu search (TS) algorithms. See Fink & Voß [2]
for the details of construction methods and metaheuristics.
The applications of above heuristics for the no-wait flowshop
scheduling problem were based on HotFrame, a heuristic
optimization tool developed by Fink & Voß [28]. All
heuristics have been applied to the benchmark suite of
Taillard [1], originally generated for the unrestricted
permutation flowshop sequencing problem. The benchmark
suite is available in OR library and contains problem
instances with 20 (ta001-ta030), 50 (ta031-ta060), 100
(ta061-ta090), and 200 (ta091-ta110) jobs. Taillard’s
instances are originally given in the number of machines.
However, Fink & Voß [2] presented computational results as
the average for problem instances of the same number of jobs.
Run times were also averaged in seconds. All computations
were conducted using a Pentium II with a 266 MHz clock. In
order to evaluate the performance of heuristics, the 3-index
formulation of Picard & Queyranne [29] was used to compute
optimal results for the problem instances with 20 jobs and to
compute lower bounds provided by linear programming (LP)
relaxation for problem instances with 50 and 100 jobs.
Unfortunately, Fink & Voß [2] were not able to solve the LP
relaxation of the problem instances with 200 jobs. For this
reason, for n=20, Fink & Voß [2] compared to optimal
results, for n=50 and n=100 to lower bounds, and for n=200
to the best results obtained during all experiments. The best
objective function value obtained for each problem instance
was also provided by Fink & Voß [2]. In addition, Fink &
Voß [2] provided a detailed analysis of construction methods,
different neighborhood structures embedded in SD, ISD, SA
and TS algorithms. According to the results in Fink & Voß
[2] , SA and reactive tabu search (RTS) algorithms generated
better results with a 1000 second CPU time in connection
with shift (insert) neighborhood on the basis of initial
solutions provided by Chins and Pilot-10 heuristics. It should
be noted that the DPSO and DPSOVND algorithms in Pan et al.
[16] were applied to the same set of benchmark suite and
compared to the results in Fink & Voß [2].

TABLE III
COMPARISON OF RESULTS (avg∆)

 SA TS(Chins) TS(Pilot 10) DPSO

Jobs Avg CPU Avg CPU Avg CPU Avg CPU
20 0.00 7.0 0.00 1000 0.00 1000 1.18 0.00
50 0.98 44.0 0.88 1000 0.74 1000 4.33 0.03
100 2.64 196.4 2.20 1000 1.88 1000 6.61 0.14
200 1.00 982.1 1.19 1000 0.08 1000 4.11 0.74

TABLE III. CONTINUED

 DPSOVND

DDE DDEVND

Jobs Avg CPU Avg CPU Avg CPU
20 0.00 0.00 0.91 0.01 0.00 0.00
50 0.57 0.36 4.28 0.03 0.47 0.50
100 1.15 3.61 6.54 0.13 1.04 4.11
200 -1.38 27.78 3.94 0.75 -1.49 28.89

The DDE and DDEVND algorithms were applied to the
benchmark suite of Taillard [1] to be compared to the
computational results provided by Fink & Voß [2]. However,
lower bounds were not reported in the paper by Fink & Voß
[2]. In order to have a fair comparison, the lower bounds are
obtained through personal communication. Then the DDE
and DDEVND algorithms were compared to the optimal
solutions for n=20, to the lower bounds for n=50 and n=100,
and to the best known solutions for n=200 as in Fink & Voß
[2]. The maximum number of generations was fixed at 1000
generations.

Table III summarizes the computational results for the
DDE and DDEVND algorithms to be compared to the DPSO
and DPSOVND algorithms in Pan et al. [16] and SA, TS
(Chins) and TS (Pilot 10) in Fink & Voß [2]. From Table III,
it is obvious that the DPSO and DDE algorithm were not able
to compete with SA, TS (Chins), and TS (Pilot-10)
algorithms owing to the fact that the results of the DPSO and
DDE algorithms were based on a short run of 1000
generations taking 0.74 and 0.75 seconds for 200-job
problems, respectively. However, the inclusion of the VND
algorithm in the DPSO and DDE algorithms has significantly
improved the solution quality. In order to compare the
DDEVND algorithm to those in Fink & Voß [2] and in Pan et
al. [16], we conducted the paired t-tests based on the best
known solutions presented by Fink & Voß [2]. The paired
t-test results are given in Table IV, V and VI, respectively. In
addition, the new best known solutions generated by DDEVND
are given in Table VII on which the paired t-test comparisons
are made.

As seen in Table IV, the p-value is zero so the null
hypothesis was rejected on the behalf of the DPSOVND
algorithm. It indicates that the difference in the total flowtime
generated between two algorithms was meaningful at the
significance level of 0.95. For this reason, it can be concluded
that the DPSOVND algorithm was superior to those presented
in Fink & Voß [2]. In addition, the DPSOVND algorithm was
able to find all the optimal solutions for n=20, and to improve
the best known solutions for n=50, n=100 and n=200. The
new best known solutions collected from 5 runs were given in
Pan et al. [16]. Totally, 74 out of 80 best known solutions
provided by Fink & Voß [2] were ultimately improved by the
DPSOVND algorithm.

Table V shows the paired t-test results for the DDEVND
versus Fink & Voß [2]. the p-value is zero so the null
hypothesis was rejected on the behalf of the DDEVND
algorithm. It implies that the difference in the total flowtime
of solutions generated by both algorithms was meaningful at
the significance level of 0.95. For this reason, it can be
concluded that the DDEVND algorithm was superior to those
presented in Fink & Voß [2]. In addition, the DDEVND
algorithm was able to find all the optimal solutions for n=20,
and to improve the best known solutions for n=50, n=100 and

256

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

n=200. The new best known solutions collected from 5 runs
were given in Table VII. In total, 77 out of 80 best known
solutions provided by Fink & Voß [2] were ultimately
improved by the DDEVND algorithm.

When comparing the DDEVND to the DPSOVND algorithm,
the p value is 0.011 which is less than 0.05 indicating that the
difference in total flowtime generated by both algorithms was
meaningful at the significance level of 0.95. However, it was
not meaningful at the significance level of 0.99. The
permutations obtained for the optimal and new best known
solutions are available upon request.

In terms of the CPU time requirement, even though we
employed a machine approximately 11.28 times
(3000/266=11.28) faster than the one used by Fink & Voß
[2], the DDEVND algorithm was much faster than those in
Fink & Voß [2] because 28.89*11.26=325.3015 seconds
were much smaller than 1000 seconds for n=200 in Fink &
Voß [2]. It was due to the fact that the speed-up methods
presented in Pan et al. [16] have led the DDEVND algorithm to
consume less CPU times.

TABLE IV
PAIRED-T TEST FOR HO:DPSOVND=F&V VS H1:DDEVND # F&V

 N Mean StDev SE Mean
DPSOVND 110 472275 637377 60771
Fink & Voß 110 478400 647517 61738
Difference 110 -6125 10815 1031
95% CI for mean difference: (-8168, -4081)
T-Test of mean difference = 0 (vs not = 0): T-Value = -5.94 P-Value = 0.000

TABLE V
PAIRED-T TEST FOR HO:DDEVND=F&V VS H1:DDEVND # F&V

 N Mean StDev SE Mean
DDEVND 110 471852 636818 60718
Fink & Voß 110 478400 647517 60718
Difference 110 -6548 11518 1098
95% CI for mean difference: (-8724, -4371)
T-Test of mean difference = 0 (vs not = 0): T-Value = -5.96 P-Value = 0.000

TABLE VI
PAIRED-T TEST FOR HO:DDEVND=DPSOVND VS H1:DDEVND # DPSOVND
 N Mean StDev SE Mean
DDEVND 110 471852 636818 60718
DPSOVND 110 472275 637377 60771
Difference 110 -423 1716 164
95% CI for mean difference: (-747, -99)
T-Test of mean difference = 0 (vs not = 0): T-Value = -2.58 P-Value = 0.011

V. CONCLUSIONS

DE is one of the recent evolutionary optimization methods.
It has been widely used in a wide range of applications. To the
best of our knowledge, this is the first reported application of
DDE and DDEVND algorithms to the no-wait flowshop
scheduling problem with the total flowtime criterion. Unlike
the standard DE, the DDE algorithm employs a permutation
representation and work on the discrete domain. The DDE
algorithm is also hybridized with the VND local search to
solve well-known benchmark suites in the literature. The
DDE and DDEVND algorithms were applied to the 110
benchmark instances of Taillard [1] by treating them as the
no-wait flowshop problem instances with the total flowtime
criterion.

 The computational results show that the proposed DDE
and DDEVND algorithms outperformed the metaheuristic
algorithms presented by Fink & Voß [2] for the total flowtime
criterion. In addition, it generated slightly better results than
the DPSO algorithm. Besides finding all the optimal solutions
for n=20 problems, 77 out of 80 best known solutions for the
total flowtime criterion reported by Fink & Voß [2] were
ultimately improved by the proposed DDEVND algorithm. It
should be noted that the inclusion of the VND local search
and the speed-up methods in the DDE algorithm has
enhanced the solution quality significantly.

 As the future work, the proposed DDE algorithm will be
applied to a variety of combinatorial optimization problems
in the literature.

Acknowledgement: Dr P. N. Suganthan acknowledges the
financial support offered by the A*Star (Agency for Science,
Technology and Research) under the grant # 052 101 0020.

REFERENCES
[1] Taillard E. Benchmarks for basic scheduling problems, European

Journal of Operational Research, 1993, 64, 278-285.
[2] Fink A, Voß S. Solving the continuous flow-shop scheduling problem

by metaheuristics. European Journal of Operational Research
2003;151:400-14.

[3] Rajendran C. A no-wait flowshop scheduling heuristic to minimize
makespan. Journal of the Operational Research Society
1994;45:472-8.

[4] Hall NG, Sriskandarayah C. A survey of machine scheduling problems
with blocking and no-wait in process. Operations Research 1996;
44:510-25.

[5] Grabowski J., Pempera J. Sequencing of jobs in some production
system. European Journal of Operational Research 2000;125:535-50.

[6] Raaymakers W, Hoogeveen J. Scheduling multipurpose batch process
industries with no-wait restrictions by simulated annealing, European
Journal of Operational Research 2000; 126:131-51.

[7] Garey MR, Johnson DS. Computers and intractability: A guide to the
theory of NP-completeness. Freeman, San Francisco, 1979.

[8] Bonney MC, Gundry SW. Solutions to the constrained flowshop
sequencing problem. Operational Research Quarterly 1976;
24:869-83.

[9] King JR, Spachis AS. Heuristics for flowshop scheduling. International
Journal of Production Research 1980; 18:343-57.

[10] Gangadharan R, Rajedran C. Heuristic algorithms for scheduling in
no-wait flowshop. International Journal of Production Economics
1993;32:285-90.

[11] Rajendran C, Chaudhuri D. Heuristic algorithms for continuous
flow-shop problem. Naval Research Logistics 1990, 37, 695-705.

[12] Aldowaisan T, Allahverdi A. New heuristics for no-wait flowshops to
minimize makespan. Computers and Operations Research
2003;30:1219-31.

[13] Schuster C J, Framinan J M. Approximative procedure for no-wait job
shop scheduling. Operations Research Letters 2003;31:308-18.

[14] Grabowski J, Pempera J. Some local search algorithms for no-wait
flow-shop problem with makespan criterion. Computers and
Operations Research 2005; 32:2197-212.

[15] Chen C-L, Neppalli R V, Aljaber N. Genetic algorithms applied to the
continuous flowshop problem. Computers and Industrial Engineering,
1996, 30, 919-929.

[16] Pan Q-K, Tasgetiren M. F, Liang Y-C, 2005, "A Discrete Particle
Swarm Optimization Algorithm for the No-Wait Flowshop Scheduling
Problem with Makespan and Total Flowtime Criteria", Accepted to
“Bio-inspired metaheuristics for combinatorial optimization problems”.
Special issue of Computers & Operations Research, 2005 .

257

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

[17] Storn, R. and Price, K. (1995) “Differential Evolution – a Simple and
Efficient Adaptive Scheme for Global Optimization over Continuous
Spaces,” Technical Report TR-95-012, ICSI, 1995.

[18] Storn, R. and Price, K. (1997) “Differential Evolution - A Simple and
Efficient Heuristic for Global Optimization over Continuous Space,”
Journal of Global Optimization, vol. 11, pp. 341-359.

[19] Corne, D., Dorigo, M., and Glover, F. (eds.) (1999) “Part Two:
Differential Evolution,” New Ideas in Optimization, McGraw-Hill, pp.
77-158.

[20] Lampinen, J. (2001) “A Bibliography of Differential Evolution
Algorithm,” Technical Report, Lappeenranta University of
Technology, Department of Information Technology, Laboratory of
Information Processing.

[21] Babu, B. V. and Onwubolu, G. C. (eds.) (2004) New Optimization
Techniques in Engineering, Springer Verlag.

[22] Price, K., Storn, R., and Lampinen, J. (2006) Differential Evolution – A
Practical Approach to Global Optimization, Springer-Verlag.

[23] Nawaz M, Enscore E. E Jr., Ham I, A heuristic algorithm for the
m-machine, n-job flow shop sequencing problem, OMEGA 11(1),
 (1983) 91-95.

[24] Mladenovic N, Hansen P, Variable neighborhood search, Computers
and Operations Research 24 (1997) 1097-1100.

[25] Tasgetiren M. F., Yun-Chia Liang, Sevkli M., Gencyilmaz G, Particle
Swarm Optimization Algorithm for Makespan and Total Flowtime
Minimization in Permutation Flowshop Sequencing Problem,
European Journal of Operational Research, 2005, in press.

[26] Watson J P, Barbulescu L, Whitley L D, Howe A E, Contrasting
structured and random permutation flowshop scheduling problems:
search space topology and algorithm performance, ORSA Journal of
Computing 14(2) (2002) 98-123.

[27] I. Osman, C. Potts, Simulated annealing for permutation flow shop
scheduling, OMEGA 17(6) (1989) 551-557.

[28] Fink A, Voß S. HotFrame: Aheuristic optimization framework, in: Voß
S., Woodruff D (Eds), Optimization Software Class Libraries. Kluwer,
Boston, 2002, pp. 81-154.

[29] Picard J-C, Queyranne M. The time dependent traveling salesman
problem and its application to the tardiness problem in one-machine
scheduling. Operations Research, 1978, 26, 86-110.

TABLE VII
NEW BEST KNOWN SOLUTIONS GENERATED BY DDEVND

Instance F&V DDEVND Instance F&V DDEVND Instance F&V DDEVND Instance F&V DDEVND
Ta001 15674 15674 Ta031 76016 75688 Ta061 308052 304801 Ta091 1521201 1494498

Ta002 17250 17250 Ta032 83403 82874 Ta062 302386 297712 Ta092 1516009 1476685

Ta003 15821 15821 Ta033 78282 78103 Ta063 295239 291175 Ta093 1515535 1492717

Ta004 17970 17970 Ta034 82737 82422 Ta064 278811 275783 Ta094 1489457 1462173

Ta005 15317 15317 Ta035 83901 83493 Ta065 292757 288700 Ta095 1513281 1476067

Ta006 15501 15501 Ta036 80924 80702 Ta066 290819 286901 Ta096 1508331 1473770

Ta007 15693 15693 Ta037 78791 78669 Ta067 300068 298047 Ta097 1541419 1503849

Ta008 15955 15955 Ta038 79007 78672 Ta068 291859 287677 Ta098 1533397 1492257

Ta009 16385 16385 Ta039 75842 75647 Ta069 307650 304237 Ta099 1507422 1477116

Ta010 15329 15329 Ta040 83829 83569 Ta070 301942 296929 Ta100 1520800 1488330

Ta011 25205 25205 Ta041 114398 114077 Ta071 412700 408763 Ta101 2012785 1983701

Ta012 26342 26342 Ta042 112725 112180 Ta072 394562 390187 Ta102 2057409 2027057

Ta013 22910 22910 Ta043 105433 105345 Ta073 405878 402478 Ta103 2050169 2020138

Ta014 22243 22243 Ta044 113540 113364 Ta074 422301 418390 Ta104 2040946 2015944

Ta015 23150 23150 Ta045 115441 115404 Ta075 400175 396496 Ta105 2027138 2010428

Ta016 22011 22011 Ta046 112645 112459 Ta076 391359 387754 Ta106 2046542 2017860

Ta017 21939 21939 Ta047 116560 116451 Ta077 394179 390626 Ta107 2045906 2014715

Ta018 24158 24158 Ta048 115056 114947 Ta078 402025 398165 Ta108 2044218 2024692

Ta019 23501 23501 Ta049 110482 110367 Ta079 416833 412351 Ta109 2037040 2003859

Ta020 24597 24597 Ta050 113462 113427 Ta080 410372 407960 Ta110 2046966 2020700

Ta021 38597 38597 Ta051 172845 172931 Ta081 562150 557792
Ta022 37571 37571 Ta052 161092 160805 Ta082 563923 560516
Ta023 38312 38312 Ta053 160213 160104 Ta083 562404 559681
Ta024 38802 38802 Ta054 161557 161492 Ta084 562918 559309
Ta025 39012 39012 Ta055 167640 167081 Ta085 556311 551593
Ta026 38562 38562 Ta056 161784 161460 Ta086 562253 558368
Ta027 39663 39663 Ta057 167233 167098 Ta087 574102 570010
Ta028 37000 37000 Ta058 168100 168113 Ta088 578119 573686
Ta029 39228 39228 Ta059 165292 165207 Ta089 564803 560367
Ta030 37931 37931 Ta060 168386 168386 Ta090 572798 568533

258

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

