
 
 

 

  

Abstract— In this paper, a discrete differential evolution 
(DDE) algorithm is presented to solve the no-wait flowshop 
scheduling problem with the total flowtime criterion. The DDE 
algorithm is hybridized with the variable neighborhood descent 
(VND) algorithm to solve the well-known benchmark suites in 
the literature. The DDE algorithm is applied to the 110 
benchmark instances of Taillard [1] by treating them as the 
no-wait flowshop problem instances with the total flowtime 
criterion. The solution quality is evaluated with optimal 
solutions, lower bounds and best known solutions provided by 
Fink & Voß [2]. The computational results show that the DDE 
algorithm generated better results than those in Fink & Voß [2].   

I. INTRODUCTION 
mong all types of scheduling problems, no-wait 
flowshop  has  important applications in different 
industries  including chemical processing by Rajendran 

[3], food processing by Hall & Sriskandarayah [4], concrete 
ware production by Grabowski & Pempera [5], and 
pharmaceutical processing by Raaymakers  &  Hoogeveen [6]. 
In a no-wait flowshop, each of n jobs consists of m operations 
owning a predetermined processing order through machines. 
Each job is to be processed without preemption and 
interruption on or between m machines.  That is, once a job is 
started on the first machine, it has to be continuously 
processed through machines without interruption.  In addition, 
each machine can handle no more than one job at a time and 
each job has to visit each machine exactly once. Therefore, 
when needed, the start of a job on the first machine must be 
delayed in order to meet the no-wait requirement.  Given that 
the release time of all jobs is zero and set-up time on each 
machine is included in the processing time, the no-wait 
flowshop problem is to schedule jobs that minimize the 
makespan or total flowtime over all jobs. For the 
computational complexity of the no-wait flowshop 
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scheduling problem, Garey and Johnson [7] proved that it is 
NP-Hard. Therefore, only small-sized instances of the 
no-wait flowshop problem can be solved optimally with 
reasonable computational time using exact algorithms. When 
the problem size increases, the computational time of exact 
methods grows exponentially.  On the other hand, heuristic 
algorithms have generally acceptable time and memory 
requirements to reach a near-optimal or optimal solution.  In 
past decades, most research focused on developing heuristic 
algorithms. These solution techniques can be broadly 
classified into two groups referred to as constructive method 
and improvement method.  In the first group, heuristics were 
introduced for the makespan criterion by Bonney & Gundry 
[8], King & Spacins [9], Gangadharan & Rajendran [10], and 
Rajendran [3].  As for the flowtime objective, Rajendran and 
Chaudhuri [11] proposed a simple construction heuristic with 
two priority rules, and Fink & Voß [2] used several simple 
construction heuristics such as nearest neighbor (NN), 
cheapest insertion (Chins), and pilot method (Pilot).  The 
second group has grown quickly with the development of 
computer technology. The literature related to the makespan 
criterion consists of simulated annealing (SA) by Aldowaisan 
& Allahverdi [12], genetic algorithm (GA) by Aldowaisan & 
Allahverdi [12], hybrid GA and SA (GASA) by Schuster & 
Framinan [13], variable neighbourhood search (VNS) by 
Schuster & Framinan [13], descending search (DS) by 
Grabowski & Pempera [14], and tabu search (TS) by 
Grabowski & Pempera [14]. When considering the total 
flowtime criterion, the literature is limited. However, Chen et 
al. [15] used a GA, Fink & Voß [2] presented SA and TS 
algorithms and Pan et al. [16] proposed a discrete particle 
swarm optimization (DPSO) algorithm to test a set of 
benchmark problems proposed by Taillard [1].  In addition, a 
comprehensive survey of the no-wait flowshop scheduling 
problem can be found in Hall & Sriskandarayah [4]. 
Differential evolution (DE) is one of the latest evolutionary 
optimization methods proposed by Storn and Price [17]. Like 
other evolutionary-type algorithms, DE is a 
population-based, stochastic global optimizer. In a DE 
algorithm, candidate solutions are represented as 
chromosomes based on floating-point numbers.  In the 
mutation process of a DE algorithm, the weighted difference 
between two randomly selected population members is added 
to a third member to generate a mutated solution followed  by 
a crossover operation to combine the mutated solution with 
the target solution so as to generate a trial solution.  Then a 
selection operator is applied to compare the fitness values of 
both competing solutions, namely, target and trial solutions to 
determine the winner to survive for the next generation.   
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Since DE was first introduced to solve the Chebychev 
polynomial fitting problem by Storn and Price [17, 18], it has 
been successfully applied to solve a variety of applications by 
Corne et al. [19], Lampinen [20], Babu and Onwubolu [21], 
and Price et al. [22].   

The applications of DE on combinatorial optimization 
problems are still considered limited, but the advantages of 
DE  include a simple structure, immediately accessible for 
practical applications, ease of implementation, speed to  
acquire solutions, and robustness as demonstrated in the 
literature. However, the major obstacle of successfully 
applying a DE algorithm to solve combinatorial problems in 
the literature is due to its continuous nature. To remedy this 
drawback, this research proposes a novel discrete differential 
evolution (DDE) algorithm to solve the no-wait flowshop 
scheduling problem with the objective of minimizing total 
flowtime.  

The paper is organized as follows. Section II introduces 
the no-wait flowshop scheduling problem. Section III gives 
the details of the proposed DDE and VND algorithms. The 
computational results over benchmark problems are 
discussed in Section IV.  Finally, Section V summarizes the 
concluding remarks. 

II. NO-WAIT FLOWSHOP SCHEDULING PROBLEM 

The no-wait flowshop scheduling problem can be described 
as follows: Given the processing times ( )k,jp  for job j and 
machine k, each of n jobs ( )n,...,2,1j =  will be sequenced 
through m machines ( )m,...,2,1k = . Each job j has a sequence 
of m operations ( )jm2j1j o,..,o,o . To satisfy the no-wait 
restriction, the completion time of the operation jko  must be 
equal to the earliest time to start of the operation 

1k,jo + for 1m,..,2,1k −= . In other words, there must be no 
waiting time between the processing of any consecutive 
operation of each of n jobs. The problem is then to find a 
schedule such that the processing order of jobs is the same on 
each machine and the maximum completion time or total 
flowtime is minimized.  
Suppose that the job permutation { }nππππ ,...,, 21=  
represents the schedule of jobs to be processed. Let 

( )jjd ππ ,1−  be the minimum delay on the first machine 

between the start of jobs jπ and 1j−π  restricted by the 

no-wait constraint when the job jπ is directly processed after 

the job 1j−π . To compute the minimum delay, we propose an 

alternatıve approach. As shown in Fig. 1, the max///2 CPm  
problem is equavalent to the max///2 CPwaitnom −  
problem. Let ( )mM ijj ,,1 π−  denotes the makespan of two 

independent jobs in the permutation flowshop,  
( ) Π∈∀ − jj ππ ,1  in the max///2 CPm problem.  Since the 

makespan for the permutation flowshop and no-wait 
flowshop problems is the same as shown in Fig. 1, the 
minimum delay can be computed by substracting the total 

processing time of job jπ  from the the makespan 

( )mM jjj ,,1 π−  as follows: 

( ) ( ) ∑
=

−− −=
m

k
jkjjjjj pmMd

1
,11 ,, πππ          (1) 

for nj ,..,2= . Then, the total flow time of n jobs can be given 
by 

( ) ( ) ( ) ( )∑ ∑∑
= = =

− +−+=
n

j

n

j

m

k
jj kjpdjnTF

2 1 1
1 ,,1 πππ    (2) 

Therefore, the no-wait flowshop scheduling problem with 
the total flowtime criterion is to find a permutation *π  in the 
set of all permutations Π  such that 

( ) ( ) .* Π∈∀≤ πππ TFTF          (3) 

. 
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a. No-wait flow shop with only two jobs 

 

 
b. Permutation flow shop with only two jobs 
 

Fig.1. Computation of Delay  
 

III. DISCRETE DIFFERENTIAL EVOLUTION ALGORITHM 

Currently, there exist several mutation variations in DE. The 
DE/rand/1/bin schemes of Storn and Price [17] is presented 
below. The DE algorithm starts with initializing the initial 
population with the size of NP. Each individual has an 
n-dimentional vector with parameter values determined 
randomly and uniformly between predefined search range.  

To generate a mutated individual, the DE mutates vectors 
from the target population by adding the weighted difference 
between two randomly selected target population members to 
a third member as follows: 

( )111 −−− −+= t
cj

t
bj

t
aj

t
ij xxFxv              (4)

 where a , b , and c  are three randomly chosen individuals 
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from the population such that ( )( )NPcba ,..,1∈≠≠ . 0>F  
is a mutation scale factor which affects the differential 
variation between two individuals.  

Following the mutation phase, the crossover operator is 
applied to obtain the trial individual such that:  

⎪⎩

⎪
⎨
⎧ =≤

= − Otherwisex
DjorCRrifv

u t
ij

j
t

ij
t
ijt

ij ,
,

1       (5) 

where jD  refers to a randomly chosen dimension (j=1,..,n), 

which is used to ensure that at least one parameter of each 
trial individual t

iju differs from its counterpart in the previous 

generation 1−t
iju . CR is a user-defined crossover constant in 

the range [0, 1], and t
ijr  is a uniform random number between 

0 and 1. In other words, the trial individual is made up with 
some parameters of mutant individual, or at least one of the 
parameters randomly selected, and some other parameters of 
the target individual. 

To decide whether or not the trial individual t
iju  should be 

a member of the target population for the next generation, it is 
compared to its counterpart target individual 1−t

ijx  at the 

previous generation. The selection is based on the survival of 
the fitter one among the trial population and target population 
such that: 

( ) ( )
⎪⎩

⎪
⎨
⎧ ≤

= −

−

otherwisex
xfufifu

x t
ij

t
ij

t
ij

t
ijt

ij ,
,

1

1
   (6) 

The pseudo code of the DE algorithm is given in Fig. 2. 

Initialize parameters 
Initialize target population 
Evaluate target population 
Do { 
     Obtain mutant population 
     Obtain trial population  
     Evaluate trial population 
     Make selection 

Apply local search (optional) 
While (Not Termination) 

Fig. 2. Standard DE Algorithm. 

It is obvious that standard DE equations cannot be used to 
generate a discrete job permutation since positions are 
real-valued. Instead we propose a DDE algorithm whose 
solutions are based on discrete job permutations. In the DDE 
algorithm, the target population is constructed based on the 
discrete job permutation as represented 
by [ ]NPi XXXX ,,,, 21= . For the mutant population the 
following equations can be used: 

( )1
1

−⊕= t
ip

t
i XFmV               (7) 

( )1
1

−⊕= t
ap

t
i XFmV              (8) 

( )1
1

−⊕= t
p

t
i GFmV                 (9) 

where 1−t
aX  is randomly chosen individual from the target 

population; 1−tG is the global best solution; 1m  is the 
mutation probability; and pF  is the mutation operator with 

the mutation strength of  p. In other words, a uniform random 
number r is generated between [0, 1]. If r is less than 1m  then 
the mutation operator with the mutation strength is applied to 
generate the mutant individual. In other words, mutation 
operator is applied p times. In this paper, the 

( )1
1

−⊕= t
p

t
i GFmV  version of mutation operators is 

employed in order to provide the target population with 
information about the global best. In the mutation equation, k 
represents the mutation strength, which is the key to the 
success of the algorithm. The higher the value of p is, the 
lower the possibility that the algorithm would escape from the 
local minima. On the other hand, the lower the value of p is, 
the higher the possibility that the algorithm would have 
excessive randomness. So care must be taken in the choice of 
the value of the mutation strength.   

Following the mutation phase, the trial individual is 
obtained such that:  

( )t
i

t
i

t
i VXCRcU ,1

1
−⊕=              (10) 

where CR is the crossover operator, and 1c  is the crossover 
probability. In other words, the ith individual is recombined 
with its corresponding mutant individual to generate the trial 
individual.  

Finally, the selection is based on the survival of the fitter 
one among the trial and target solutions such that: 

( ) ( )
⎪⎩

⎪
⎨
⎧

≤≤
≤

= −

−

NPi
otherwiseX

XfUfifUX t
i

t
i

t
i

t
it

i 11

1
(11) 

The two-cut PTL crossover proposed by Pan et al. [16] is 
used in the DDE algorithm.The PTL crossover is able to 
produce a pair of distinct permutations even from two 
identical parents. An illustration of the two-cut PTL 
crossover is shown in Table I. 

TABLE I 
PTL CROSSOVER OPERATOR 

Two-Cut PTL Crossover Two-Cut PTL Crossover 

P1 5 1 4 2 3 P1 5 1 4 2 3 

P2 3 5 4 2 1 P2 5 1 4 2 3 

O1 3 5 2 1 4 O1 5 2 3 1 4 

O2 1 4 3 5 2 O2 1 4 5 2 3 
 

In the PTL crossover, a block of jobs from the first parent 
is determined by two cut points randomly. This block is either 
moved to the right or left corner of the permutation. Then the 
offspring permutation is filled out with the remaining jobs 
from the second parent. This procedure will always produce 
two distinctive offspring even from the same two parents as 
shown in Table I. In this paper, one of these two unique 
offspring is chosen randomly with equal probability.  
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To demonstrate how the individuals are updated in the 
DDE algorithm, an example is illustrated in Table II2. 
Assume that the mutation and crossover probabilities are 1.0, 
two-cut PTL crossover operator and insert mutation operator 
are employed. Given the individual and the global best 
solution, the individual is first mutated. For example, in Table 
2, the job 3 is inserted after the job 4 in the global best 
solution G, thus generating the mutant individual iV . Then the 
individual iV  is recombined with its corresponding 
individual in the target population to generate the trial 
individual iU . Finally, the target individual iX  is compared 
to the trial individual iU to determine which one would 
survive for the next generation based on the survival of the 
fitter one. 

TABLE II 
DDE OPERATORS 

iX  3 1 4 2 5 

G  1 3 2 4 5 

Insert Mutation 

G  1 3 2 4 5 

iV  1 2 4 3 5 
Two-Cut PTL Crossover F 

iX  3 1 4 2 5 45 

iV  1 2 4 3 5  

iU  2 3 5 1 4 40 
Selection 

( ) ( ) So,UX45Xf40Uf iiii ==<=   

iX  2 3 5 1 4  
       

A. Initial Population 
The initial population is constructed by two popular 

heuristics, namely the nearest neighbor (NN), and the NEH 
insertion heuristic of Nawaz et al. [23]. The NN heuristic 
appends at each step an unscheduled job with a minimal 
inevitable delay to the last job of the partial sequence 
unscheduled yet. On the other hand, the NEH heuristic has 
two phases. In phase I, jobs are ordered in descending sums 
of their processing times. In phase II, a job sequence is 
established by evaluating the partial schedules based on the 
initial order of the first phase. Suppose a current sequence is 
already determined for the first k jobs, k+1 partial sequences 
are constructed by inserting job k+1 in k+1 possible slots of 
the current sequence. Among the k+1 sequence, the one 
generating the minimum total flowtime is kept as the current 
sequence for the next iteration. Then job k+2 from phase I is 
considered and so on until all jobs have been sequenced.  

The target population is constructed as follows: Starting 
from the first job of an identity permutation (1,2,...,n), the NN 
heuristic is applied to build a complete NN permutation; then 
the first phase of the NEH heuristic is ignored and the second 
phase of the NEH heuristic is applied to the NN permutation 
to generate a final permutation of the individuals to be 
included in the initial target population. We repeat the 

heuristics for all possible jobs in the identity permutation as 
the first job to construct the initial target population. By doing 
so, the diversity of the population is achieved. For this reason, 
the target population size is taken to be equal to the number of 
dimensions/jobs (n). The pseudo code used to generate the 
initial population is given in Figure 3. 

{()initpop  
1=i  

 {do  
       { }ns ,..,2,10 =         
      iJ =)1( ; 

       ( ){ }101 Jss −=  

( ) ( )112 sNNJs +=   

( ) ( ){ }2123 JJss +−=  

( ) ( ){ } ( )321 sNEHJJX i ++=      
1+= ii  

} ( ) }NPiWhile ≤                    

Fig. 3. Initial Population. 

B. VND Local Search for DDE Algorithm 
      VNS is a recent meta-heuristic proposed by Mladenovic 
& Hansen [24] systematically exploiting the idea of 
neighborhood change, both in descent to local minima and in 
escape from the valleys containing them. Let kN , 

max,..,2,1 kk =  be a set of neighborhood structures and 
( )sNk  denote a set of solutions in the kth neighborhood of s . 

Then VNS systematically exploits the following 
observations:  
1. A local minimum with respect to one neighborhood 

structure is not necessary so for another;  
2. A global minimum is a local minimum with respect to all 

possible neighborhood structures;  
3. For many problems, local minima with respect to one or 

several neighborhoods are relatively close to each other.  
VND, a deterministic variant of VNS, is based on the 

observation (1) above. That is, a local optimum within the 
neighborhood ( )sN1  is not necessary one within the 
neighborhood ( )sN 2 . Thus, it may be advantageous to 
combine descent heuristics [24].  

It should be noted that Tasgetiren et al. [25] recently 
developed a PSO algorithm for the unrestricted permutation 
flowshop sequencing problem with makespan and total 
flowtime criteria. In their PSO algorithm, the VNS algorithm 
was embedded in the PSO algorithm to improve the solution 
quality where detailed results have been reported on both the 
benchmark suites of Taillard [1] and Watson et al. [26], 
consisting of more than 14,000 problem instances in total. 
According to the results, the VNS version of the PSO 
algorithm was proven to be efficient and was able to improve 
the best known solutions of Taillard [1] and Watson et al. [26] 
for total flowtime and makespan criteria, respectively. Since 
the no-wait flowshop problem is a special case of the classical 
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flowshop scheduling problem, the deterministic variant, 
VND, of the VNS algorithm was also embedded as a local 
search in the DDE algorithm in order to obtain competitive or 
better results than those recently reported in the literature.  

It is obvious that the performance of the local search 
algorithms depends on the choice of neighborhood structure. 
For the no-wait flowshop scheduling problem, the following 
neighborhood structure was considered: 
• Swap two jobs between thη  and thκ  dimensions, κη ≠  

(Swap) 
• Remove the job at the thη  dimension and insert it in the 

thκ  dimension κη ≠  (Insert) 
The sequence of VND neighborhood structures is chosen 

as Swap+Insert. It should be noted that the VND local search 
for the no-wait flowshop scheduling problem was only 
applied to the global best solution, tG at each iteration t. The 
pseudo code of the VND local search is given in Fig. 4.   

{

( )

{
( )

( ) ( ){

}

} ( )
( ) ( )

( ) ( )( )( )
}sG

thenTGfsfrandomifelse

sGthenGfsfif

kkwhile
kk

else
k

ss
sfsfif

sNs
do
k

sonperturbatis
kkNChoose

Gs

VND

t

t

tt

k

K

t

=

−−<

=≤

≤
+←

←
←

≤
←

←
=

=
=

/exp

1

1

1

,..,1,

max

1

1

1

0

max

0

 
Fig. 4. VND Local Search. 

In the VND algorithm in Fig. 4, the global best solution 
tG at each iteration t is assigned to the incumbent solution 0s . 

After choosing the neighborhood structure 
kN (Swap+Insert), the incumbent solution was perturbed to 

avoid getting trapped at a local minimum. The perturbation 
strength was 5 insertions to the global best solution. Then the 
VND algorithm was applied to the perturbed solution s . 
Furthermore, ( )sNk  is concerned with applying the 
neighborhood structure kN  to the perturbed solution s. For 
the swap neighborhood, the size of the local search is 

2/)1( −nn  whereas it is ( )21−n  for the insert neighborhood. 
It should be noted that the complete search of both 
neighborhood structure in a VND algorithm consumes 
significant amount of CPU time. In order to accelerate the 
search process in the VND algorithm, the speed-up methods 

proposed in Pan et al. [16] are used to compute the total 
flowtime. The speed-up methods proposed in Pan et al. [16] 
are significant contributions to the no-wait flowshop 
literature and they have enhanced the performance of the 
VND local search significantly.  

In addition, a constant temperature is used in the simulated 
annealing type of acceptance criterion in the VND algorithm 
as suggested by Osman and Potts [27]:  

h
mn

p
T

n
j

m
k jk

*
*

1 1∑ ∑= ==               (12) 

where 9.2=h . In this way, the global best solution is 
diversified by giving chances to some inferior solutions 
during the search to escape from the local minima.  

For simplicity, the DDE algorithm with the VND local 
search is denoted as DDEVND throughout the paper from now 
on.  

IV. EXPERIMENTAL RESULTS  

The DDE and DDEVND algorithms for the no-wait flowshop 
scheduling problem were coded in Visual C++ and run on an 
Intel P IV 3.0 GHz PC with 512MB memory. Regarding the 
parameters of the DDE and DDEVND algorithms, 1m  and 1c  
are taken as 0.8. Insert mutation operator (F) with the 
mutation strength of p=3 is used. As a crossover operator, the 
two-cut PTL is employed. Finally, the population size was the 
number of dimensions/jobs due to the nature of the 
construction of the initial population. The DDE and DDEVND 
algorithms were applied to the 110 benchmark instances of 
Taillard [1] by treating them as no-wait flowshop problem 
instances with the total flowtime criterion. The solution 
quality was evaluated with the optimal solutions, lower 
bounds, and best known solutions provided by Fink & Voß 
[2]. The maximum number of generations was carefully set to 
1000 for the DDE and DDEVND algorithms with the total 
flowtime criterion.  

R=5 runs were conducted for each problem instance 
consistent with the Fink & Voß [2] and each run was 
compared to the optimal solution, or the lower bound, or the 
best known solution reported by Fink & Voß [2]. The average 
relative percent deviation denoted by avg∆  and the average 
CPU time to reach the best objective function value in each 
run averaged over R runs denoted by avgt were given as 
statistics for performance measures. The average relative 
percent deviation was computed as follows: 

( )
R

TF
TFTFR

i ref

refi
avg /

100*

1
∑

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=∆        (13) 

where iTF  was the total flowtime generated by the DDE or 
DDEVND algorithm in each run whereas refTF  was the value 
of  optimal, lower bound or best known total flowtime 
reported by Fink & Voß [2], and R was the number of runs. 
The CPU time requirements were compared using the 
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conversion factor since different machines with different 
speeds are used.  

Fink & Voß [2] have presented some construction methods 
and metaheuristics for the no-wait flowshop scheduling 
problem with the total flowtime criterion. Construction 
methods presented were the nearest neighbor (NN), the 
cheapest insertion (Chins), and the pilot (Pilot) heuristics 
whereas metaheuristics investigated were steepest descent 
(SD), iterated steepest descent (ISD), simulated annealing 
(SA), and tabu search (TS) algorithms. See Fink & Voß [2] 
for the details of construction methods and metaheuristics. 
The applications of above heuristics for the no-wait flowshop 
scheduling problem were based on HotFrame, a heuristic 
optimization tool developed by Fink & Voß [28]. All 
heuristics have been applied to the benchmark suite of 
Taillard [1], originally generated for the unrestricted 
permutation flowshop sequencing problem. The benchmark 
suite is available in OR library and contains problem 
instances with 20 (ta001-ta030), 50 (ta031-ta060), 100 
(ta061-ta090), and 200 (ta091-ta110) jobs. Taillard’s 
instances are originally given in the number of machines. 
However, Fink & Voß [2] presented computational results as 
the average for problem instances of the same number of jobs. 
Run times were also averaged in seconds. All computations 
were conducted using a Pentium II with a 266 MHz clock. In 
order to evaluate the performance of heuristics, the 3-index 
formulation of Picard & Queyranne [29] was used to compute 
optimal results for the problem instances with 20 jobs and to 
compute lower bounds provided by linear programming (LP) 
relaxation for problem instances with 50 and 100 jobs. 
Unfortunately, Fink & Voß [2] were not able to solve the LP 
relaxation of the problem instances with 200 jobs. For this 
reason, for n=20, Fink & Voß [2] compared to optimal 
results, for n=50 and n=100 to lower bounds, and for n=200 
to the best results obtained during all experiments. The best 
objective function value obtained for each problem instance 
was also provided by Fink & Voß [2]. In addition, Fink & 
Voß [2] provided a detailed analysis of construction methods, 
different neighborhood structures embedded in SD, ISD, SA 
and TS algorithms. According to the results in Fink & Voß 
[2] , SA and reactive tabu search (RTS) algorithms generated 
better results with a 1000 second CPU time in connection 
with shift (insert) neighborhood on the basis of initial 
solutions provided by Chins and Pilot-10 heuristics. It should 
be noted that the DPSO and DPSOVND algorithms in Pan et al. 
[16] were applied to the same set of benchmark suite and 
compared to the results in Fink & Voß [2]. 

TABLE III 
COMPARISON OF RESULTS ( avg∆ )  

 SA TS(Chins) TS(Pilot 10) DPSO 

Jobs Avg CPU Avg CPU Avg CPU Avg CPU 
20 0.00 7.0 0.00 1000 0.00 1000 1.18 0.00 
50 0.98 44.0 0.88 1000 0.74 1000 4.33 0.03 
100 2.64 196.4 2.20 1000 1.88 1000 6.61 0.14 
200 1.00 982.1 1.19 1000 0.08 1000 4.11 0.74 

TABLE III. CONTINUED 

 DPSOVND 
 

DDE DDEVND 

Jobs Avg CPU Avg CPU Avg CPU 
20 0.00 0.00 0.91  0.01 0.00  0.00 
50 0.57 0.36 4.28  0.03 0.47  0.50 
100 1.15 3.61 6.54  0.13 1.04  4.11 
200 -1.38 27.78 3.94  0.75 -1.49 28.89 

The DDE and DDEVND algorithms were applied to the 
benchmark suite of Taillard [1] to be compared to the 
computational results provided by Fink & Voß [2]. However, 
lower bounds were not reported in the paper by Fink & Voß 
[2]. In order to have a fair comparison, the lower bounds are 
obtained through personal communication. Then the DDE 
and DDEVND algorithms were compared to the optimal 
solutions for n=20, to the lower bounds for n=50 and n=100, 
and to the best known solutions for n=200 as in Fink & Voß 
[2]. The maximum number of generations was fixed at 1000 
generations. 

Table III summarizes the computational results for the 
DDE and DDEVND algorithms to be compared to the DPSO 
and DPSOVND algorithms in Pan et al. [16] and SA, TS 
(Chins) and TS (Pilot 10) in Fink & Voß [2]. From Table III, 
it is obvious that the DPSO and DDE algorithm were not able 
to compete with SA, TS (Chins), and TS (Pilot-10) 
algorithms owing to the fact that the results of the DPSO and 
DDE algorithms were based on a short run of 1000 
generations taking 0.74 and 0.75 seconds for 200-job 
problems, respectively. However, the inclusion of the VND 
algorithm in the DPSO and DDE algorithms has significantly 
improved the solution quality. In order to compare the 
DDEVND algorithm to those in Fink & Voß [2]  and in Pan et 
al. [16], we conducted the paired t-tests based on the best 
known solutions presented by Fink & Voß [2]. The paired 
t-test results are given in Table IV, V and VI, respectively. In 
addition, the new best known solutions generated by DDEVND 
are given in Table VII on which the paired t-test comparisons 
are made. 

As seen in Table IV, the p-value is zero so the null 
hypothesis was rejected on the behalf of the DPSOVND 
algorithm. It indicates that the difference in the total flowtime 
generated between two algorithms was meaningful at the 
significance level of 0.95. For this reason, it can be concluded 
that the DPSOVND algorithm was superior to those presented 
in Fink & Voß [2]. In addition, the DPSOVND algorithm was 
able to find all the optimal solutions for n=20, and to improve 
the best known solutions for n=50, n=100 and n=200. The 
new best known solutions collected from 5 runs were given in 
Pan et al. [16]. Totally, 74 out of 80 best known solutions 
provided by Fink & Voß [2] were ultimately improved by the 
DPSOVND algorithm.  

Table V shows the paired t-test results for the DDEVND 
versus Fink & Voß [2]. the p-value is zero so the null 
hypothesis was rejected on the behalf of the DDEVND 
algorithm. It implies that the difference in the total flowtime 
of solutions generated by both algorithms was meaningful at 
the significance level of 0.95. For this reason, it can be 
concluded that the DDEVND algorithm was superior to those 
presented in Fink & Voß [2]. In addition, the DDEVND 
algorithm was able to find all the optimal solutions for n=20, 
and to improve the best known solutions for n=50, n=100 and 
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n=200. The new best known solutions collected from 5 runs 
were given in Table VII. In total, 77 out of 80 best known 
solutions provided by Fink & Voß [2] were ultimately 
improved by the DDEVND algorithm.  

When comparing the DDEVND to the DPSOVND algorithm, 
the p value is 0.011 which is less than 0.05 indicating that the 
difference in total flowtime generated by both algorithms was 
meaningful at the significance level of 0.95. However, it was 
not meaningful at the significance level of 0.99. The 
permutations obtained for the optimal and new best known 
solutions are available upon request.  

In terms of the CPU time requirement, even though we 
employed a machine approximately 11.28 times 
(3000/266=11.28) faster than the one used by Fink & Voß 
[2],  the DDEVND algorithm was much faster than those in 
Fink & Voß [2] because 28.89*11.26=325.3015 seconds 
were much smaller than 1000 seconds for n=200 in Fink & 
Voß [2]. It was due to the fact that the speed-up methods 
presented in Pan et al. [16] have led the DDEVND algorithm to 
consume less CPU times.   

TABLE IV  
PAIRED-T TEST FOR HO:DPSOVND=F&V VS H1:DDEVND # F&V 

 N Mean StDev SE Mean 
DPSOVND 110 472275 637377 60771 
Fink & Voß 110 478400 647517 61738 
Difference 110 -6125 10815 1031 
95% CI for mean difference: (-8168, -4081) 
T-Test of mean difference = 0 (vs not = 0): T-Value = -5.94  P-Value = 0.000 
 

TABLE V 
PAIRED-T TEST FOR HO:DDEVND=F&V VS H1:DDEVND # F&V 

 N Mean StDev SE Mean 
DDEVND 110 471852 636818 60718 
Fink & Voß 110 478400 647517 60718 
Difference 110 -6548 11518 1098 
95% CI for mean difference: (-8724, -4371 ) 
T-Test of mean difference = 0 (vs not = 0): T-Value = -5.96  P-Value = 0.000 

TABLE VI 
PAIRED-T TEST FOR HO:DDEVND=DPSOVND VS H1:DDEVND # DPSOVND 
 N Mean StDev SE Mean 
DDEVND 110 471852 636818 60718 
DPSOVND 110 472275 637377 60771 
Difference 110 -423 1716 164 
95% CI for mean difference: (-747, -99) 
T-Test of mean difference = 0 (vs not = 0): T-Value = -2.58  P-Value = 0.011 

V. CONCLUSIONS 

DE is one of the recent evolutionary optimization methods. 
It has been widely used in a wide range of applications. To the 
best of our knowledge, this is the first reported application of 
DDE and DDEVND algorithms to the no-wait flowshop 
scheduling problem with the total flowtime criterion. Unlike 
the standard DE, the DDE algorithm employs a permutation 
representation and work on the discrete domain. The DDE 
algorithm is also hybridized with the VND local search to 
solve well-known benchmark suites in the literature. The 
DDE and DDEVND algorithms were applied to the 110 
benchmark instances of Taillard [1] by treating them as the 
no-wait flowshop problem instances with the total flowtime 
criterion.  

 The computational results show that the proposed DDE 
and DDEVND algorithms outperformed the metaheuristic 
algorithms presented by Fink & Voß [2] for the total flowtime 
criterion. In addition, it generated slightly better results than 
the DPSO algorithm. Besides finding all the optimal solutions 
for n=20 problems, 77 out of 80 best known solutions for the 
total flowtime criterion reported by Fink & Voß [2] were 
ultimately improved by the proposed DDEVND algorithm. It 
should be noted that the inclusion of the VND local search 
and the speed-up methods in the DDE algorithm has 
enhanced the solution quality significantly. 

  As the future work, the proposed DDE algorithm will be 
applied to a variety of combinatorial optimization problems 
in the literature.  
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TABLE VII 
NEW BEST KNOWN SOLUTIONS GENERATED BY DDEVND 

 
Instance F&V DDEVND Instance F&V DDEVND Instance F&V DDEVND Instance F&V DDEVND 
Ta001 15674 15674 Ta031 76016 75688 Ta061 308052 304801 Ta091 1521201 1494498 

Ta002 17250 17250 Ta032 83403 82874 Ta062 302386 297712 Ta092 1516009 1476685 

Ta003 15821 15821 Ta033 78282 78103 Ta063 295239 291175 Ta093 1515535 1492717 

Ta004 17970 17970 Ta034 82737 82422 Ta064 278811 275783 Ta094 1489457 1462173 

Ta005 15317 15317 Ta035 83901 83493 Ta065 292757 288700 Ta095 1513281 1476067 

Ta006 15501 15501 Ta036 80924 80702 Ta066 290819 286901 Ta096 1508331 1473770 

Ta007 15693 15693 Ta037 78791 78669 Ta067 300068 298047 Ta097 1541419 1503849 

Ta008 15955 15955 Ta038 79007 78672 Ta068 291859 287677 Ta098 1533397 1492257 

Ta009 16385 16385 Ta039 75842 75647 Ta069 307650 304237 Ta099 1507422 1477116 

Ta010 15329 15329 Ta040 83829 83569 Ta070 301942 296929 Ta100 1520800 1488330 

Ta011 25205 25205 Ta041 114398 114077 Ta071 412700 408763 Ta101 2012785 1983701 

Ta012 26342 26342 Ta042 112725 112180 Ta072 394562 390187 Ta102 2057409 2027057 

Ta013 22910 22910 Ta043 105433 105345 Ta073 405878 402478 Ta103 2050169 2020138 

Ta014 22243 22243 Ta044 113540 113364 Ta074 422301 418390 Ta104 2040946 2015944 

Ta015 23150 23150 Ta045 115441 115404 Ta075 400175 396496 Ta105 2027138 2010428 

Ta016 22011 22011 Ta046 112645 112459 Ta076 391359 387754 Ta106 2046542 2017860 

Ta017 21939 21939 Ta047 116560 116451 Ta077 394179 390626 Ta107 2045906 2014715 

Ta018 24158 24158 Ta048 115056 114947 Ta078 402025 398165 Ta108 2044218 2024692 

Ta019 23501 23501 Ta049 110482 110367 Ta079 416833 412351 Ta109 2037040 2003859 

Ta020 24597 24597 Ta050 113462 113427 Ta080 410372 407960 Ta110 2046966 2020700 

Ta021 38597 38597 Ta051 172845 172931 Ta081 562150 557792    
Ta022 37571 37571 Ta052 161092 160805 Ta082 563923 560516    
Ta023 38312 38312 Ta053 160213 160104 Ta083 562404 559681    
Ta024 38802 38802 Ta054 161557 161492 Ta084 562918 559309    
Ta025 39012 39012 Ta055 167640 167081 Ta085 556311 551593    
Ta026 38562 38562 Ta056 161784 161460 Ta086 562253 558368    
Ta027 39663 39663 Ta057 167233 167098 Ta087 574102 570010    
Ta028 37000 37000 Ta058 168100 168113 Ta088 578119 573686    
Ta029 39228 39228 Ta059 165292 165207 Ta089 564803 560367    
Ta030 37931 37931 Ta060 168386 168386 Ta090 572798 568533    
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