
 
 

 

  

Abstract— In this paper, a discrete differential evolution 
(DDE) algorithm is presented to solve the single machine total 
earliness and tardiness penalties with a common due date.  A 
new binary swap mutation operator called Bswap is presented. 
In addition, the DDE algorithm is hybridized with a local search 
algorithm to further improve the performance of the DDE 
algorithm. The performance of the proposed DDE algorithm is 
tested on 280 benchmark instances ranging from 10 to 1000 jobs 
from the OR Library. The computational experiments showed 
that the proposed DDE algorithm has generated better results 
than those in the literature in terms of both solution quality and 
computational time.  

I. INTRODUCTION 
mong all types of scheduling objectives, earliness and 
tardiness play important roles in the Just-in-Time (JIT) 

environment.  In a JIT production system, a job completing 
earlier than its due date incurs an earliness penalty (inventory 
cost) whereas a job completing later incurs a tardiness penalty 
(imposed by customers).  If the optimal sequence cannot be 
constructed without considering the value of the due date, the 
common due date is called restrictive. In a single machine 
scheduling problem with common due date, n number of jobs 
are available to be processed at time zero. Each job j has a 
processing time jp  and a common due date d . Preemption is 

not allowed and the objective is to sequence jobs with a 
restrictive common due date such that the sum of weighted 
earliness and tardiness penalties is minimized. That is, 

( ) ( )∑ +=
=

n

j
jjjj TESf

1
βα             (1) 

When the job j completes its operation before its due date, 
its earliness is given by ( )jj CdE −= ,0max , where jC is the 

completion time of the job j. On the other hand, if the job 
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finishes its operation after its due date, its tardiness is given 
by ( )dCT jj −= ,0max . Earliness and tardiness penalties are 

given by jα and jβ , respectively.  
It is well-known that for the case of restrictive common due 

date with general penalties, there exists an optimal schedule 
with the following properties: 
1. No idle times are inserted between consecutive jobs [3] 
2. The schedule is V-Shaped. In other words, jobs that are 

completed at or before the due date are sequenced in 
non-increasing order of the ratio jjp α/ . On the other 

hand, jobs whose processing starts at or after the due date 
are sequenced in non-decreasing order of the 
ratio jjp β/ . Note that there might be a straddling job, 

that is, the job that its processing is started before its due 
date and completed after its due date [2]. 

3. There is an optimal schedule in which either the 
processing of the first job starts at time zero or one job is 
completed at the due date [2]. 

The complexity of the restrictive common due-date 
problem is proved to be NP-complete in the ordinary sense 
[4]. Therefore, only small-sized instances of the single 
machine scheduling problem with a common due date can be 
solved to optimality with reasonable computational time 
using exact algorithms.  When the problem size increases, the 
computational time of exact methods grows explosively.  On 
the other hand, heuristic algorithms require generally 
acceptable time and memory requirements to reach a 
near-optimal or optimal solution.  In past decades, most 
research focused on developing metaheuristic algorithms 
based on variants of local search methods.  For example, 
James & Buchanan [5] and Wan and Yen [6] both employed a 
tabu search (TS) algorithm. Lee & Choi [7] proposed a 
genetic algorithm (GA), and Lee & Kim [8] developed a 
parallel genetic algorithm.  Feldmann & Biskup [9] applied 
different metaheuristics such as evolutionary search (ES), 
simulated annealing (SA) and threshold accepting (TA) 
whereas M’Hallah [10] proposed a hybrid algorithm that 
combines GA, hill climbing (HC) and SA.  Hino et al. [1] 
compared the performance of TS, GA, and their hybridization. 
Hendel & Sourd [11] employed neighborhood search based 
on the adjacent pairwise interchange (API) method. Very 
recently, A. C Nearchaou [12] proposed a differential 
evolution approach while a sequential exchange approach is 
presented by S-W Lin et al. [13].   
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Differential evolution (DE) is one of the latest evolutionary 
optimization methods proposed by Storn & Price [14]. Like 
other evolutionary-type algorithms, DE is a 
population-based, stochastic global optimizer. In a DE 
algorithm, candidate solutions are represented as 
chromosomes based on floating-point numbers.  In the 
mutation process of a DE algorithm, the weighted difference 
between two randomly selected population members is added 
to a third member to generate a mutated solution followed  by 
a crossover operator to combine the mutated solution with the 
target solution so as to generate a trial solution.  Then a 
selection operator is applied to compare the fitness function 
value of both competing solutions, namely, target and trial 
solutions to determine who can survive for the next 
generation.   

Since DE was first introduced to solve the Chebychev 
polynomial fitting problem by Storn & Price [14, 15], it has 
been successfully applied in a variety of applications that can 
be found in Corne et al. [16], Lampinen [17], Babu & 
Onwubolu [18], and Price et al. [19].   

The applications of DE on combinatorial optimization 
problems are still considered limited, but the advantages of 
DE  include a simple structure, immediately accessible for 
practical applications, ease of implementation, speed to  
acquire solutions, and robustness that are sustained in the 
literature. However, the major obstacle of successfully 
applying a DE algorithm to combinatorial problems in the 
literature is due to its continuous nature. To remedy this 
drawback, this research proposes a novel discrete differential 
evolution (DDE) algorithm to solve the single machine total 
earliness and tardiness penalties with a common due date.   

The paper is organized as follows. Section II introduces 
the modified MHRM heuristic. Section III gives the details of 
the proposed DDE algorithm and the local search employed. 
The computational results over benchmark problems are 
discussed in Section IV.  Finally, Section V summarizes the 
concluding remarks. 

II. THE MODIFIED MHRM HEURISTIC 

A. MHRM Heuristic 
Here we follow Pan et al. [20, 21]. In a single-machine 

with n number of jobs, at most one job can be completed on 
the due date. For this reason, there will be two sets of jobs: an 
early job set denoted by ES where the jobs are completed 
before the due date and a tardy job set denoted by TS where 
the jobs are completed after the due date. Consistent with the 
HRM heuristic [1], the MHRM heuristic consists of: (i) 
determining these two sets, (ii) constructing a sequence for 
each set, and (iii) setting the final schedule S as the 
concatenation of both sequences. In order to ensure that S  
will satisfy properties (1) and (2), there will be no idle time 
between consecutive jobs, and the sequences of ES and  TS  
will be “\-shaped” and “/-shaped”, respectively. 

At each generation, the non-scheduled jobs with the 

maximum ratios jjp α/  and jjp β/ are considered for 

inclusion in one of the two sets. According to the distance 
between each job’s possible completion time and the due date, 
just one of the jobs is included. Adjustments in the inserted 
idle time at the beginning of the sequence are also considered. 
Finally, when all jobs are scheduled, an attempt to satisfy the 
property (3) is made. Following notation is used: 
P : set of jobs to be allocated 
g :  idle time inserted at the beginning of the schedule 

ES : set of jobs completed on the due date or earlier 
TS : set of jobs completed after the due date 

S : schedule representation ( )TE SSgS ,,=  

e  : candidate job for ES  
t : candidate job for TS  

eE : distance between the possible completion time of the job    
e and the due date 

tT  : distance between the possible completion time of the job 
t  and the due date 

Td : time window available for inserting a job in set TS  
Ed : time window available for inserting a job in set ES  
jp : the processing time of job j 

H : total processing time, ∑ =
=

n
j jpH

1
 

B. MHRM Heuristic Procedure 

Step 1: Let { }nP ,..,2,1=  ; Φ== TE SS , 

)1,0max{
1

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
×−=

=

n

j jj

j

n
Hdg

βα

β
; gdd E −=  and 

dHgd T −+= . 
Step 2: Set }/{maxarg jjpj pe α∈=  and  

}/{maxarg jjpj pt β∈=  (in case of tie, select the job 

with the longest jp ). 

Step 3: Set e
Ee pdE −=  and Tt dT = . If 0≤eE then go to  

  step 5. If 0≤− t
t pT  then go to step 6. 

Step 4: Choose the job to be inserted: 
If te TE >  then }{eSS EE += , e

EE pdd −=  
and }{ePP −= . 

If te TE <  then }{tSS TT += , t
TT pdd −=  

and }{tPP −= . 

If te TE =  then if te βα > then }{tSS TT += , 

t
TT pdd −=  and }{tPP −= ; 

else }{eSS EE += , e
EE pdd −=  and }{ePP −= . 

Go to step 7. 
Step 5: Adjustment of the idle time (end of the space before 
the due date): 
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If 0<+ eEg  then }{tSS TT += , t
TT pdd −=  

and }{tPP −=  

Else: EE SS =' , PSS TT ∪=' ,
jSj E pdg ∑ ∈

= '' ,

),,'(' '' TE SSgS = ; 

}{'' eSS EE += , }{'' ePSS TT −∪= ,

jSj E pdg ∑ ∈
−= '''' , ),,''('' '''' TE SSgS = .  

If )()( ''' EE SfSf ≤  

then }{tSS TT += , 0=Ed , ggpdd t
TT −+−= ' ,

'gg =  and }{tPP −= . 

Else }{eSS EE += , 0=Ed , ggdd TT −+= '' , ''gg =  
and }{ePP −= . 
Go to step 7. 

Step 6: Adjustment of the idle time (end of the space after the 
due date): 

If tTg <  then }{eSS EE += , e
EE pdd −=  

and }{ePP −=  

Else TT SS =' , PSS EE ∪=' ,
j

ESj
pdg ∑ ∈

−= '' ,

),,'(' '' TE SSgS = ; 

}{'' tSS TT += , }{'' tPSS EE −∪= ,

j
ESj

pdg ∑ ∈
−= '''' , ),,''('' '''' TE SSgS = . 

If )()( ''' EE SfSf ≤  

then }{eSS EE += , 0=Td , 'ggpdd e
EE −+−= ,

'gg = , }{ePP −= ; 

Else }{tSS TT += , 0=Td , ''ggdd EE −+= , ''gg =          
, }{tPP −= . 

Step 7: If Φ≠P  then go to step 2. 
Step 8: If there is a straddling job (it must be the last job 

in TS ), then EE SS =' , TT SS =' , 

j
ESj

pdg ∑ ∈
−= '' , ),,'(' '' TE SSgS = . 

 If )()'( SfSf <  then 'gg = . 
End of the algorithm. 

The MHRM heuristic is a modified version of HRM heuristic 
presented in Hino et al. [1]. The main difference between 
HRM and MHRM heuristics  is due to the calculation of  the 
inserted idle time g  in Step 1 such that 

),0max{
1

∑
+

×−=
=

n

j jj

jHdg
βα

β
           (2) 

instead of )*5.0,0max{ Hdg −=  in Hino et al. [1]. By 
doing so, the inserted idle time completely depends on the 
particular instance.  It implies that if the total tardiness 
penalty of a particular instance is greater than the total 
earliness penalty of that instance ( ∑ ∑> jj αβ ), the 

inserted idle time would be larger for that particular instance.  
Hence more jobs would be completed before the due date. In 
other words, more jobs would be early. Since ∑ ∑> jj αβ , 

the total penalty imposed on the fitness function would be less 
than the one used in the HRM heuristic. In addition, the 
following modification is made in Step 3. As shown in Fig. 1, 
if the distance between the possible completion time of 
candidate job t  and the due date is less than or equal to zero, 
both the start time and the completion time of the job t  are 
before or at the due date, i.e., the job t  is not a straddling job. 
In our algorithm, 0≤− t

t pT  is employed instead of 0≤tT  

because 0≤− t
t pT  implies that the job t  is a straddling 

job. In this case, the adjustment of the idle time for the end of 
the space after the due date through Step 6 should be made. 
Accordingly, necessary modifications are also made in Step 
5, 6, and 8. 

 
a. End of the space after the due date in the HRM heuristic 

 
b. End of the space after the due date in the MHRM heuristic 

Fig.1. Difference Between HRM and MHRM Heuristics. 

III. DISCRETE DIFFERENTIAL EVOLUTION ALGORITHM 

Currently, there exist several mutation variations in DE. 
The DE/rand/1/bin schemes of Storn & Price [14] is 
presented below. The DE algorithm starts with initializing the 
initial population with the size of NP. Each individual has an 
n-dimentional vector with parameter values determined 
randomly and uniformly between predefined search range.  

To generate a mutated individual, the DE mutates vectors 
from the target population by adding the weighted difference 
between two randomly selected target population members to 
a third member as follows: 

( )111 −−− −+= t
cj

t
bj

t
aj

t
ij xxFxv             (3)

  
where a , b , and c  are three randomly chosen individuals 

from the population such that ( )( )NPcba ,..,1∈≠≠ . 0>F  
is a mutation scale factor which affects the differential 
variation between two individuals.  

Following the mutation phase, the crossover operator is 
applied to obtain the trial individual such that:  
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where jD  refers to a randomly chosen dimension (j=1,..,n), 
which is used to ensure that at least one parameter of each 
trial individual t

iju differs from its counterpart in the previous 

generation 1−t
iju . CR is a user-defined crossover constant in 

the range [0, 1], and t
ijr  is a uniform random number between 

0 and 1. In other words, the trial individual is made up with 
some parameters of mutant individual, or at least one of the 
parameters randomly selected, and some other parameters of 
the target individual. 

To decide whether or not the trial individual t
iju  should be 

a member of the target population for the next generation, it is 
compared to its counterpart target individual 1−t

ijx  at the 

previous generation. The selection is based on the survival of 
the fitness among the trial population and target population 
such that: 

( ) ( )
⎪⎩

⎪
⎨
⎧ ≤

= −

−

otherwisex
xfufifu

x t
ij

t
ij

t
ij

t
ijt

ij ,
,

1

1
   (5) 

The pseudo code of the DE algorithm is given in Fig. 2. 

Initialize parameters 
Initialize target population 
Evaluate target population 
Do { 
     Obtain mutant population 
     Obtain trial population  
     Evaluate trial population 
     Make selection 

Apply local search (optional) 
While (Not Termination) 

Fig. 2. Standard DE Algorithm. 

It is obvious that standard DE equations cannot be used to 
generate discrete/binary values since positions are 
real-valued. Instead we propose a DDE algorithm whose 
solutions are based on binary 0-1 values. In the DDE 
algorithm, the target population is constructed based on the 
binary 0-1 values as represented by [ ]NP21i X,,,X,XX = . 
For the mutant population the following equations can be 
used: 

( )1
1

−⊕= t
ik

t
i XFmV              (6) 

( )1
1

−⊕= t
ak

t
i XFmV              (7) 

( )1
1

−⊕= t
k

t
i GFmV                (8) 

where 1−t
aX  is randomly chosen individual from the target 

population; 1−tG is the global best solution; 1m  is the 
mutation probability; and kF  is the mutation operator with 
the mutation strength of k. In other words, a uniform random 
number r is generated between [0, 1]. If r is less than 1m  then 
the mutation operator is applied to generate the mutant 

individual. In this paper, the ( )1
1

−⊕= t
k

t
i GFmV  version of 

mutation operators is employed in order to provide 
information exchange between the target population member 
and the global best. In the mutation equation, k represents the 
mutation strength, which is the key to the success of the 
algorithm. The higher the value of k is, the higher the 
possibility that the algorithm would have excessive 
randomness. On the other hand, the lower the value of k is, the 
lower the possibility that the algorithm would escape from the 
local minima. So care must be taken in the choice of the value 
of the mutation strength.   

Following the mutation phase, the trial individual is 
obtained such that:  

( )t
i

t
i

t
i VXCRcU ,1

1
−⊕=              (9) 

where CR is the crossover operator, and 1c  is the crossover 
probability. In other words, the ith individual is recombined 
with its corresponding mutant individual to generate the trial 
individual.  

Finally, the selection is based on the survival of the fitness 
among the trial population and target population such that: 

( ) ( )
⎪⎩

⎪
⎨
⎧

≤≤
≤

= −

−

NPi
otherwiseX

XfUfifUX t
i

t
i

t
i

t
it

i 11

1
(10) 

It is important to note that a binary solution representation is 
employed for the problem on hand. The t

ijx , the jth dimension 

of the particle t
iX , denotes a job; if 0=t

ijx , the job j is 
completed before or at the due date, which belongs to the set 

ES ; if 1=t
ijx , the job j is finished after the due date, which 

belongs to the set TS .  The binary representation is unique in 
terms of determining the early and tardy job sets. The 
individual representation is shown in Table I. From Table I, it 
is trivial to see that the jobs 1J , 4J  and 6J  belong to the early 
job set; and the jobs 2J , 3J  and 5J  belong to the tardy job set. 

TABLE I 

SOLUTION REPRESENTATION 
Jobs, j 1 2 3 4 5 6 

ijx  0 1 1 0 1 0 

To be employed in the DDE algorithm, the PTL crossover 
proposed in Pan et al. [21] is employed.  An illustration of the 
two-cut PTL crossover is shown in Table I. 

TABLE II 

PTL CROSSOVER OPERATOR 

Two-Cut PTL Crossover Two-Cut PTL Crossover 

P1 0 0 1 0 1 P1 1 0 1 0 1 

P2 1 1 1 0 1 P2 1 0 1 0 1 

O1 0 1 1 0 1 O1 0 1 1 0 1 

O2 1 1 1 0 1 O2 1 0 1 0 1 
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In the PTL crossover, a block of strings from the first 
parent is determined by two cut points randomly. This block 
is either moved to the right or left corner of the offspring. 
Then the offspring is filled out with the remaining strings 
from the second parent. In this paper, one of these two unique 
offspring is chosen randomly with an equal probability. 

 In addition, a binary swap (Bswap) mutation operator was 
presented in both mutation operator and the local search. The 
Bswap operator consists of two steps:  
• Generate two random integers, u and v, in the range [1,n];  
• if t

iv
t
iu xx = , then 2mod)1( += t

iu
t
iu xx ;  

else 2mod)1( += t
iu

t
iu xx and 2mod)1( += t

iv
t
iv xx .  

To figure out how the individuals are updated in the DDE 
algorithm, an example is illustrated in Table III. Assume that 
the mutation and crossover probabilities are 1.0, two-cut PTL 
crossover and Bswap mutation operators are employed. 
Given the individual and the global best solution, the global 
best  is first mutated. For example, in Table III, the dimension 
u=1 and v=3 are chosen randomly. Since both dimensions 
have the value of zero, the value of the dimension u is flipped 
from 0 to 1, thus generating the mutant individual iV . Then 
the individual iV  is recombined with its corresponding 
individual in the target population to generate the trial 
individual iU . Finally, the target individual iX  is compared 
to the trial individual iU to determine which one would 
survive for the next generation based on the survival of 
fitness. 

TABLE III 
INDIVIDUAL UPDATE 

iX  1 0 1 0 1 

G  0 1 0 1 0 

Binary Swap Mutation 

G  0 1 0 1 0 

iV  1 1 0 1 0 

Two-Cut PTL Crossover f 

iX  1 0 1 0 1 45 

iV  1 1 0 1 0  

iU  1 1 0 0 1 40 

Selection 

( ) ( ) So,UX45Xf40Uf iiii ==<=   

iX  1 1 0 0 1  

After applying the DDE operators, the sets ES and TS are 
determined from the binary representation. Then every fitness 
calculation follows property (2). Note that the set TS  might 
contain a straddling job. If there is a straddling job, the first 
job in the early job set is started in time zero. After 
completing the last job of the early job set, the straddling job 
and the jobs in the tardy job set are sequenced. On the other 
hand, if there is no straddling job, the completion time of the 

last job in the early job set is matched with the due date and 
the processing in the tardy job set is followed immediately.    

The neighborhood search in this study was based on the 
simple Bswap neighborhood. It should be noted that the 
following local search was applied to the global best solution, 

tG , at each iteration t. The pseudo code of the local search is 
given in Fig.3.   

LocalSearch(){  
 s=perturbation( tG ) 
 for (loop=1;loop≤size;loop++){ 
    flag=true      
    while (true){        
        s1 ←swap(s) 
        if  f(s1) ≤ f(s) then s ← s1; 
       else flag=false}} 
 if  f(s) ≤ f( tG )then tG ← s}  
Fig.3. Local Search Employed 

In the neighborhood search algorithm above, s refers to the 
perturbed global best solution tG at each generation t. That is, 
the global best solution is perturbed by swapping two jobs 
randomly; one from the tardy set, and the other from the early 
set. Then the Bswap operator was applied to the perturbed 
solution s. The size of the local search was set to 
size=min(30n,6000).  

IV. EXPERIMENTAL RESULTS 

The DDE algorithm was coded in Visual C++ and run on 
an Intel P IV 3.0 GHz PC with 512MB memory. Regarding 
the parameters of the DDE algorithms, 1m  and 1c  are taken 
as 0.8. Insert mutation operator (F) with the mutation strength 
of  k=3 is used. As a crossover operator, the two-cut PTL is 
employed. The population size was 20. One of the solutions 
in the population is constructed with the MHRM heuristic, the 
rest is constructed randomly. The proposed DDE algorithm 
was applied to the benchmark problems that Biskup & 
Feldmann [2] developed a total of 280 instances ranging from 
10 to 1000 jobs and restricting the common due date from 0.2 
to 0.8 of the sum of all processing times. These instances can 
be downloaded at the OR-Library web site 
http://www.ms.ic.ac.uk/jeb/orlib/ schinfo.html.   

10 runs were carried out for each problem instance to 
report the statistics based on the percentage relative 
deviations ( ∆ ) from the upper bounds in Biskup & Feldmann 
[2]. To be more specific, avg∆  was computed as follows: 

( )
∑

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=∆

R

i ref

refi
avg R

F
FF

1
/

100*
       (11) 

where iF , refF , and R were the fitness function value 
generated by the DDE algorithm in each run, the reference 
fitness function value generated by Biskup & Feldmann [2], 
and the total number of runs, respectively. For convenience, 

min∆ , max∆ , and std∆  denote the minimum, maximum, and 
standard deviation of percentage relative deviation in fitness 
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function value over R runs, respectively. For the 
computational effort consideration, tmin, tmax, avgt ,and tstd 

denote the minimum, maximum, average time and the 
standard deviation until termination. The maximum 
generation number is fixed to 50 and the DDE algorithm is 
terminated when the global best solution is not improved in 
10 consecutive generations.  

The computational results of the MHRM heuristic and the 
DDE algorithm are given in Table VII and Table VIII, 
respectively. Table VII shows that the MHRM heuristic is 
superior to its counterpart HRM heuristic in terms of relative 
percent improvement. 

TABLE IV 
COMPARISON OF RESULTS ( avg∆ ) 

 F&V DPSO DDE 

n h 
avg∆  std∆  avg∆  std∆  avg∆  std∆  

20 0.2 -3.84 0.03 -3.83 0.02 -3.84 0.00 
 0.4 -1.63 0.03 -1.62 0.02 -1.63 0.00 
50 0.2 -5.65 0.03 -5.68 0.03 -5.68 0.01 
 0.4 -4.64 0.02 -4.63 0.05 -4.65 0.01 
100 0.2 -6.18 0.02 -6.18 0.02 -6.19 0.01 
 0.4 -4.94 0.03 -4.90 0.04 -4.93 0.01 
200 0.2 -5.73 0.02 -5.77 0.01 -5.76 0.01 
 0.4 -3.79 0.02 -3.72 0.02 -3.72 0.02 
500 0.2 -6.40 0.00 -6.41 0.01 -6.41 0.01 
 0.4 -3.52 0.01 -3.54 0.01 -3.54 0.02 
Avg  -4.63 0.02 -4.63 0.02 -4.64 0.01 

Most recently, Hino et al. [1] developed a TS, GA and 
hybridization of both of them denoted as HTG and HGT. In 
addition, Pan et al. [21] developed a discrete particle swarm 
optimization (DPSO) algorithm to solve the same benchmark 
suite. Since Hino et al. [1] and Pan et al. [21] employed the 
same benchmark suite of Biskup & Feldmann [2], we 
compare our results to Feldmann  & Biskup [9], Pan et al. [21] 
and Hino et al. [1]. Since the DDE algorithm is stochastic, its 
minimum, maximum, average, and standard deviation of the 
10 runs for each instance should be given to evaluate its 
performance. However, Hino et al. [1] conducted 10 runs and 
picked the best out of 10 runs even though their tabu search 
contains a random component when updating the idle time. It 
implies that no information is at present about the average, 
and worst case behavior as well as the robustness of their 
algorithm. For this reason, we compare the minimum 
percentage relative deviation ( min∆ ) of the DDE algorithm to 
Hino et al. [1] since only the minimum deviation is reported, 
and the average percentage relative deviation ( avg∆ ) of the 
DDE algorithm to  Feldmann & Biskup [9] where the average 
percentage relative deviations are given for only 20 to 500 
jobs with h=0.2 and 0.4. Note that in Feldmann & Biskup [9], 
the average percentage improvements and their standard 
deviations are given using the best solution from all the 
heuristics, namely, ES, SA, TA and TAR.  

TABLE V.  

COMPARISON OF RESULTS ( min∆ ) 

n h DPSO TS GA HTG HGT DDE 
0.2 0.00 0.25 0.12 0.12 0.12 0.00 
0.4 0.00 0.24 0.19 0.19 0.19 0.00 
0.6 0.00 0.10 0.03 0.03 0.01 0.00 

10 0.8 0.00 0.00 0.00 0.00 0.00 0.00 
0.2 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84 
0.4 -1.63 -1.62 -1.62 -1.62 -1.62 -1.63 
0.6 -0.72 -0.71 -0.68 -0.71 -0.71 -0.72 

20 0.8 -0.41 -0.41 -0.28 -0.41 -0.41 -0.41 
0.2 -5.70 -5.70 -5.68 -5.70 -5.70 -5.69 
0.4 -4.66 -4.66 -4.60 -4.66 -4.66 -4.66 
0.6 -0.34 -0.32 -0.31 -0.27 -0.31 -0.34 

50 0.8 -0.24 -0.24 -0.19 -0.23 -0.23 -0.24 
0.2 -6.19 -6.19 -6.17 -6.19 -6.19 -6.19 
0.4 -4.94 -4.93 -4.91 -4.93 -4.93 -4.94 
0.6 -0.15 -0.01 -0.12 0.08 0.04 -0.15 

100 0.8 -0.18 -0.15 -0.12 -0.08 -0.11 -0.18 
0.2 -5.78 -5.76 -5.74 -5.76 -5.76 -5.77 
0.4 -3.75 -3.74 -3.75 -3.75 -3.75 -3.75 
0.6 -0.15 -0.01 -0.13 0.37 0.07 -0.15 

200 0.8 -0.15 -0.04 -0.14 0.26 0.07 -0.15 
0.2 -6.42 -6.41 -6.41 -6.41 -6.41 -6.43 
0.4 -3.56 -3.57 -3.58 -3.58 -3.58 -3.56 
0.6 -0.11 0.25 -0.11 0.73 0.15 -0.11 

500 0.8 -0.11 0.21 -0.11 0.73 0.13 -0.11 
0.2 -6.76 -6.73 -6.75 -6.74 -6.74 -6.76 
0.4 -4.37 -4.39 -4.40 -4.39 -4.39 -4.38 
0.6 -0.06 1.01 -0.05 1.28 0.42 -0.06 

1000 0.8 -0.06 1.13 -0.05 1.28 0.40 -0.06 

Avg  -2.15 -2.01 -2.12 -1.94 -2.06 -2.15 

As seen in Table IV, the DDE algorithm performed slightly 
better than Feldmann & Biskup [9] and Pan et al. [21] in 
terms of the average percentage relative improvement and the 
standard deviation. For this reason, one can conclude that the 
DDE algorithm was at least as good as all the metaheuristics 
tested in Feldmann and Biskup [9] and the DPSO algorithm in 
Pan et al. [21]. 

Table V summarizes the computational results to be 
compared to those in both Hino et al. [1] and Pan et al. [21]. 
As seen in Table V, the DDE algorithm outperforms almost 
all the metaheuristics of Hino et al. [1] in terms of the 
minimum percentage relative deviation. Besides the 
minimum and average performance of the DDE algorithm 
was better than all the metaheuristics in Hino et al. [1], it is 
also interesting to note that as seen in Table VIII, even the 
maximum percentage relative deviation of the DDE 
algorithm was better than TS, HGT and HTG algorithms of 
Hino et al. [1]. In other words, the worst case performance of 
the DDE algorithm was better than Hino et al. [1]. In 
comparison of DDE to DPSO, both algorithms generated the 
same average relative percent deviations. Regarding the CPU 
time requirement of the DDE algorithm, maxt  was not more 
than 1.09 seconds on overall mean whereas Hino et. al. [1] 
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reported that their average CPU time requirement was 21.5 
and 7.8 seconds for TS and hybrid strategies, respectively. In 
addition, the DDE algorithm was so robust such that the mean 

std∆  was 0.00. To sum up, all the statistics show and prove 
that the DDE algorithm was superior to all the metaheuristics 
presented in Hino et al. [1].  

The final comparison is due to HGT algorithm of Hino et 
al. [1] and TAR algorithm of Feldmann & Biskup [9]. In 
Feldmann & Biskup [9], the TAR algorithm showed superior 
performance among the five metaheuristics tested. When 
compared to the TAR and HGT algorithms, the performance 
of the DDE algorithm along with the DPSO algorithm was 
superior to both of them as shown in Table VI. 

TABLE VI.  
COMPARISON OF RESULTS  ( min∆ ) 

n h DPSO HGT TAR DDE 

10 0.2 0.00 0.12 0.00 0.00 
 0.4 0.00 0.19 0.00 0.00 
20 0.2 -3.84 -3.84 -3.84 -3.84 
 0.4 -1.63 -1.62 -1.63 -1.63 
50 0.2 -5.70 -5.70 -5.64 -5.69 
 0.4 -4.66 -4.66 -4.62 -4.66 
100 0.2 -6.19 -6.19 -6.16 -6.19 
 0.4 -4.94 -4.93 -4.86 -4.94 
200 0.2 -5.78 -5.76 -5.72 -5.77 
 0.4 -3.75 -3.75 -3.63 -3.75 
500 0.2 -6.42 -6.41 -6.39 -6.43 
 0.4 -3.56 -3.58 -3.49 -3.56 
1000 0.2 -6.76 -6.74 -6.72 -6.76 
 0.4 -4.37 -4.39 -4.29 -4.38 

Avg  -4.11 -4.09 -4.07 -4.11 

V. CONCLUSIONS 

DE is one of the recent evolutionary optimization methods. It has 
been widely used in a wide range of applications. To the best of 
our knowledge, this is the first reported application of DDE 
algorithm to the single-machine total earliness and tardiness 
penalties with a common due date problem in the literature. 
Unlike the standard DE, the DDE algorithm employs a binary 
solution representation and works on a discrete domain. In 
addition, the DDE algorithm is hybridized with the 
neighborhood search to solve well-known benchmark suites 
in the literature.  

The proposed DDE algorithm was applied to the 
benchmark problems that Biskup and Feldmann [2] 
developed a total of 280 instances ranging from 10 to 1000 
jobs and restricting the common due date from 0.2 to 0.8 of 
the sum of all processing times. The computational results 
show that the proposed DDE algorithm generated better 
results than the existing approaches in the literature. 

As the future work, the authors have already solved the 
same problem with the DPSO algorithm. In addition, authors 
have also employed the binary version of continuous PSO 
algorithm and already solved the same problem. A detailed 
analysis of DPSO, DDE and Binary PSO algorithms with a 

variety of local search algorithms will be presented in the 
literature with comparisons to the very recent approaches 
such as A. C Nearchou [12] and S-W Lin et al. [13] in the near 
future. 
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TABLE VII.  
STATISTICS FOR THE MHRM HEURISTIC ( ∆ ) 

 h 10 20 50 100 200 500 1000 Mean 
 0.2 1.53 -3.97 -5.33 -6.02 -5.63 -6.32 -6.68 -4.50 
 0.4 8.68 0.46 -3.87 -4.42 -3.51 -3.46 -4.26 -1.48 

HRM 0.6 19.27 9.78 7.59 4.69 3.71 2.53 3.23 7.26 
 0.8 22.97 13.52 8.10 4.70 3.71 2.53 3.23 8.39 
 Mean 13.11 5.17 1.62 -0.26 -0.43 -1.18 -1.12 2.42 
 h 10 20 50 100 200 500 1000 Mean 
 0.2 1.00 -3.57 -5.45 -6.02 -5.62 -6.32 -6.69 -4.67 
 0.4 5.91 -0.49 -4.03 -4.27 -3.52 -3.45 -4.27 -2.02 

MHRM 0.6 2.77 2.02 1.51 1.50 1.71 1.41 1.55 1.78 
 0.8 3.95 4.07 2.13 1.43 1.71 1.41 1.55 2.32 
 Mean 3.41 0.51 -1.46 -1.84 -1.43 -1.74 -1.97 -0.65  

TABLE VIII.  
STATISTICS FOR THE DDE ALGORITHM 

 ∆  Time Until Termination  
n h 

min∆  max∆  avg∆  std∆  mint  maxt  avgt  stdt  

0.2 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 
0.4 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 
0.6 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

10 

0.8 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 
0.2 -3.84 -3.84 -3.84 0.00 0.00 0.02 0.01 0.01 
0.4 -1.63 -1.63 -1.63 0.00 0.00 0.02 0.01 0.01 
0.6 -0.72 -0.72 -0.72 0.00 0.00 0.02 0.01 0.01 

20 

0.8 -0.41 -0.41 -0.41 0.00 0.00 0.02 0.00 0.01 
0.2 -5.69 -5.67 -5.68 0.01 0.02 0.04 0.03 0.01 
0.4 -4.66 -4.62 -4.65 0.01 0.03 0.05 0.04 0.01 
0.6 -0.34 -0.34 -0.34 0.00 0.02 0.04 0.03 0.01 

50 

0.8 -0.24 -0.24 -0.24 0.00 0.02 0.04 0.03 0.00 
0.2 -6.19 -6.17 -6.19 0.01 0.10 0.23 0.15 0.04 
0.4 -4.94 -4.91 -4.93 0.01 0.11 0.29 0.18 0.06 
0.6 -0.15 -0.15 -0.15 0.00 0.11 0.16 0.13 0.02 

100 

0.8 -0.18 -0.18 -0.18 0.00 0.11 0.15 0.12 0.02 
0.2 -5.77 -5.74 -5.76 0.01 0.21 0.60 0.34 0.13 
0.4 -3.75 -3.68 -3.72 0.02 0.24 0.71 0.42 0.15 
0.6 -0.15 -0.15 -0.15 0.00 0.24 0.44 0.32 0.07 

200 

0.8 -0.15 -0.15 -0.15 0.00 0.24 0.44 0.32 0.06 
0.2 -6.43 -6.40 -6.41 0.01 0.55 1.96 1.09 0.45 
0.4 -3.56 -3.52 -3.54 0.02 0.71 2.01 1.23 0.45 
0.6 -0.11 -0.11 -0.11 0.00 0.78 2.14 1.30 0.44 

500 

0.8 -0.11 -0.11 -0.11 0.00 0.78 2.13 1.30 0.44 
0.2 -6.76 -6.74 -6.75 0.01 1.42 4.40 2.54 1.02 
0.4 -4.38 -4.34 -4.36 0.01 1.71 4.90 3.34 1.01 
0.6 -0.06 -0.06 -0.06 0.00 1.88 4.89 3.17 1.00 

1000 

0.8 -0.06 -0.06 -0.06 0.00 1.83 4.89 3.16 1.02 
Mean  -2.15 -2.14 -2.15 0.00 0.40 1.09 0.69 0.23  
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