

Abstract— In this paper, a discrete differential evolution
(DDE) algorithm is presented to solve the single machine total
earliness and tardiness penalties with a common due date. A
new binary swap mutation operator called Bswap is presented.
In addition, the DDE algorithm is hybridized with a local search
algorithm to further improve the performance of the DDE
algorithm. The performance of the proposed DDE algorithm is
tested on 280 benchmark instances ranging from 10 to 1000 jobs
from the OR Library. The computational experiments showed
that the proposed DDE algorithm has generated better results
than those in the literature in terms of both solution quality and
computational time.

I. INTRODUCTION
mong all types of scheduling objectives, earliness and
tardiness play important roles in the Just-in-Time (JIT)

environment. In a JIT production system, a job completing
earlier than its due date incurs an earliness penalty (inventory
cost) whereas a job completing later incurs a tardiness penalty
(imposed by customers). If the optimal sequence cannot be
constructed without considering the value of the due date, the
common due date is called restrictive. In a single machine
scheduling problem with common due date, n number of jobs
are available to be processed at time zero. Each job j has a
processing time jp and a common due date d . Preemption is

not allowed and the objective is to sequence jobs with a
restrictive common due date such that the sum of weighted
earliness and tardiness penalties is minimized. That is,

() ()∑ +=
=

n

j
jjjj TESf

1
βα (1)

When the job j completes its operation before its due date,
its earliness is given by ()jj CdE −= ,0max , where jC is the

completion time of the job j. On the other hand, if the job

M. Fatih Tasgetiren is with the Department of Operations Management

and Busısness Statistics, Sultan Qaboos University, P.O.Box 20, Al Khod
123, Muscat, Sultanate of Oman: mfatih@squ.edu.om

Quan-Ke Pan is with the College of Computer Science, Liaocheng,
University, Liaocheng, Shandong Province, 252059, P. R. China;
qkpan@lctu.edu.cn

Yun Chia-Liang is with the Department of Industrial Engineering and
Management, Yuan Ze University, 135 Yuan-Tung Road, Chungli, Taoyuan,
320 Taiwan, R.O.C. ycliang@saturn.yzu.edu.tw

P. N Suganthan is with the School of Electrical and Electronic
Engineering Nanyang Technological University, Singapore 639798;
epnsugan@ntu.edu.sg .

finishes its operation after its due date, its tardiness is given
by ()dCT jj −= ,0max . Earliness and tardiness penalties are

given by jα and jβ , respectively.
It is well-known that for the case of restrictive common due

date with general penalties, there exists an optimal schedule
with the following properties:
1. No idle times are inserted between consecutive jobs [3]
2. The schedule is V-Shaped. In other words, jobs that are

completed at or before the due date are sequenced in
non-increasing order of the ratio jjp α/ . On the other

hand, jobs whose processing starts at or after the due date
are sequenced in non-decreasing order of the
ratio jjp β/ . Note that there might be a straddling job,

that is, the job that its processing is started before its due
date and completed after its due date [2].

3. There is an optimal schedule in which either the
processing of the first job starts at time zero or one job is
completed at the due date [2].

The complexity of the restrictive common due-date
problem is proved to be NP-complete in the ordinary sense
[4]. Therefore, only small-sized instances of the single
machine scheduling problem with a common due date can be
solved to optimality with reasonable computational time
using exact algorithms. When the problem size increases, the
computational time of exact methods grows explosively. On
the other hand, heuristic algorithms require generally
acceptable time and memory requirements to reach a
near-optimal or optimal solution. In past decades, most
research focused on developing metaheuristic algorithms
based on variants of local search methods. For example,
James & Buchanan [5] and Wan and Yen [6] both employed a
tabu search (TS) algorithm. Lee & Choi [7] proposed a
genetic algorithm (GA), and Lee & Kim [8] developed a
parallel genetic algorithm. Feldmann & Biskup [9] applied
different metaheuristics such as evolutionary search (ES),
simulated annealing (SA) and threshold accepting (TA)
whereas M’Hallah [10] proposed a hybrid algorithm that
combines GA, hill climbing (HC) and SA. Hino et al. [1]
compared the performance of TS, GA, and their hybridization.
Hendel & Sourd [11] employed neighborhood search based
on the adjacent pairwise interchange (API) method. Very
recently, A. C Nearchaou [12] proposed a differential
evolution approach while a sequential exchange approach is
presented by S-W Lin et al. [13].

A Discrete Differential Evolution Algorithm for the Total Earliness
and Tardiness Penalties with a Common Due Date on a

Single-Machine
M. Fatih Tasgetiren, Quan-Ke Pan, Yun-Chia Liang, and P. N. Suganthan

A

271

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

1-4244-0704-4/07/$20.00 ©2007 IEEE

Differential evolution (DE) is one of the latest evolutionary
optimization methods proposed by Storn & Price [14]. Like
other evolutionary-type algorithms, DE is a
population-based, stochastic global optimizer. In a DE
algorithm, candidate solutions are represented as
chromosomes based on floating-point numbers. In the
mutation process of a DE algorithm, the weighted difference
between two randomly selected population members is added
to a third member to generate a mutated solution followed by
a crossover operator to combine the mutated solution with the
target solution so as to generate a trial solution. Then a
selection operator is applied to compare the fitness function
value of both competing solutions, namely, target and trial
solutions to determine who can survive for the next
generation.

Since DE was first introduced to solve the Chebychev
polynomial fitting problem by Storn & Price [14, 15], it has
been successfully applied in a variety of applications that can
be found in Corne et al. [16], Lampinen [17], Babu &
Onwubolu [18], and Price et al. [19].

The applications of DE on combinatorial optimization
problems are still considered limited, but the advantages of
DE include a simple structure, immediately accessible for
practical applications, ease of implementation, speed to
acquire solutions, and robustness that are sustained in the
literature. However, the major obstacle of successfully
applying a DE algorithm to combinatorial problems in the
literature is due to its continuous nature. To remedy this
drawback, this research proposes a novel discrete differential
evolution (DDE) algorithm to solve the single machine total
earliness and tardiness penalties with a common due date.

The paper is organized as follows. Section II introduces
the modified MHRM heuristic. Section III gives the details of
the proposed DDE algorithm and the local search employed.
The computational results over benchmark problems are
discussed in Section IV. Finally, Section V summarizes the
concluding remarks.

II. THE MODIFIED MHRM HEURISTIC

A. MHRM Heuristic
Here we follow Pan et al. [20, 21]. In a single-machine

with n number of jobs, at most one job can be completed on
the due date. For this reason, there will be two sets of jobs: an
early job set denoted by ES where the jobs are completed
before the due date and a tardy job set denoted by TS where
the jobs are completed after the due date. Consistent with the
HRM heuristic [1], the MHRM heuristic consists of: (i)
determining these two sets, (ii) constructing a sequence for
each set, and (iii) setting the final schedule S as the
concatenation of both sequences. In order to ensure that S
will satisfy properties (1) and (2), there will be no idle time
between consecutive jobs, and the sequences of ES and TS
will be “\-shaped” and “/-shaped”, respectively.

At each generation, the non-scheduled jobs with the

maximum ratios jjp α/ and jjp β/ are considered for

inclusion in one of the two sets. According to the distance
between each job’s possible completion time and the due date,
just one of the jobs is included. Adjustments in the inserted
idle time at the beginning of the sequence are also considered.
Finally, when all jobs are scheduled, an attempt to satisfy the
property (3) is made. Following notation is used:
P : set of jobs to be allocated
g : idle time inserted at the beginning of the schedule

ES : set of jobs completed on the due date or earlier
TS : set of jobs completed after the due date

S : schedule representation ()TE SSgS ,,=

e : candidate job for ES
t : candidate job for TS

eE : distance between the possible completion time of the job
e and the due date

tT : distance between the possible completion time of the job
t and the due date

Td : time window available for inserting a job in set TS
Ed : time window available for inserting a job in set ES
jp : the processing time of job j

H : total processing time, ∑ =
=

n
j jpH

1

B. MHRM Heuristic Procedure

Step 1: Let { }nP ,..,2,1= ; Φ== TE SS ,

)1,0max{
1

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
×−=

=

n

j jj

j

n
Hdg

βα

β
; gdd E −= and

dHgd T −+= .
Step 2: Set }/{maxarg jjpj pe α∈= and

}/{maxarg jjpj pt β∈= (in case of tie, select the job

with the longest jp).

Step 3: Set e
Ee pdE −= and Tt dT = . If 0≤eE then go to

 step 5. If 0≤− t
t pT then go to step 6.

Step 4: Choose the job to be inserted:
If te TE > then }{eSS EE += , e

EE pdd −=
and }{ePP −= .

If te TE < then }{tSS TT += , t
TT pdd −=

and }{tPP −= .

If te TE = then if te βα > then }{tSS TT += ,

t
TT pdd −= and }{tPP −= ;

else }{eSS EE += , e
EE pdd −= and }{ePP −= .

Go to step 7.
Step 5: Adjustment of the idle time (end of the space before
the due date):

272

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

If 0<+ eEg then }{tSS TT += , t
TT pdd −=

and }{tPP −=

Else: EE SS =' , PSS TT ∪=' ,
jSj E pdg ∑ ∈

= '' ,

),,'(' '' TE SSgS = ;

}{'' eSS EE += , }{'' ePSS TT −∪= ,

jSj E pdg ∑ ∈
−= '''' ,),,''('' '''' TE SSgS = .

If)()(''' EE SfSf ≤

then }{tSS TT += , 0=Ed , ggpdd t
TT −+−= ' ,

'gg = and }{tPP −= .

Else }{eSS EE += , 0=Ed , ggdd TT −+= '' , ''gg =
and }{ePP −= .
Go to step 7.

Step 6: Adjustment of the idle time (end of the space after the
due date):

If tTg < then }{eSS EE += , e
EE pdd −=

and }{ePP −=

Else TT SS =' , PSS EE ∪=' ,
j

ESj
pdg ∑ ∈

−= '' ,

),,'(' '' TE SSgS = ;

}{'' tSS TT += , }{'' tPSS EE −∪= ,

j
ESj

pdg ∑ ∈
−= '''' ,),,''('' '''' TE SSgS = .

If)()(''' EE SfSf ≤

then }{eSS EE += , 0=Td , 'ggpdd e
EE −+−= ,

'gg = , }{ePP −= ;

Else }{tSS TT += , 0=Td , ''ggdd EE −+= , ''gg =
, }{tPP −= .

Step 7: If Φ≠P then go to step 2.
Step 8: If there is a straddling job (it must be the last job

in TS), then EE SS =' , TT SS =' ,

j
ESj

pdg ∑ ∈
−= '' ,),,'(' '' TE SSgS = .

 If)()'(SfSf < then 'gg = .
End of the algorithm.

The MHRM heuristic is a modified version of HRM heuristic
presented in Hino et al. [1]. The main difference between
HRM and MHRM heuristics is due to the calculation of the
inserted idle time g in Step 1 such that

),0max{
1

∑
+

×−=
=

n

j jj

jHdg
βα

β
 (2)

instead of)*5.0,0max{ Hdg −= in Hino et al. [1]. By
doing so, the inserted idle time completely depends on the
particular instance. It implies that if the total tardiness
penalty of a particular instance is greater than the total
earliness penalty of that instance (∑ ∑> jj αβ), the

inserted idle time would be larger for that particular instance.
Hence more jobs would be completed before the due date. In
other words, more jobs would be early. Since ∑ ∑> jj αβ ,

the total penalty imposed on the fitness function would be less
than the one used in the HRM heuristic. In addition, the
following modification is made in Step 3. As shown in Fig. 1,
if the distance between the possible completion time of
candidate job t and the due date is less than or equal to zero,
both the start time and the completion time of the job t are
before or at the due date, i.e., the job t is not a straddling job.
In our algorithm, 0≤− t

t pT is employed instead of 0≤tT

because 0≤− t
t pT implies that the job t is a straddling

job. In this case, the adjustment of the idle time for the end of
the space after the due date through Step 6 should be made.
Accordingly, necessary modifications are also made in Step
5, 6, and 8.

a. End of the space after the due date in the HRM heuristic

b. End of the space after the due date in the MHRM heuristic

Fig.1. Difference Between HRM and MHRM Heuristics.

III. DISCRETE DIFFERENTIAL EVOLUTION ALGORITHM

Currently, there exist several mutation variations in DE.
The DE/rand/1/bin schemes of Storn & Price [14] is
presented below. The DE algorithm starts with initializing the
initial population with the size of NP. Each individual has an
n-dimentional vector with parameter values determined
randomly and uniformly between predefined search range.

To generate a mutated individual, the DE mutates vectors
from the target population by adding the weighted difference
between two randomly selected target population members to
a third member as follows:

()111 −−− −+= t
cj

t
bj

t
aj

t
ij xxFxv (3)

where a , b , and c are three randomly chosen individuals

from the population such that ()()NPcba ,..,1∈≠≠ . 0>F
is a mutation scale factor which affects the differential
variation between two individuals.

Following the mutation phase, the crossover operator is
applied to obtain the trial individual such that:

273

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

⎪⎩

⎪
⎨
⎧ =≤

= − Otherwisex
DjorCRrifv

u t
ij

j
t

ij
t
ijt

ij ,
,

1 (4)

where jD refers to a randomly chosen dimension (j=1,..,n),
which is used to ensure that at least one parameter of each
trial individual t

iju differs from its counterpart in the previous

generation 1−t
iju . CR is a user-defined crossover constant in

the range [0, 1], and t
ijr is a uniform random number between

0 and 1. In other words, the trial individual is made up with
some parameters of mutant individual, or at least one of the
parameters randomly selected, and some other parameters of
the target individual.

To decide whether or not the trial individual t
iju should be

a member of the target population for the next generation, it is
compared to its counterpart target individual 1−t

ijx at the

previous generation. The selection is based on the survival of
the fitness among the trial population and target population
such that:

() ()
⎪⎩

⎪
⎨
⎧ ≤

= −

−

otherwisex
xfufifu

x t
ij

t
ij

t
ij

t
ijt

ij ,
,

1

1
 (5)

The pseudo code of the DE algorithm is given in Fig. 2.

Initialize parameters
Initialize target population
Evaluate target population
Do {
 Obtain mutant population
 Obtain trial population
 Evaluate trial population
 Make selection

Apply local search (optional)
While (Not Termination)

Fig. 2. Standard DE Algorithm.

It is obvious that standard DE equations cannot be used to
generate discrete/binary values since positions are
real-valued. Instead we propose a DDE algorithm whose
solutions are based on binary 0-1 values. In the DDE
algorithm, the target population is constructed based on the
binary 0-1 values as represented by []NP21i X,,,X,XX = .
For the mutant population the following equations can be
used:

()1
1

−⊕= t
ik

t
i XFmV (6)

()1
1

−⊕= t
ak

t
i XFmV (7)

()1
1

−⊕= t
k

t
i GFmV (8)

where 1−t
aX is randomly chosen individual from the target

population; 1−tG is the global best solution; 1m is the
mutation probability; and kF is the mutation operator with
the mutation strength of k. In other words, a uniform random
number r is generated between [0, 1]. If r is less than 1m then
the mutation operator is applied to generate the mutant

individual. In this paper, the ()1
1

−⊕= t
k

t
i GFmV version of

mutation operators is employed in order to provide
information exchange between the target population member
and the global best. In the mutation equation, k represents the
mutation strength, which is the key to the success of the
algorithm. The higher the value of k is, the higher the
possibility that the algorithm would have excessive
randomness. On the other hand, the lower the value of k is, the
lower the possibility that the algorithm would escape from the
local minima. So care must be taken in the choice of the value
of the mutation strength.

Following the mutation phase, the trial individual is
obtained such that:

()t
i

t
i

t
i VXCRcU ,1

1
−⊕= (9)

where CR is the crossover operator, and 1c is the crossover
probability. In other words, the ith individual is recombined
with its corresponding mutant individual to generate the trial
individual.

Finally, the selection is based on the survival of the fitness
among the trial population and target population such that:

() ()
⎪⎩

⎪
⎨
⎧

≤≤
≤

= −

−

NPi
otherwiseX

XfUfifUX t
i

t
i

t
i

t
it

i 11

1
(10)

It is important to note that a binary solution representation is
employed for the problem on hand. The t

ijx , the jth dimension

of the particle t
iX , denotes a job; if 0=t

ijx , the job j is
completed before or at the due date, which belongs to the set

ES ; if 1=t
ijx , the job j is finished after the due date, which

belongs to the set TS . The binary representation is unique in
terms of determining the early and tardy job sets. The
individual representation is shown in Table I. From Table I, it
is trivial to see that the jobs 1J , 4J and 6J belong to the early
job set; and the jobs 2J , 3J and 5J belong to the tardy job set.

TABLE I

SOLUTION REPRESENTATION
Jobs, j 1 2 3 4 5 6

ijx 0 1 1 0 1 0

To be employed in the DDE algorithm, the PTL crossover
proposed in Pan et al. [21] is employed. An illustration of the
two-cut PTL crossover is shown in Table I.

TABLE II

PTL CROSSOVER OPERATOR

Two-Cut PTL Crossover Two-Cut PTL Crossover

P1 0 0 1 0 1 P1 1 0 1 0 1

P2 1 1 1 0 1 P2 1 0 1 0 1

O1 0 1 1 0 1 O1 0 1 1 0 1

O2 1 1 1 0 1 O2 1 0 1 0 1

274

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

In the PTL crossover, a block of strings from the first
parent is determined by two cut points randomly. This block
is either moved to the right or left corner of the offspring.
Then the offspring is filled out with the remaining strings
from the second parent. In this paper, one of these two unique
offspring is chosen randomly with an equal probability.

 In addition, a binary swap (Bswap) mutation operator was
presented in both mutation operator and the local search. The
Bswap operator consists of two steps:
• Generate two random integers, u and v, in the range [1,n];
• if t

iv
t
iu xx = , then 2mod)1(+= t

iu
t
iu xx ;

else 2mod)1(+= t
iu

t
iu xx and 2mod)1(+= t

iv
t
iv xx .

To figure out how the individuals are updated in the DDE
algorithm, an example is illustrated in Table III. Assume that
the mutation and crossover probabilities are 1.0, two-cut PTL
crossover and Bswap mutation operators are employed.
Given the individual and the global best solution, the global
best is first mutated. For example, in Table III, the dimension
u=1 and v=3 are chosen randomly. Since both dimensions
have the value of zero, the value of the dimension u is flipped
from 0 to 1, thus generating the mutant individual iV . Then
the individual iV is recombined with its corresponding
individual in the target population to generate the trial
individual iU . Finally, the target individual iX is compared
to the trial individual iU to determine which one would
survive for the next generation based on the survival of
fitness.

TABLE III
INDIVIDUAL UPDATE

iX 1 0 1 0 1

G 0 1 0 1 0

Binary Swap Mutation

G 0 1 0 1 0

iV 1 1 0 1 0

Two-Cut PTL Crossover f

iX 1 0 1 0 1 45

iV 1 1 0 1 0

iU 1 1 0 0 1 40

Selection

() () So,UX45Xf40Uf iiii ==<=

iX 1 1 0 0 1

After applying the DDE operators, the sets ES and TS are
determined from the binary representation. Then every fitness
calculation follows property (2). Note that the set TS might
contain a straddling job. If there is a straddling job, the first
job in the early job set is started in time zero. After
completing the last job of the early job set, the straddling job
and the jobs in the tardy job set are sequenced. On the other
hand, if there is no straddling job, the completion time of the

last job in the early job set is matched with the due date and
the processing in the tardy job set is followed immediately.

The neighborhood search in this study was based on the
simple Bswap neighborhood. It should be noted that the
following local search was applied to the global best solution,

tG , at each iteration t. The pseudo code of the local search is
given in Fig.3.

LocalSearch(){
 s=perturbation(tG)
 for (loop=1;loop≤size;loop++){
 flag=true
 while (true){
 s1 ←swap(s)
 if f(s1) ≤ f(s) then s ← s1;
 else flag=false}}
 if f(s) ≤ f(tG)then tG ← s}
Fig.3. Local Search Employed

In the neighborhood search algorithm above, s refers to the
perturbed global best solution tG at each generation t. That is,
the global best solution is perturbed by swapping two jobs
randomly; one from the tardy set, and the other from the early
set. Then the Bswap operator was applied to the perturbed
solution s. The size of the local search was set to
size=min(30n,6000).

IV. EXPERIMENTAL RESULTS

The DDE algorithm was coded in Visual C++ and run on
an Intel P IV 3.0 GHz PC with 512MB memory. Regarding
the parameters of the DDE algorithms, 1m and 1c are taken
as 0.8. Insert mutation operator (F) with the mutation strength
of k=3 is used. As a crossover operator, the two-cut PTL is
employed. The population size was 20. One of the solutions
in the population is constructed with the MHRM heuristic, the
rest is constructed randomly. The proposed DDE algorithm
was applied to the benchmark problems that Biskup &
Feldmann [2] developed a total of 280 instances ranging from
10 to 1000 jobs and restricting the common due date from 0.2
to 0.8 of the sum of all processing times. These instances can
be downloaded at the OR-Library web site
http://www.ms.ic.ac.uk/jeb/orlib/ schinfo.html.

10 runs were carried out for each problem instance to
report the statistics based on the percentage relative
deviations (∆) from the upper bounds in Biskup & Feldmann
[2]. To be more specific, avg∆ was computed as follows:

()
∑

=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=∆

R

i ref

refi
avg R

F
FF

1
/

100*
 (11)

where iF , refF , and R were the fitness function value
generated by the DDE algorithm in each run, the reference
fitness function value generated by Biskup & Feldmann [2],
and the total number of runs, respectively. For convenience,

min∆ , max∆ , and std∆ denote the minimum, maximum, and
standard deviation of percentage relative deviation in fitness

275

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

function value over R runs, respectively. For the
computational effort consideration, tmin, tmax, avgt ,and tstd

denote the minimum, maximum, average time and the
standard deviation until termination. The maximum
generation number is fixed to 50 and the DDE algorithm is
terminated when the global best solution is not improved in
10 consecutive generations.

The computational results of the MHRM heuristic and the
DDE algorithm are given in Table VII and Table VIII,
respectively. Table VII shows that the MHRM heuristic is
superior to its counterpart HRM heuristic in terms of relative
percent improvement.

TABLE IV
COMPARISON OF RESULTS (avg∆)

 F&V DPSO DDE

n h
avg∆ std∆ avg∆ std∆ avg∆ std∆

20 0.2 -3.84 0.03 -3.83 0.02 -3.84 0.00
 0.4 -1.63 0.03 -1.62 0.02 -1.63 0.00
50 0.2 -5.65 0.03 -5.68 0.03 -5.68 0.01
 0.4 -4.64 0.02 -4.63 0.05 -4.65 0.01
100 0.2 -6.18 0.02 -6.18 0.02 -6.19 0.01
 0.4 -4.94 0.03 -4.90 0.04 -4.93 0.01
200 0.2 -5.73 0.02 -5.77 0.01 -5.76 0.01
 0.4 -3.79 0.02 -3.72 0.02 -3.72 0.02
500 0.2 -6.40 0.00 -6.41 0.01 -6.41 0.01
 0.4 -3.52 0.01 -3.54 0.01 -3.54 0.02
Avg -4.63 0.02 -4.63 0.02 -4.64 0.01

Most recently, Hino et al. [1] developed a TS, GA and
hybridization of both of them denoted as HTG and HGT. In
addition, Pan et al. [21] developed a discrete particle swarm
optimization (DPSO) algorithm to solve the same benchmark
suite. Since Hino et al. [1] and Pan et al. [21] employed the
same benchmark suite of Biskup & Feldmann [2], we
compare our results to Feldmann & Biskup [9], Pan et al. [21]
and Hino et al. [1]. Since the DDE algorithm is stochastic, its
minimum, maximum, average, and standard deviation of the
10 runs for each instance should be given to evaluate its
performance. However, Hino et al. [1] conducted 10 runs and
picked the best out of 10 runs even though their tabu search
contains a random component when updating the idle time. It
implies that no information is at present about the average,
and worst case behavior as well as the robustness of their
algorithm. For this reason, we compare the minimum
percentage relative deviation (min∆) of the DDE algorithm to
Hino et al. [1] since only the minimum deviation is reported,
and the average percentage relative deviation (avg∆) of the
DDE algorithm to Feldmann & Biskup [9] where the average
percentage relative deviations are given for only 20 to 500
jobs with h=0.2 and 0.4. Note that in Feldmann & Biskup [9],
the average percentage improvements and their standard
deviations are given using the best solution from all the
heuristics, namely, ES, SA, TA and TAR.

TABLE V.

COMPARISON OF RESULTS (min∆)

n h DPSO TS GA HTG HGT DDE
0.2 0.00 0.25 0.12 0.12 0.12 0.00
0.4 0.00 0.24 0.19 0.19 0.19 0.00
0.6 0.00 0.10 0.03 0.03 0.01 0.00

10 0.8 0.00 0.00 0.00 0.00 0.00 0.00
0.2 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84
0.4 -1.63 -1.62 -1.62 -1.62 -1.62 -1.63
0.6 -0.72 -0.71 -0.68 -0.71 -0.71 -0.72

20 0.8 -0.41 -0.41 -0.28 -0.41 -0.41 -0.41
0.2 -5.70 -5.70 -5.68 -5.70 -5.70 -5.69
0.4 -4.66 -4.66 -4.60 -4.66 -4.66 -4.66
0.6 -0.34 -0.32 -0.31 -0.27 -0.31 -0.34

50 0.8 -0.24 -0.24 -0.19 -0.23 -0.23 -0.24
0.2 -6.19 -6.19 -6.17 -6.19 -6.19 -6.19
0.4 -4.94 -4.93 -4.91 -4.93 -4.93 -4.94
0.6 -0.15 -0.01 -0.12 0.08 0.04 -0.15

100 0.8 -0.18 -0.15 -0.12 -0.08 -0.11 -0.18
0.2 -5.78 -5.76 -5.74 -5.76 -5.76 -5.77
0.4 -3.75 -3.74 -3.75 -3.75 -3.75 -3.75
0.6 -0.15 -0.01 -0.13 0.37 0.07 -0.15

200 0.8 -0.15 -0.04 -0.14 0.26 0.07 -0.15
0.2 -6.42 -6.41 -6.41 -6.41 -6.41 -6.43
0.4 -3.56 -3.57 -3.58 -3.58 -3.58 -3.56
0.6 -0.11 0.25 -0.11 0.73 0.15 -0.11

500 0.8 -0.11 0.21 -0.11 0.73 0.13 -0.11
0.2 -6.76 -6.73 -6.75 -6.74 -6.74 -6.76
0.4 -4.37 -4.39 -4.40 -4.39 -4.39 -4.38
0.6 -0.06 1.01 -0.05 1.28 0.42 -0.06

1000 0.8 -0.06 1.13 -0.05 1.28 0.40 -0.06

Avg -2.15 -2.01 -2.12 -1.94 -2.06 -2.15

As seen in Table IV, the DDE algorithm performed slightly
better than Feldmann & Biskup [9] and Pan et al. [21] in
terms of the average percentage relative improvement and the
standard deviation. For this reason, one can conclude that the
DDE algorithm was at least as good as all the metaheuristics
tested in Feldmann and Biskup [9] and the DPSO algorithm in
Pan et al. [21].

Table V summarizes the computational results to be
compared to those in both Hino et al. [1] and Pan et al. [21].
As seen in Table V, the DDE algorithm outperforms almost
all the metaheuristics of Hino et al. [1] in terms of the
minimum percentage relative deviation. Besides the
minimum and average performance of the DDE algorithm
was better than all the metaheuristics in Hino et al. [1], it is
also interesting to note that as seen in Table VIII, even the
maximum percentage relative deviation of the DDE
algorithm was better than TS, HGT and HTG algorithms of
Hino et al. [1]. In other words, the worst case performance of
the DDE algorithm was better than Hino et al. [1]. In
comparison of DDE to DPSO, both algorithms generated the
same average relative percent deviations. Regarding the CPU
time requirement of the DDE algorithm, maxt was not more
than 1.09 seconds on overall mean whereas Hino et. al. [1]

276

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

reported that their average CPU time requirement was 21.5
and 7.8 seconds for TS and hybrid strategies, respectively. In
addition, the DDE algorithm was so robust such that the mean

std∆ was 0.00. To sum up, all the statistics show and prove
that the DDE algorithm was superior to all the metaheuristics
presented in Hino et al. [1].

The final comparison is due to HGT algorithm of Hino et
al. [1] and TAR algorithm of Feldmann & Biskup [9]. In
Feldmann & Biskup [9], the TAR algorithm showed superior
performance among the five metaheuristics tested. When
compared to the TAR and HGT algorithms, the performance
of the DDE algorithm along with the DPSO algorithm was
superior to both of them as shown in Table VI.

TABLE VI.
COMPARISON OF RESULTS (min∆)

n h DPSO HGT TAR DDE

10 0.2 0.00 0.12 0.00 0.00
 0.4 0.00 0.19 0.00 0.00
20 0.2 -3.84 -3.84 -3.84 -3.84
 0.4 -1.63 -1.62 -1.63 -1.63
50 0.2 -5.70 -5.70 -5.64 -5.69
 0.4 -4.66 -4.66 -4.62 -4.66
100 0.2 -6.19 -6.19 -6.16 -6.19
 0.4 -4.94 -4.93 -4.86 -4.94
200 0.2 -5.78 -5.76 -5.72 -5.77
 0.4 -3.75 -3.75 -3.63 -3.75
500 0.2 -6.42 -6.41 -6.39 -6.43
 0.4 -3.56 -3.58 -3.49 -3.56
1000 0.2 -6.76 -6.74 -6.72 -6.76
 0.4 -4.37 -4.39 -4.29 -4.38

Avg -4.11 -4.09 -4.07 -4.11

V. CONCLUSIONS

DE is one of the recent evolutionary optimization methods. It has
been widely used in a wide range of applications. To the best of
our knowledge, this is the first reported application of DDE
algorithm to the single-machine total earliness and tardiness
penalties with a common due date problem in the literature.
Unlike the standard DE, the DDE algorithm employs a binary
solution representation and works on a discrete domain. In
addition, the DDE algorithm is hybridized with the
neighborhood search to solve well-known benchmark suites
in the literature.

The proposed DDE algorithm was applied to the
benchmark problems that Biskup and Feldmann [2]
developed a total of 280 instances ranging from 10 to 1000
jobs and restricting the common due date from 0.2 to 0.8 of
the sum of all processing times. The computational results
show that the proposed DDE algorithm generated better
results than the existing approaches in the literature.

As the future work, the authors have already solved the
same problem with the DPSO algorithm. In addition, authors
have also employed the binary version of continuous PSO
algorithm and already solved the same problem. A detailed
analysis of DPSO, DDE and Binary PSO algorithms with a

variety of local search algorithms will be presented in the
literature with comparisons to the very recent approaches
such as A. C Nearchou [12] and S-W Lin et al. [13] in the near
future.

Acknowledgement: Dr P. N. Suganthan acknowledges the
financial support offered by the A*Star (Agency for Science,
Technology and Research) under the grant # 052 101 0020.

REFERENCES
[1] C. M. Hino, D. P. Ronconi, and A. B. Mendes, “Minimizing earliness

and tardiness penalties in a single-machine problem with a common due
date,” European Journal of Operational Research, vol. 160, pp.
190-201, 2005.

[2] D. Biskup and M. Feldmann, “Benchmarks for scheduling on a single
machine against restrictive and unrestrictive common due dates,”
Computers & Operations Research, vol. 28, pp. 787-801, 2001.

[3] T. C. E. Cheng, and H. G. Kahlbacher, “A proof for the longest/job/first
policy in one/machine scheduling,” Naval Research Logistics, vol. 38,
pp. 715-720, 1990.

[4] N. G. Hall, W. Kubiak, and S. P. Sethi, “Earliness-tardiness scheduling
problems II: weighted deviation of completion times about a restrictive
common due date,” Operations Research, vol. 39, no. 5, pp. 847-856,
1991.

[5] R. J. W. James and J. T. Buchanan, “Using tabu search to solve the
common due date early/tardy machine scheduling problem,”
Computers & Operations Research, vol. 24, pp. 199-208, 1997.

[6] G. Wan and B. P. C. Yen, “Tabu search for single machine with distinct
due windows and weighted earliness/tardiness penalties,” European
Journal of Operational Research, vol. 142, pp. 271-281, 2002.

[7] C. Y. Lee and J. Y. Choi, “A genetic algorithm for jobs sequencing with
distinct due dates and general early-tardy penalty weights,” Computers
& Operations Research, vol. 22, pp. 857-869, 1995.

[8] C. Y. Lee and S. J. Kim, “Parallel genetic algorithms for the
earliness/tardiness job scheduling problem with general penalty
weights,” Computers & Industrial Engineering, vol. 28, pp. 231-243,
1995.

[9] M. Feldmann and D. Biskup, “Single-machine scheduling for
minimizing earliness and tardiness penalties by meta-heuristic
approaches,” Computers & Industrial Engineering, vol. 44, pp.
307-323, 2003.

[10] R. M’Hallah, “Minimizing total earliness and tardiness on a single
machine using a hybrid heuristic,” Computers & Operations Research,
to appear.

[11] Y. Hendel and F. Sourd, “Efficient neighborhood search for the
one-machine earliness-tardiness scheduling problem,” European
Journal of Operational Research, to appear.

[12] A. C Nearchou, “A differential evolution approach for the common due
date early/tardy job scheduling problem” Computers & Operations
Research, to appear.

[13] S-W Lin, S-Y Chou, and K-C Ying, “A sequential exchange approach
for minimizing earliness-tardiness penalties of single-machine
scheduling with a common due date,” European Journal of Operational
Research, to appear.

[14] Storn, R. and Price, K. (1995) “Differential Evolution – a Simple and
Efficient Adaptive Scheme for Global Optimization over Continuous
Spaces,” Technical Report TR-95-012, ICSI, 1995.

[15] Storn, R. and Price, K. (1997) “Differential Evolution - A Simple and
Efficient Heuristic for Global Optimization over Continuous Space,”
Journal of Global Optimization, vol. 11, pp. 341-359.

[16] Corne, D., Dorigo, M., and Glover, F. (eds.) (1999) “Part Two:
Differential Evolution,” New Ideas in Optimization, McGraw-Hill, pp.
77-158.

[17] Lampinen, J. (2001) “A Bibliography of Differential Evolution
Algorithm,” Technical Report, Lappeenranta University of
Technology, Department of Information Technology, Laboratory of
Information Processing.

[18] Babu, B. V. and Onwubolu, G. C. (eds.) (2004) New Optimization
Techniques in Engineering, Springer Verlag.

277

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

[19] Price, K., Storn, R., and Lampinen, J. (2006) Differential Evolution – A
Practical Approach to Global Optimization, Springer-Verlag.

[20] Q. K. Pan, M. F. Tasgetiren, and Y. C. Liang, “A discrete particle
swarm optimization algorithm for single machine total earliness and
tadiness problem with a common due date”, in Proceedings of the
World Congress on Evolutionary Computation, CEC2006, Vancouver,
Canada, pp. 11050-11057.

[21] Q. K. Pan, M. F. Tasgetiren, and Y. C. Liang, “Minimizing total
earliness and tardiness penalties with a common due date on a single
machine using a discrete particle swarm optimization algorithm”, Ant
Colony Optimization and Swarm Intelligence. ANTS2006. LNCS 4150,
Springer-Verlag, 2006, pp. 460-467

TABLE VII.
STATISTICS FOR THE MHRM HEURISTIC (∆)

 h 10 20 50 100 200 500 1000 Mean
 0.2 1.53 -3.97 -5.33 -6.02 -5.63 -6.32 -6.68 -4.50
 0.4 8.68 0.46 -3.87 -4.42 -3.51 -3.46 -4.26 -1.48

HRM 0.6 19.27 9.78 7.59 4.69 3.71 2.53 3.23 7.26
 0.8 22.97 13.52 8.10 4.70 3.71 2.53 3.23 8.39
 Mean 13.11 5.17 1.62 -0.26 -0.43 -1.18 -1.12 2.42
 h 10 20 50 100 200 500 1000 Mean
 0.2 1.00 -3.57 -5.45 -6.02 -5.62 -6.32 -6.69 -4.67
 0.4 5.91 -0.49 -4.03 -4.27 -3.52 -3.45 -4.27 -2.02

MHRM 0.6 2.77 2.02 1.51 1.50 1.71 1.41 1.55 1.78
 0.8 3.95 4.07 2.13 1.43 1.71 1.41 1.55 2.32
 Mean 3.41 0.51 -1.46 -1.84 -1.43 -1.74 -1.97 -0.65

TABLE VIII.
STATISTICS FOR THE DDE ALGORITHM

 ∆ Time Until Termination
n h

min∆ max∆ avg∆ std∆ mint maxt avgt stdt

0.2 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
0.4 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01
0.6 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

10

0.8 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01
0.2 -3.84 -3.84 -3.84 0.00 0.00 0.02 0.01 0.01
0.4 -1.63 -1.63 -1.63 0.00 0.00 0.02 0.01 0.01
0.6 -0.72 -0.72 -0.72 0.00 0.00 0.02 0.01 0.01

20

0.8 -0.41 -0.41 -0.41 0.00 0.00 0.02 0.00 0.01
0.2 -5.69 -5.67 -5.68 0.01 0.02 0.04 0.03 0.01
0.4 -4.66 -4.62 -4.65 0.01 0.03 0.05 0.04 0.01
0.6 -0.34 -0.34 -0.34 0.00 0.02 0.04 0.03 0.01

50

0.8 -0.24 -0.24 -0.24 0.00 0.02 0.04 0.03 0.00
0.2 -6.19 -6.17 -6.19 0.01 0.10 0.23 0.15 0.04
0.4 -4.94 -4.91 -4.93 0.01 0.11 0.29 0.18 0.06
0.6 -0.15 -0.15 -0.15 0.00 0.11 0.16 0.13 0.02

100

0.8 -0.18 -0.18 -0.18 0.00 0.11 0.15 0.12 0.02
0.2 -5.77 -5.74 -5.76 0.01 0.21 0.60 0.34 0.13
0.4 -3.75 -3.68 -3.72 0.02 0.24 0.71 0.42 0.15
0.6 -0.15 -0.15 -0.15 0.00 0.24 0.44 0.32 0.07

200

0.8 -0.15 -0.15 -0.15 0.00 0.24 0.44 0.32 0.06
0.2 -6.43 -6.40 -6.41 0.01 0.55 1.96 1.09 0.45
0.4 -3.56 -3.52 -3.54 0.02 0.71 2.01 1.23 0.45
0.6 -0.11 -0.11 -0.11 0.00 0.78 2.14 1.30 0.44

500

0.8 -0.11 -0.11 -0.11 0.00 0.78 2.13 1.30 0.44
0.2 -6.76 -6.74 -6.75 0.01 1.42 4.40 2.54 1.02
0.4 -4.38 -4.34 -4.36 0.01 1.71 4.90 3.34 1.01
0.6 -0.06 -0.06 -0.06 0.00 1.88 4.89 3.17 1.00

1000

0.8 -0.06 -0.06 -0.06 0.00 1.83 4.89 3.16 1.02
Mean -2.15 -2.14 -2.15 0.00 0.40 1.09 0.69 0.23

278

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

