1-4244-0704-4/07/$20.00 ©2007 IEEE

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

Parameter setting and exploration of TAGS using a
genetic algorithm

Hagit Sarfati Eitan Bachmat Sagit Kedem-Yemini

Abstract— We consider the performance of TAGS, a multi-host
job assignment policy. We use a genetic algorithm to compute the
optimal parameter settings for the policy. We then explore the
performance of the policy using the optimal parameters, when the
job size distribution is a heavy-tailed Bounded Pareto distribution
with parameter «.. We show that TAGS only operates at low inter-
arrival rates. At low rates it is very efficient in comparison with
other standard policies. At high rates TAGS has to be combined
with other policies to achieve good performance. We also show
that the performance is nearly symmetrical around the value
«a = 1, with the best performance when « = 1.

Keywords: Multiple host task assignment, Heavy-tailed distri-
butions, Genetic algorithm.

I. INTRODUCTION

Many installations such as web server farms and com-
puting centers have a multitude of hosts which can serve
any incoming request. There has been a growing body of
research regarding scheduling policies for such multi-host
systems. When the job size distribution is exponential it
is claimed that the Least-work-remaining policy is
optimal, [10]. However, recent empirical data has suggested
that many workloads which are typical of networked systems
are heavy-tailed, rather than exponential, [4], [5], [12]. Heavy-
tailed distributions have very large variance and it is well
known that high variance in job size adversely affects response
time. In the case of unknown job sizes these considerations
have led Harchol-Balter, [6] to suggest a policy where each
host is responsible for a certain range of job sizes, thus
reducing the variance at each host. The policy was named
TAGS (Task Assignment based on Guessing Size). Harchol-
Balter has shown that using two servers such policies can dra-
matically reduce response time in comparison with Random
or Least-Work-Remaining policies when the workload
is heavy-tailed. As noted already in [6] one of the major
problems in exploring TAGS systems with more than two hosts
is to deane the optimal set of ranges. We developed a simple
genetic algorithm which chooses good range parameters. The
algorithm execution time is fairly quick and its performance is
not affected by the number of hosts. It allows the development
of a dynamic version of TAGS for environments in which the

of Indus-
84105.

Hagit Sarfati is an M.Sc student at the Department
trial Engineering, Ben-Gurion University, Beer-Sheva, Israel,
hagitbachmat@yahoo.com

Eitan Bachmat is a member of the Department of Computer Science, Ben-
Gurion University, Beer-Sheva, Israel, 84105. ebachmat@cs.bgu.ac.1il,
tel. +972-8-6477858, fax +972-8-6477650

Sagit Kedem-Yemini is a Ph.D student at the Department of In-
dustrial Engineering, Ben-Gurion University, Beer-Sheva, Israel, 84105.
ksagit@bgu.ac.il

job size distribution changes. Using the parameters chosen by
the genetic algorithm we were able to explore the performance
of TAGS on systems with many hosts. We arrived at many
interesting and illuminating conclusions. In particular, we
determine the optimal number of hosts in a TAGS system
and show that the number is fairly small. We also study
the loads and ranges of the different hosts for various job
size distributions. Following these discoveries we were able
in some cases to develop a mathematical explanation for
the observed phenomenon, [1], which led to a much better
understanding of the complex behavior of TAGS.

The paper is organized as follows:
In section 2, we provide background information on multi-
host scheduling policies and on some heavy-tailed (Bounded
Pareto) job size distributions.
In section 3 we present the genetic algorithm.
In section 4 we present the results of the analysis of TAGS
using the genetic algorithm.
In section 5, we summarize the paper and point to future work.

II. PRELIMINARIES

A. TAGS and other assignment methods

In this paper we consider multi-host assignment policies
in the case where job sizes are not known. We will assume
though, that the job size distribution is known or can be de-
duced by collecting statistics. This is a reasonable assumption
for many current systems. We introduce several policies. The
orst, the TAGS scheduling policy, is the subject of investigation
in this paper. It was introduced in [6]. The main feature of this
policy is variance reduction at the different hosts. For more
on variance reduction policies see [7], [8], [13].

The TAGS policy has been described in, [6], as follows:
Consider hosts numbered 1,...,h. The i’th host, i < h, has
a number s; associated with it, where s; < s9 < ... < Sp_1.
All incoming jobs are dispatched to host 1. They are serviced
in orst come, Orst served (FCES) order. If the job completes
before s; processing time units, it leaves the system. If a job
is not complete after s; time units it is killed and put at the
end of the queue of host 2, where it starts from scratch. More
generally, If a job at host ¢ uses s; time, it is killed and put
at the end of the queue of host ¢ 4+ 1. Each host services jobs
in FCFS order.

In general, given a job size distribution F', the choice of s;,
i =1,...,h — 1, can be used to minimize various objective
functions. The purpose of the genetic algorithm is to and s;
which minimize average response time.

279

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

In addition to TAGS, there are other, more classical assign-
ment policies. We briemy described, some of the better known

policies.

The Random assignment policy assigns each incoming job to
a uniformly random host. The job runs on the assigned host

to completion.

The Round Robin assignment policy assigns the ’th arriv-

ing job to host (i — 1 mod h) + 1.

The Least-Work-Remaining assignment policy assigns
each incoming job to the host with the smallest amount
of remaining work at the time of arrival. It is known that
the Least-Work-Remaining policy can be implemented
without knowledge of job sizes using a central queue dis-

patcher.

These classical policies share some basic features. They are
all work preserving, namely, no jobs are killed. They are all
load balanced. The job size distribution experienced by each
individual host is the same as the original job size distribution

entering the system.

In contrast, TAGS is not work preserving, hence, the actual
load experienced by a TAGS system is greater than the
incoming load. Depending on the choice of range parameters,
si» TAGS may not be load balanced. We will see later on
that in many cases, the optimal choice of parameters may
lead to strongly unbalanced systems. The job size distribution
experienced by individual hosts in a TAGS system has much
smaller range and variance than the original input stream. This
last property is the key to the success of TAGS in certain

instances.

We can also consider hybrid assignment policies which
combine TAGS with Random (or Round robin). In an
hybrid (h,l) policy the hosts are divided into [groups,
each containing A hosts. Each group is assigned jobs using
Random, while jobs which are assigned to a given group are
processed using TAGS assignment on the h hosts of the group.
The hybrid policies have the same basic properties as TAGS.

B. Bounded Pareto distributions

The job size distributions which were used in our exper-
iments were Bounded Pareto, see [6] for more details. A
distribution is said to be Bounded Pareto if its density f has

the form

f(s) = st

in a bounded range £ < s < pand 0 < a < 2. The
constant, ¢ > 0, is a normalizing constant which ensures
that [: f(s) ds = 1. A simple computation shows that the

normalizing constant is
k.a

ST

c

We denote this Bounded Pareto distribution by B(k, p,). We

also let 7 = p/k denote the range of the distribution.

III. THE GENETIC ALGORITHM FOR OPTIMIZING THE
CHOICE OF S

In this section we describe a simple, mutation based, genetic
algorithm for onding the values of s;, ¢ = 1,...,h—1, which
optimize response time in a TAGS system with & hosts and
job size distribution F'. For an analysis of mutation based
algorithms, see [2], [14]. Having a fast and simple algorithm
for onding the optimal parameters for a TAGS system is
important since job size distributions may vary in time. By
keeping track of job sizes in a time window one can employ
the genetic algorithm to dynamically and the best parameters.
This is ideal for situations in which the distribution does not
change abruptly. We may expect that the parameter values
from previous data are still efocient.

Other methods such as gradient descent can also be applied
to this problem, when there is a reasonable analytical approx-
imation to the objective function. As we will show, in our
case gradient descent can only be applied with great difoculty.
The simplicity of the genetic procedure and the mexibility
of considering non-analytical functions, or dynamic objective
functions, give it a distinct advantage.

A. The objective function

The objective function for the algorithm was the average
waiting time for jobs in the system. The average waiting time
has no exact analytical formula because the input stream to
the second host and beyond is not Poisson. Instead we use
the approximation which assumes a Poisson input stream to
all hosts. The approximation is conservative since the input
streams, to all but the morst host, tend to be more regular than
Poisson, having near constant inter-arrivals. Such input streams
lead to better response times than a Poisson stream. The
approximation we use is based on the Pollaczek-Khinchine
formula and is taken from the appendix to [6]. Computing
the objective function with more precision would require,
simulating the TAGS policy. While this is possible, it would
be time consuming and would slow down the computations by
orders of magnitude. In the present case, when a reasonable
and conservative approximation exists, it is probably best to
use simulations only for local searching, after the genetic
algorithm has identined good candidate solutions.

The input to the objective function is

e h - The number of hosts.

e F'- A job size distribution which in our case is a Bounded
Pareto job size distribution B(k, p, «).

e p - The average incoming load-per-host. The value p
represents the load per host for a load balanced, work
preserving system. The actual loads in the TAGS system
will be different.

o A set of parameters, £ < s1 < $2 < ... < §—1 < p for
the TAGS algorithm.

The objective function is calculated as follows.
1) We compute the orst and second moments of B(k, p, «).
ko k,j—a _ pj—a

= ey

B(X7) = 2

280

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

2)

3)

4)

5)

0)

7

We calculate the inter-arrival rate

1
A= ——=h
BX)"
We compute, p;, the portion of jobs which pass through
host ¢ but not through host 7 + 1 in the TAGS system.

These are precisely the jobs with size s; < z < 5,41

k:a [e3 @
= 7ka(5i—l - s7)
1-(3)
We also compute the portion of jobs which pass through

host 4, that is, jobs of size s; < x.

Vist ke a a
P = m(si—l -p%)
p

We compute the arst and second moments of the distri-
bution of jobs which visit host ¢ but not host ¢ 4 1. This
is the same as formula (2) with s;_; and s; replacing k
and p respectively.

3)

Di C))

®)

8y sy s ®
Si—
1= (=)
The jobs which pass through host ¢ consist of those
which do not pass onto host 7 + 1 and those who do.
The former have average service time F(X}) which is
given by formula (6), while the latter have service time
s; at host 7. We conclude that the average waiting time
at host 7 is the weighted average
pi Pi
pmwa(Xl) + (1 - m}sit) i
K3 K3
Similarly for the second moment
E((X’Z/isit)Q) _ Di E(Xlz) + (1 P)95 8)

visit visit
i i

B(X]) =

(6)

a—j

We compute the arrival rate of host ¢

Ai = Ap; &)
and the utilization of host ¢
pi = NE(X]™) (10)

Since we are assuming a Poisson input stream we may
apply the Pollaczek-Khinchine formula to obtain the
waiting time at host ¢

)\zE(XZQ(MSZt))
2(1 = pi)
The waiting time of a job which mnishes at host 7 is then

E(Wivisit) — (11)

E(W;) =Y E(Wp) (12)
j=1

and onally the average waiting time for all jobs is the
weighted average

13)

E(W) is our target function.

The objective function is computed in steps. If we were to
write directly the average waiting time E(W) as a function
of the input we would obtain an extremely long expression.
Manipulating such huge expressions is difocult. In particular,
differentiating such expressions without error can only be
done using specialized, software. This makes gradient methods
much harder to implement.

B. The genetic algorithm

We describe the genetic algorithm which we used for
optimizing the expression E(W), described above. The al-
gorithm uses only mutations, without a cross over operator.
Other applications of mutation-only or mutation-based genetic
algorithms can be found in [3], [9], [11], among others.
In addition to mutations, we employ a very basic elitism
mechanism.

The original algorithm worked as follows:

1) The population in each iteration consists of n chromo-
somes.

2) Each chromosome is a sequence k < s1 < 53 < ... <
Sp—1 < p of possible values for the s;.

3) There is a given number m of reserved chromosomes.
A reserved chromosome is one that passes unchanged
to the next generation according to rules which are
described below. This reservation rule is our implemen-
tation of elitism.

4) In each iteration, all the non reserved chromosomes

undergo the following mutation:
An integer value 1 < ¢ < h — 1 is chosen uniformly.
The value s; in the chromosome is replaced by a new
value s°* which is chosen uniformly in the range
[si—1, Si+1]. All the remaining values in the chromosome
remain unchanged.

5) After all the mutations have been performed, the objec-
tive function is calculated for all chromosomes.

6) The population is ranked according to the objective func-
tion. The m chromosomes with the top scores are moved
automatically to the next generation and are tagged as
reserved chromosomes. Each chromosome is assigned a
probability ¢;. The ¢’th ranked chromosome is assigned
the probability g; = "= —01=0% " Afier that the
entire population is sampled n —m times, including the
reserved chromosomes. The n—m chosen chromosomes,
together with the m reserved chromosomes constitute
the next generation.

7) The process is repeated until no improvement in the best
score is found for a given number of generations.

The algorithm as described above had difoculty dealing
with a very large range » which is typical of applications.
Specincally, the mutation process, as described in step 4, was
unable to explore the range using the uniform distribution. The
problem was resolved by working with logarithmic values. The
mutation step 4 is replaced by:

281

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

4’) An integer value 1 < ¢ < h — 1 is chosen
uniformly. we choose a value <~ uniformly in the range
[logi0(si—1),l0g10(si+1)]. The value s; in the chromosome
is replaced by the new value s = 107. All the remaining
values in the chromosome remain unchanged.

We note that a uniform distribution in logarithmic values
means that each order of magnitude has the same probability
of being chosen. We found that the new version performed
very well regardless of range size.

C. Performance of the genetic algorithm

Algorithm Performance
35
—

30

25
gl
2 15

10 I

5

089 100- 200 300- 400- 500- 60O 700- 800- 900
199 299 3% 499 599 B99 V99 899 999
Generations
Fig. 1. Number of generations to stabilization.
Waiting time by generation

3500

3000 A

2500 4
£
i 2000 -
2
§1EDD-

500 - =

o R i SRl el

10 20 30 40 50 G0 70 a0 a0 100
Generations

Fig. 2. Waiting time reduction by generation.

Figures 1 and 2 show the rate in which the genetic algorithm
reaches a stable state, with 8 hosts and « = 0.9. Figure
1 shows the number of generations (with population size
100) required to obtain an objective function value within
10% of the best value found after 10000 generations. The
histogram shows the results for 100 different runs. As can
be seen the total number of computations is usually less than
50,000 (generations * population size) and in all cases was
less than 105. In comparison, the size of the search space is
about 10%4/8! ~ 3 x 10'8. Figure 2 shows the best value of

the objective function over successive generations for several
randomly chosen runs. Again, we see that the algorithm nearly
reaches its best value after less than 100 generations.

D. Localizing the genetic algorithm

We also employed a localized version of the genetic algo-
rithm. The localized version differs from the original genetic
algorithm by replacing step 4’ by:

4”) An integer value 1 < ¢ < h — 1 is chosen uniformly.
we choose a value v in the range [log1o(si—1),l0g10(Si+1)]
using a normalized Gaussian with cutoffs, centered at s;. The
value s; in the chromosome is replaced by the new value
53¢ = 107. All the remaining values in the chromosome
remain unchanged.

The choice of a Gaussian centered at s; means that the
new value s7*°“ chosen in step 4” will tend to be closer to
s; than a new value chosen according to 4°. Such a strategy
makes sense near a locally optimal value. Conversely, if this
strategy works better than the basic version it may provide
an indication that we are close to an optimal value. The
disadvantage of the localized version is that it explores less
at the initial stages of the search, therefore, takes longer to
stabilize. Consequently we combined the 2 versions. We ran
the basic genetic algorithm until the waiting time seemed
to stabilize. We then ran the localized version, starting with
the last generation of the basic algorithm until it seemed to
stabilize.

Extra
Local kL iterations k!
alpha Base WT Search WT Improvement WT Improvement
0.2 4803276055 2705591301 43.67 4174663675 13.09
03 | 428047446 399457399 9.02 407541542 479
05 20654555 2027553 1.29 2830407 1.18
06 253806 283614 0.07 283616 0.o7
07 345834 347N 0.3z 34729 0.30
a8 4738 4738 0.0o 4738 0.oo
] 811 a0s 0.34 a0s 0.30
1 212 212 0.0z 212 0.01
1.1 a5 95 0. 95 0.oo
1.2 Jata] 55 0.05 65 0.oo
1.3 55 54 0.53 55 0.oo
1.4 a2 a2 0.m a2 0.oo
15 51 g1 0.05 51 0.oo
1.6 140 103 2287 140 0.oo
1.7 463 247 56.20 309 45.10
Fig. 3. Extra iterations vs. Localized strategy.

The table in ngure 3 presents a comparison of the localized
version and the basic one. The results are for 4-host systems
with p = 0.5. The "Base WT” column of the table shows the
results of the basic algorithm. The “Local search WT” column
shows the results after continuation with the localized version.
For comparison we also continued running the basic algorithm
for the same number of extra generations as the localized
version. The “Extra iterations WT” column presents the results
after the extra generations with the basic version. As can be
seen, the localized version always out-performed the basic

282

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

S values for 6 hosts

version, but for most values of a only by a very small amount.
This result lends strong credibility to the assertion that we are
close to an optimum. The relatively large improvements for
the more extreme values of « can be explained by considering
ogure 5. As can be seen from the mgure, some of the hosts in
these cases have very high utilization near 1. The term ﬁ
in the Pollaczek-Khinchine equation shows that the waiting
time is very sensitive in this region. A large step can simply
move to a solution with p > 1 which will lead to inmnite
waiting time. Therefore small steps are more likely to lead to
an improvement in the objective function.

IV. RESULTS

1.0E+10

1.0E+09
1.0E+08
1.0E+07
__1.0E+08
% 1.0E+05
— 1.0E04
1.0E+03
1.0E+02 4
1.0E+01
1.0e+00 ¥

51

52

53

G4

—a—zlpha 0.7

alpha 0.8

alpha 0.9

alpha 1

—k—alpha 1.1

55

Normalized Waiting Time
{incoming load = 0.5 per host)

10E+07

Fe a, — Hosts
1.0E+06 + o 4 Hosts
B o 6 Hosts
TOE=05 1 o b B Hosts
E1UE+U4- i ,, — 10 Hosts
- o - -Random
£ 1 pE03 o s
W

1.0E+02

10E+01 /

1.0E+00

01020304 0506070809 1 111213141516 17 1818 2
Alpha

Fig. 4. The performance of TAGS vs. Random assignment.

HostLoads
{Incoming Load =0.5 per host)
12
—Huost 1
1 — Host 2H
/" Host3
0s N Host 4

=

g 06 .

. /
04 \

02

0102030405060708058 1 11121314151617 1819
Alpha

Fig. 5. The loads on each host as a function of «.

The results of our experiments are summarized in mgures
2 — 4. In all the experiments we used Bounded Pareto dis-
tributions of the form B(1,10%). All these distributions
have the same range of r = 100, Since the range and the
value of « are both invariant under changes of time units,
a oxed range provides a good normalization for Bounded
Pareto distributions. In addition the incoming load is set to
be proportional to the number of hosts (0.5 per host). We
wish to compare TAGS, Random and hybrid assignments.

—4—alpha 1.2 —s—alpha 1.3

Fig. 6. The values of s; as a function of c.

Consider a system with 30 hosts. We can execute on such
a system a TAGS assignment policy, a Random assignment
policy or a hybrid (2, 15), (3,10), (5,6), (6,5), (10, 3), (15,2)
(30,1) assignment policy. In the case of a hybrid (2,15)
assignment policy, the 30 host system is subdivided into 15
2-host subsystems. Jobs are assigned randomly among the 15
subsystems of hosts. Therefore, the load per host in each 2-host
subsystem remains 0.5. Each 2-host subsystem runs a TAGS
policy, so we conclude that the performance of the hybrid
(2, 15) policy will be the same as that of a 2-host TAGS system
with load 0.5 per host. Similarly, the other hybrid policies
have the same performance as that of a TAGS system with
3,5,6,10, 15, 30 hosts respectively. The hybrid (1,30) system
coincides with the Random policy. We see that a comparison
of the possible hybrid systems with TAGS and Random is
achieved by looking at the performance of TAGS.

Apart from a comparison of different assignment policies
we would also like to know how well the policies perform for
different job size distributions. In particular we are interested
in the performance of the assignment policies as « varies in the
domain 0 < a < 2. We recall that small values of accorrespond
to a very heavy tail, which gets lighter as « increases.

Given a job size distribution, we let F(X) denote its average
job size. This is the average response time in an ideal system
which has no queues, i.e., at extremely low arrival rates.
Given a system with any assignment policy we let E(W)
denote its response time. Our system performance metric is
E(W)/E(X) which compares the performance of the system
to a gold standard system with no queues. This measure
allows us to produce a fair comparison of performance for
different values of . A direct comparison via E(W') would
not be consistent because, for mxed range r, the distributions
B(1,r,«) produces different average job sizes.

In ogure 4 we see a comparison of the performance of
the Random assignment policy, with TAGS assignment for
2,4,6,8 and 10 hosts across all values of c. We observe that
the performance of Random is worst when o = 1. Its response
time for o = 1 is a staggering 105 times slower than a system
with no queues. For a TAGS system with 2 hosts, a = 1
still leads to the worst performance. However, the performance

283

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

improvement over Random is already the largest at a = 1.
For more than 2 hosts,the performance of TAGS is best at
o = 1 and is orders of magnitude better than Random. It
is interesting to see that TAGS performs best where Random
performs worst.

Next we observe that, as we move to 4 hosts and above,
there are many values of « near 0 and 2 for which TAGS has
no performance numbers. The reason is that in these cases
the actual system load is greater than the incoming load and
exceeds the system capabilities, regardless of the values of
the parameters s;. This is caused by the overhead that TAGS
created by killing jobs and restarting them from scratch. In
these cases there are no values for s; for which the load
on each host is less than 1. Consequently, there is no stable
TAGS system in these cases and queues will explode, resulting
in inOnite average waiting times. We note that this is not a
problem of the genetic algorithm, it represents a real problem
of TAGS.

Following our experimental results we were able to derive
an analytic criterion for the existence of a stable TAGS system,
[1]. We have verimed that in the cases in which the genetic
algorithm did not mnd any legitimate values for the s;, such
values simply do not exist.

Having more hosts improves performance only in a small
range around o« = 1 and improvement stops completely
beyond 10 hosts. Returning to our example of a 30 host system
with load 0.5 per host, we see that different hybrid systems
perform best for different values of a. When o < 0.5 or a >
1.5, a (2,15) hybrid system is best. Then, for 0.5 < o < 0.7
and 1.3 < o < 1.5 a system with 7 groups of 4 hosts and one
group of 2 hosts would be better. When |a — 1| < 0.3, the
performance of a (6, 5) hybrid system is better. Finally, when
a =1 an (3,10) hybrid system would be best.

Another important observation which is repeated in many of
the experiments is the near symmetry in performance between
the Bounded Pareto distribution with parameter « and that
with parameter 2 — o.

Figures 5 and 6 provide us with information on the structure
of the optimal values of s; and on the load of each host. Figure
5 shows the load of the different hosts on a 4-host system.
We observe that for small values of « the hosts which are
responsible for large job sizes, hosts 2,3 and 4, remain very
busy and their load never drops below 0.5. Host 1, on the other
hand, remains relatively free, even though it is responsible
for a large portion of the jobs. The reason is that for small
values of «, there are relatively many large jobs and so the
hosts responsible for such jobs remain heavily loaded. When
a > 1 the situation is reversed. Most hosts are responsible
for the many small jobs and their utilization is high. In fact
the utilization of hosts 1 and 4 and of hosts 2 and 3 nearly
mirror each other with respect to av = 1. At the central point
a = 1, the optimal values of s; form a geometric sequence
as can be seen in mgure 6 (linear graph in the logarithmic
scale). The system is also load balanced. The load balancing
together with the variance reduction achieved by making each
host responsible for a relatively small range are the keys to
the impressive results of TAGS in this case. We see again that
there is near inverted symmetry in the values of s; between «

and 2 — .

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented a fast and simple genetic
algorithm for mnding good range parameters for the TAGS
multi-host assignment policy. The algorithm was based on
mutations, and also incorporated a small degree of elitism.
Using the algorithm we analyzed the performance of TAGS
and compared it with the more classical Random assignment
policy, assuming a Poisson arrival process and a Bounded
Pareto job size distribution.

In accordance with [6] we have found that in many cases
TAGS affords performance which is orders of magnitude better
than Random. The limiting factor for achieving these large
performance gains is system load. TAGS systems do not handle
load well because they kill and restart jobs. The solution
is to employ hybrid methods which combine small groups,
managed using TAGS with a Random policy between the
groups. Among Bounded Pareto job size distributions, TAGS
performs best when o = 1. The performance when the
job size distribution is B(k,p,«) is nearly the same as for
B(k,p,2 — «). We have also shown that the behavior of the
values of s; is nearly anti-symmetrical when comparing the
workloads B(k, p, «) to B(k,p.2 —).

The genetic algorithm approach becomes even more im-
portant when we consider TAGS systems with heavy-tailed
inter-arrival distributions. In that context we do not even
have reasonable analytic approximations, hence the objective
function can only be deduced using simulations. In such cases,
a heuristic search approach becomes absolutely essential. We
hope to explore this problem in future work.

The many insights we have gained by using the results of
the genetic algorithm can also be seen as the starting point for
many future analytical investigations. The results that show
that the load that a TAGS system can handle depends on a
have led, very recently, to more precise analytical formulas for
the load handling capabilities of TAGS, see [1]. In particular,
it has been shown that, regardless of the values of p and &, a
TAGS system with job size distribution B(k, p, &) can never
handle a total system load of more than (1 — a)~'/*, when
a < 1, and “T_l, when a > 1. We also hope to shed more
light on the observation that for « = 1 the optimal s; form a
nearly geometric sequence and to and generalizations to other
values of a.

Acknowledgments: We would like to thank the anonymous
referee for suggesting the localized version of the genetic
algorithm.

REFERENCES

[1] E. Bachmat and H. Sarfati, Load handling capabilities and performance
of TAGS, submitted, available at www.cs.bgu.ac.il/ ebachmat.

[2] T. Bck, Optimal Mutation Rates in Genetic Search. Proceedings of the
Fifth International Conference on Genetic Algorithms. San Mateo, CA,
Morgan Kaufmann, 2-8, 1993.

[3] E.K. Burke, J.P. Newall and R.F. Weare, A Memetic Algorithm for
University Exam Timetabling, Lecture Notes in Computer Science vol.
1153. The Practice and Theory of Automated Timetabling: Selected
Papers (ICPTAT 95), Burke, E.K., Ross, P. (eds), Springer-Verlag, Berlin,
Heidelberg, New York, 241-250, 1996.

284

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Scheduling (CI-Sched 2007)

[4] M.E. Crovella and A. Bestavros, Self-similarity in world wide web
trafac: Evidence and possible causes. IEEE/ACM Transactions on net-
working, Vol. 5(6), 835-846, 1997.

[5] M.E. Crovella, M.S. Taqqu and A. Bestavros, Heavy-tailed probability
distributions in the world wide web. In A practical guide to heavy tails,
chapter 1, 1-23, Chapman and Hall, New York, 1998.

[6] M. Harchol-Balter, Task assignment with unkown duration, Journal of
the ACM, vol. 49(2), 260-288, 2002.

[7]1 H. Feng, V. Misra and D. Rubenstein, Optimal state-free, size-aware dis-
patching for heterogeneous M/G/-type systems, Performance evaluation,
vol. 62, 475-492, 2005.

[8] M. Harchol-Balter, M. Crovella and C. Murta, On choosing a task
assignment policy for a distributed server system, IEEE Journal of
parallel and distributed computing, Vol. 59, 204-228, 1999.

[9] T.L. Lau, and E.PK. Tsang, Applying a Mutation-Based Genetic Algo-
rithm to Processor Conmguration Problems 8th International Conference
on Tools with Artificial Intelligence (ICTAI *96), 17-24, 1996.

[10] R.D. Nelson and T.K. Philips, An approximation for the mean response
time for the response time of shortest queue routing, Performance
evaluation review, vol. 7, 181-189, 1989.

[11] X. Pan, Jian Zhang and K.Y. Szeto, Application of Mutation Only
Genetic Algorithm for the Extraction of Investment Strategy in Fi-
nancial Time Series, International conference on Neural Networks and
Brain,ICNNB’05, Vol. 3, 1682-1686, 2005.

[12] D.L. Peterson and D.B. Adams, Fractal patterns in DASD 1/O trafoc. In
CMG Proceedings, 1996.

[13] B. Schroeder and M. Harchol-Balter, Evaluation of Task Assignment
Policies for Supercomputing Servers: The Case for Load Unbalancing
and Fairness, Proc. of the 9th IEEE Symposium on High Performance
Distributed Computing (HPDC) , 2000.

[14] S.A. Stanhope and J.M. Daida, (1+1) Genetic Algorithm Fitness Dy-
namics in a Changing Environment, CEC-99: Congress in Evolutionary
Computation , Piscataway, IEEE Press, 1851 1858, 1999.

285

