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Abstract 
One of the most important goals in genetic epidemiology is the 
identification of genetic factors/features that predict complex 
diseases. The ubiquitous nature of gene-gene interactions in the 
underlying etiology of common diseases creates an important 
analytical challenge, spurring the introduction of novel, 
computational approaches.  One such method is a grammatical 
evolution neural network (GENN) approach. GENN has been 
shown to have high power to detect such interactions in 
simulation studies, but previous studies have ignored an 
important feature of most genetic data: linkage disequilibrium 
(LD).  LD describes the non-random association of alleles not 
necessarily on the same chromosome.  This results in strong 
correlation between variables in a dataset, which can complicate 
analysis.  In the current study, data simulations with a range of 
LD patterns are used to assess the impact of such correlated 
variables on the performance of GENN.  Our results show that 
not only do patterns of strong LD not decrease the power of 
GENN to detect genetic associations, they actually increase its 
power. 
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I.  INTRODUCTION 
One of the most important goals of genetic epidemiology 

is the identification and characterization of genetic factors 
associated with common, complex diseases [1,2].   The 
complex etiology assumed to predict such diseases presents 
an enormous analytical challenge.  As genotyping 
technologies advance and the scale of genetic association 
studies exponentially increases, variable selection has become 
a salient problem.  From thousands of variables, an analytical 
approach must identify the appropriate outcome-associated 
variables (likely involving non-linear interactive effects) and 
have power to ascribe statistical significance to true-positive 
genetic models.  These analytical demands have prompted the 
development of a number of novel statistical and 
computational methods [3-8].  

One such computational approach is a neural network 
(NN).  The NN approach is a commonly used pattern 

recognition technique for data mining.  NNs have been 
successful in a variety of fields, though they have met with 
mixed success in genetic epidemiology [9-14].  Unsuccessful 
applications may be attributed to the paramount importance 
of choosing the correct NN architecture for each individual 
dataset.  The (often a priori) arrangement of nodes and their 
interconnectivity largely determines the success of NN for a 
specific problem, and inappropriate architecture can doom a 
NN to failure.  In order to evolve appropriate NN 
architectures for multiple contexts, various machine learning 
methods have been combined with NNs in many fields [15].   

Recently, a Grammatical Evolution neural network 
(GENN) strategy was introduced to detect single-locus and 
gene-gene interactions that predict common, complex disease 
[16]. GENN optimizes inputs from a large pool of variables, 
synaptic weights between connections, and the architecture of 
the network for data at hand.  In so doing, GENN 
automatically selects the genetic variables most predictive of 
the disease under study. 

The GENN method has been highly successful thus far.  
Previous studies compared GENN to other NN applications 
and found that it outperforms a traditional back-propagation 
NN strategy and a random search NN strategy [16].  
Additionally, GENN has outperformed a genetic 
programming neural network approach in large datasets [17].  
GENN has demonstrated high power to detect gene-gene and 
gene-environment interactions across a wide range of genetic 
models [17]. GENN has also replicated the findings of more 
traditional analytical approaches in detecting epistatic 
interactions real data applications in the immunogenetics of 
HIV [17] and age-related macular degeneration [18].   

Studies of GENN’s evolutionary process have provided 
insight into the mechanisms of GENN’s success in finding 
purely epistatic models [19].  Given a high-dimensional 
dataset, GENN builds very large initial models containing 
both functional and non-functional variables. Over 
subsequent generations, the noise variables are then pruned 
out of the model [19].   

These initial successes are promising, but previous 
simulation studies have ignored one important aspect of 
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genetic data:  linkage disequilibrium (LD).  LD describes the 
non-random association of alleles.  LD is characterized by 
combinations of genetic markers (normally alleles) that occur 
more or less frequently in a population than would be 
expected from a random formation of haplotypes—a 
statistically associated set of single nucleotide 
polymorphisms (SNPs) on a single chromatid—from alleles 
based on their frequencies.  The presence of LD can be useful 
in genetic association studies.  If all polymorphisms were 
independent at the population level, association studies would 
have to examine every variant.  Genetic variants in tight LD 
allow important savings in terms of time, money, and 
computation, as fewer variants need to be examined.  In 
small-scale candidate gene studies, SNPs that determine the 
status of nearby polymorphisms, typically on a short 
chromosome segment, are chosen to avoid the waste of 
genotyping resources and eliminate the analytical 
considerations of highly correlated genotypes.  However, the 
use of tagging SNPs is controversial, as both the size and 
character of haplotype blocks varies by population, and the 
current resources for selecting such SNPs are constructed 
from populations of limited diversity [20].   

As the scale of genetic association studies rapidly 
increases with advances in genotyping technology, the 
selection of such “tagging” SNPs will no longer be necessary.  
Instead, full genome screens are becoming commonplace.  
This means that the inter-correlations between genetic 
variables due to LD must be considered at the analysis stage.  
The resultant high-dimensional variable selection problem of 
evaluating the relative singular and combinatoric/epistatic 
influences of correlated independent variables (genotypes) on 
a single dependent variable (disease status) presents a 
considerable challenge for traditional statistical approaches.  
The difficulty in dealing with correlated predictor 
(independent) variables has been recognized in fields such as 
econometrics and psychology under the label 
“multicollinearity” [21, 22].  Stated simply, whenever the 
correlation between two or more variables is high, the 
sampling error of the partial slopes and partial correlation 
coefficients will be quite large.  As a result there will be a 
number of different combinations of regression coefficients, 
and hence partial correlations, which give almost equally 
good fittings to the empirical data. 

The impact of such “multicollinearity” is well-studied for 
traditional statistics [21, 22], but is less well characterized for 
novel, machine learning approaches.  In the current study, we 
simulate data with varying patterns of LD to see if increasing 
inter-correlations between input noise variables affects the 
power of GENN to detect single-locus and gene-gene 
interactions associated with disease.  We use a complex data 
simulation strategy to generate realistic patterns of LD, and 
then insert disease models into these backgrounds.  We 
simulate single-locus and gene-gene interaction models with 
minimal effect sizes to test the lower limits of GENN to 
detect genetic associations in the presence of surrounding 
noise variables in LD.  Our results demonstrate that not only 
is GENN robust to inter-correlation between variables, strong 

background patterns of LD actually improves the power of 
the method. 

II. METHODS 
A.  Grammatical Evolution Neural Networks (GENN) 

Grammatical Evolution (GE) is a type of evolutionary 
computation that allows the generation of computer 
programs using grammars [23,24].  Populations are made of 
linear genomes, where individuals consist of a binary 
genome divided into codons.  Evolutionary operations, such 
as crossover and mutation, take place at the level of the 
binary string, much like a typical genetic algorithm (GA).  
Individual genomes are translated into a functional NN, 
which can then be evaluated for fitness.  Evolutionary 
operators are then applied to create subsequent generations.  
GE separates genotype from phenotype by using the 
grammar to map a NN.  

Details of GE can be found in O’Neill and Ryan [23], with 
only salient features described here.  Unlike the functions and 
terminals used in genetic programming [25], GE uses a 
Backus-Naur Form (BNF) grammar to generate code [24]. 
The grammar is used in a genotype to phenotype mapping 
process which produces a program from the genotypic binary 
string.  

The steps of GENN have been previously described in 
detail [16,17].  First, GENN parameters must be initialized 
in the configuration file, including mutation rate, crossover 
rate, and number of generations.  Details of the configuration 
file can be found in [17].  Second, the data are divided into 
10 equal parts for 10-fold cross-validation.  9/10 of the data 
is used for training, and later the other 1/10 of the data is 
used to evaluate the predictive ability of the model 
developed during training. Third, an initial population of 
random solutions is generated to begin the training process.  
Sensible initialization is used to guarantee that the initial 
population contains only functional NN [24].  Fourth, each 
individual genome is translated into a NN according to the 
rules of the grammar.  Each NN is evaluated on the training 
set and its fitness recorded. Fifth, the best solutions are 
selected for crossover and reproduction using user-specified 
proportions. The new generation (created by a selection 
technique specified in the configuration file) begins the cycle 
again. This continues until some stopping criterion is met, a 
classification error of zero is found, or a limit on the number 
of generations is reached. An optimal solution is identified 
after each generation.  At the end of GENN evolution, the 
overall best solution is selected as the optimal NN.   Sixth, 
this best GENN model is tested on the 1/10 of the data left 
out to estimate the prediction error of the model.  Steps two 
through six are performed ten times using a different 9/10 of  
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Figure 1. An overview of the GENN method. The steps correspond to the 
description of the method in Section 2.1. 

 
the data for training and 1/10 of the data for testing.  Figure 
1 shows an overview of the GENN algorithm. 

GENN uses GE to optimize inputs, architecture, and 
weights of a NN.  The grammar used is available in [17] or 
from the authors.  The GA used to evolve the binary string 
that is transcribed into a NN has the following parameters in 
the current implementation: crossover rate = 0.9, mutation = 
0.01, population = 200, max generations = 200, codon size = 
8, GE wrapping count = 2, min chromosome size (number of 
codons) = 50, max chromosome size = 1000, selection = 
tournament, and sensible initialization depth = 10.  The 
island model of parallelization is used, where the best 
individual is passed to each of the other processes after every 
25 generations [26], to prevent stalling in local fitness 
minima.  The genome was derived from GAlib (version 
2.4.5), and a typical GA one-point crossover of linear 
chromosomes is used [27].  

GENN is optimized using a training set of data (for each 
of k cross-validation intervals), and a subset of the data is 
left out as a test set to evaluate the final solution and prevent 
over-fitting.  Classification error simply refers to the number 
of individuals misclassified by the model in the training set, 
divided by the total number of individuals in that set.  
Prediction error refers to the number of samples in the test 
dataset that are incorrectly classified using the GENN model 
generated during training.  For each cross-validation interval, 
a best model is chosen based on lowest classification error of 
all models evaluated for that interval—resulting in 10 
models. A classification error and prediction error are 

recorded for each of the models and a cross-validation 
consistency is calculated to determine those variables which 
have a strong disease-association signal across divisions of 
the data. Cross-validation consistency summarizes the 
number of times a particular variable(s) is present in the best 
GENN model for each of the ten cross-validation data splits. 
The higher the cross-validation consistency is, the stronger 
the estimated generalizability for the model.  The locus/loci 
with the highest cross-validation consistency is/are chosen as 
the final model. 
 
B.  Data Simulation 

For the purposes of the current study, we simulated case-
control data with a variety of single-locus and gene-gene 
interactive disease models where the functional loci 
(variables) are single nucleotide polymorphisms (SNPs).  In 
order to simulate data with realistic patterns of LD, we first 
generated genetic backgrounds having different LD patterns 
and then inserted disease models into these backgrounds. 

To generate the background patterns of LD on which to 
insert disease models, we used a novel data simulation 
software package called genomeSIM [28].  genomeSIM 
allows for the simulation of large-scale genomic data in 
population based case-control samples.  It is a forward-time 
population simulation algorithm that allows the user to 
specify many evolutionary parameters and control 
evolutionary processes.  The algorithm implemented in 
genomeSim is described below.  Further details of this 
software can be found in [28]. 

In the first step, genomeSIM establishes the genome 
based on the parameters passed to it.  The user specifies the 
number of SNPs per gene and the total number of genes in 
the genome.  The simulator randomly determines the number 
of SNPs per gene based on the minimum and maximum 
parameters.  The simulator then randomly determines the 
recombination fraction between adjacent SNPs within each 
gene based on maximum and minimum recombination 
fraction parameters.  All recombination fractions (for each 
SNP) are random and independent.  SNPs are unlinked across 
genes.  Finally, the allele frequencies are randomly set for 
each SNP based on preset maximum and minimum allele 
frequency parameters.  When the minimum is set equal to the 
maximum, the values across the simulated genome will be 
identical.  In step 2 genomeSIM generates an initial 
population based on the genome established in the previous 
step.  Each individual in the population has two binary 
chromosomes.  For each SNP in the genome, the simulator 
randomly assigns an allele to each chromosome based on the 
allele frequencies of the SNP.  The dual chromosome 
representation allows for an efficient representation of the 
genome and for crossover between chromosomes during the 
mating process.  The genotype at any SNP can be determined 
simply by adding the values of the two chromosomes at that 
position.  This initial population forms the basis for the 
second generation in the simulation.  For each cross, two 
individuals are randomly selected with replacement to be the 
parents.  Each parent contributes one haploid genome to a 
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child in the next generation.  genomeSIM creates the gametic 
genotype by recombining the parent’s chromosomes.  The 
total number of individuals in each population (across 
generations) is constant.  During “mating”, crossover occurs 
based on the recombination frequencies at each SNP. 
genomeSIM continues producing generations for the number 
specified.  An overview of the genomeSIM algorithm is 
shown in Figure 2. 

The evolutionary parameters used in the current 
simulations are shown in Table 1.  It is important to note that 
these parameters only apply to the data simulations, and not 
to the GENN analysis.  For the different backgrounds 
simulated, all parameters were held constant except for the 
number of generations.  The generations were varied to 
produce differing patterns of LD.  The parameters chosen for 
the current simulation are based on unpublished optimizations 
of the genomeSIM software.  Generally, as the number of 
generations increases, the number and size of LD blocks 
(haplotype blocks) also increases, until a certain point at 
which the blocks deteriorate.  Four numbers of generations 
were chosen: 1 (as a negative control, generating no LD), 
100, 500, and 1000.  Haploview [29] software was used to 
visualize the patterns of LD under each of the four conditions, 
shown in Figures 2 through 5.  The plots can be read similarly 
to a correlation matrix, where darker (red) shading indicates 
stronger LD.  As these plots show, the single generation 
background has essentially no LD.  After 100 generations, 
blocks of LD are beginning to form.  By 500 generations, 
there are several strong LD blocks.  At 1000 generations, 
there are fewer LD blocks, but the blocks are larger.  Figures 
3 through 6 represent the four LD structure “backgrounds” 
that the simulated disease models were inserted into.  Each 
background contained a total of 100 SNPs, with different 
patterns of LD generated by genomeSIM. 

The underlying etiology of common diseases is 
presumed to be highly complex—including multiple single-  
locus risk factors as well as gene-gene and gene-environment 
interactions (known as epistasis) [30-32].   

 Disease models were simulated according to penetrance 
functions, where penetrance defines the probability of disease 
given a particular genotype combination by modeling the 
relationship between genetic variations and disease risk.  
Both single-locus and gene-gene interactive models were 
simulated.  Single-locus effects were simulated under three 
main types of genetic models:  1.  Dominant models, where 
disease risk was associated with having at least one copy of a 
dominant risk allele, 2.  Recessive models, where the 
homozygous recessive genotype conferred disease risk, and 3. 
Additive models, where disease risk increased with an 
increasing number of risk alleles.  Epistatic models were 
discovered using software described in [33].  These models 
are purely epistatic, where no one gene exhibits an 
independent main effect on case-control status.  Models 
lacking such marginal main effects are appropriate for the  

 
 

 
 
Figure 2.  Overview of the genomeSIM algorithm (adapted from [28]).  After 
the genome is constructed, an initial population of individuals is created and 

individuals cross by contributing one chromosome each to the offspring.  
These crosses create the next generation and the process repeats until the 
specified number of generations has occurred.  In the last generation, the 

genotypes for the individual are produced by summing the chromosomes at 
each position. 

 
 

TABLE 1.   
Parameters for genomeSIM generation of genetic backgrounds 

 
Population size 1000 

Total SNPs 1000 
Genes 10 

SNPs per gene 10 
Generations 1, 100, 500, 1000 

Minimum recombination between 
SNPs 0.0001 

Maximum recombination between 
SNPs 0.0001 

Minimum minor allele frequency 0.05 
Maximum minor allele frequency 0.5 

 
goals of this study because they challenge the method to find 
gene-gene interactions in a complex dataset.  All penetrance 
functions used are available from the authors upon request. 

A range of effect sizes were simulated to test the lower 
limits of GENN to detect disease-associated loci.  Effect sizes 
were measured as odds ratios.  For single-locus models (for 
each genetic model), the following odds ratios were 
simulated: 1.25, 1.5, 1.75, and 2.0.  For the epistatic models, 
the following odds ratios were simulated: 1.25, 1.5, 1.75, 2.0, 
2.25, 2.5, and 3.0.  The minor allele frequency for all models 
was 0.5.  For all models with an odds ratio less than or equal 
to 2.0, the heritability (proportion of the trait due to genetics)  
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Figure 3.  LD plot after 1 generation 

 
 

 
Figure 4. LD plot after 100 generations 

 

 
Figure 5.  LD plot after 500 generations 

 

 
Figure 6. LD Plot after 1000 generation 

 
of that model was ~1%.  For odds ratios above 2.0, the 
heritability was ~5%.  The biological relevance of these 
models is unknown, but in terms of analytical difficulty, they 
represent “worst case scenarios” in the genetic architecture of 
common, complex disease.  

To create the final datasets having disease models 
imposed on extant patterns of LD, functional genetic 
attributes were added to the LD backgrounds and a case-
control status was assigned according to the range of models 
described previously.  Details of the simulation procedure can 
be found in [34].  Functional loci were inserted in the middle 
of LD blocks, using the same allele frequencies observed in 
the “background”. This maintains all inter-correlation 
patterns between noise variables, but may break up any 
correlation between the functional locus/loci and the 
surrounding SNPs.  Because the same allele frequencies were 
used for the functional variables and the “background” where 
they were inserted, the functional variable(s) will be in LD 
with the background by chance. 

Each genetic model was inserted into each of the LD 
backgrounds, resulting in a total of 80 models.  The two-stage 
data simulation approach described in the paper was used 
because the generation of LD in datasets is stochastic with 
genomeSIM.  GenomeSIM was used to create 4 different 
genetic backgrounds and then disease models were inserted 
into those backgrounds.  In this way, GENN’s performance 
for disease models could be compared in the context of 
identical backgrounds of LD.  The four different LD 
backgrounds were generated so that the performance of 
GENN could be compared for different background patterns 
of LD in the context of identical disease models. For each 
model, 100 replicates were produced for a total of 8000 
datasets.  Each dataset contained 500 cases and 500 controls, 
with genotype information at 100 SNPs (one or two of which 
are functional—depending on the particular disease model).  
Dummy variable encoding was used for each dataset, where 
n-1 dummy variables were used for n levels [35]. 
 
C.  Data Analysis 

GENN was used to analyze all simulated datasets.  The 
configuration parameter settings were as follows: 10 demes, 
migration every 25 generations, population size of 200 per 
deme, 200 generations, crossover rate of 0.9, and a 
reproduction rate of 0.1. These parameter choices have 
previously been shown to be effective in datasets of this size 
[17].  Cross-validation consistency was used for final model 
selection, as described above.  For a complete description of 
GENN configuration parameters, see [17]. 

Power for all analyses is reported as the number of times 
the algorithm correctly identified the correct functional loci 
with no false positive loci over 100 datasets.  This strict 
definition of power is appropriate for the current study 
because we are interested in the power of GENN to find the 
associated/functional simulated loci, rather than any in strong 
LD by chance in the simulation.  If either one or both of the 
dummy variables representing a single SNP was selected, that 
locus was considered present in the model. 

Because GENN has consistently outperformed a random 
search NN strategy in SNP datasets of the same number of 
SNPs and number of individuals [16, 19], the current study 
does not include a comparison to a random search. 
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TABLE II. 
 GENN results for all genetic models and LD backgrounds. 

Power (%) 

Number of Functional 
Loci 

Genetic 
Model OR 

1 Generation 

 

100 Generations 

 

500 Generations 

 

1000 Generations 

 
1.25 4 5 21 15 
1.5 25 20 49 36 

1.75 56 43 74 65 
Dominant 

2.0 79 70 97 91 
1.25 8 11 21 17 
1.5 48 45 70 70 

1.75 85 73 94 84 
Recessive 

2.0 97 99 100 98 
1.25 36 29 52 45 
1.5 92 92 97 95 

1.75 99 97 99 98 

1 

Additive 

2.0 98 96 99 98 
1.25 5 4 24 19 
1.5 4 3 25 20 

1.75 2 3 22 19 
2.0 21 13 42 29 

2.25 75 84 91 89 
2.5 81 92 99 98 

2.75 100 100 100 100 

2 Epistatic 

3.0 100 100 100 100 

 
III. RESULTS 

Table 2 shows the results for all disease models, for all 
LD backgrounds.  Several trends are readily apparent.  First, 
as would be expected, as the effect size increases, so does 
the power of GENN to detect that effect.  Also, as expected, 
the power to detect a single-locus effect is higher than the 
power to detect a two-locus effect with the same odds ratio.  
This is not surprising since it is generally more challenging 
for any statistical method to detect interactions [1, 2].  
Additionally, since GENN relies on a machine learning 
strategy, in order to detect purely epistatic interactions 
variables that display no independent main effects must 
randomly both be included in a model at some point in the 
search process.  After both variables are included, it can 
prune away noise variables, but this random joint-inclusion 
is a necessary step.  The chances are much higher that a 
single locus is randomly included in a model than for two 
loci to be simultaneously included,  
 

 
 
contributing to the higher power to detect main effect 
models. 

For the purposes of this study, the most important trend is 
related to the varied LD backgrounds.  Across all disease 
models, GENN has the highest power in the context of the 
LD simulation run for 500 generations.  This LD background 
has the highest number of strong LD blocks.  Generally, 
across all genetic models, as the number of LD blocks 
increase in the background, the power increases.   

The presence of strong patterns of LD increases the 
power of GENN to detect genetic associations. 

 

IV.  DISCUSSION 
The results of this study show that GENN is a promising 

solution to the analytical issues presented by LD in genetic 
association studies.  The results indicate that strong patterns 
of LD among noise variables can improve rather than 
confound GENN. 
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 While these results may be surprising, given that 
correlated predictor variables often attenuate the significance 
of the true outcome-associated variables for many analytical 
methods, careful examination of the GENN learning process 
provides a potential explanation.  In [19], it was shown that 
GENN models absorb many input features in early 
generations, with noise variables culled in subsequent 
evolutionary steps.  For the epistatic disease models 
considered here, wherein both functional variables must be 
simultaneously identified, stochastic searches have a low 
probability of hitting two variables jointly in a single 
iteration within a large combinatoric space.  Graphically, 
such a situation presents a flat fitness landscape punctuated 
by only the peak representing the joint inclusion of both 
functional variants.  However, any multicollinearity, such as 
LD, introduces topography into the landscape [36].  For 
noise variables, LD may introduce valleys in the fitness 
landscape that assist GENN in efficiently eliminating blocks 
of such non-informative variables.  These valleys in the 
fitness landscape may also create better resolution between 
the correct functional variable(s) and the surrounding noise.  
This resolution may aid in the learning process. 
  For any functional variable(s) in LD with the genetic 
background, this topology means that fitness slopes upward 
along an LD gradient toward the peak including both 
functional variants.  Since the probability of jointly hitting 
within two outcome-associated sets of variants is greater 
than jointly hitting upon single points, LD can actually help 
the stochastic search.  Once the LD gradient is found, the 
learning process by which GENN prunes suboptimal 
variables in subsequent evolutionary steps can eventually 
arrive at a model representing the optimal fitness peak—
including only the functional variants. 
 Additionally, NN in general may have an advantage in 
situations with inter-correlated variables over other statistical 
and machine-learning approaches.  NNs are somewhat 
protected against the problems caused by multicollinearity 
due to their parallel nature [36-39].  Also, unlike many 
traditional statistical methods, NN do not assume 
independence of either individuals in the dataset or input 
variables.  Adjustment of weights between network 
connections is assumed to correct for variable inter-
correlation [38, 39].  These features of NNs may contribute 
to the robust nature of GENN in the presence of LD.   
 A crucial next step in the current study is a very precise 
and quantitative characterization of the LD patterns in the 
current data.  LD patterns need to be assessed at the level of 
individual datasets to further dissect the performance of 
GENN in datasets when the functional variables are in LD 
with noise variables, and when they are not.  Additionally, 
different simulation strategies will be needed to better 
understand these interesting initial results.  Future 
simulations will need to specifically control patterns of LD 
surrounding functional variables. 
 Future studies will address questions about how the 
distribution of disease-associated polymorphisms with 
respect to different LD structures affects their identification.  

Specific questions include the following.  How strong an LD 
“gradient” is necessary for GENN to capitalize on LD for 
identifying epistatic interactions?  Does a variant’s 
placement at the edge or in the center of a physical LD block 
affect its discovery?  Given an LD metric (r2, D’, etc.), can 
we arrive at thresholds that determine when or if LD will be 
useful?  The answers to these questions should give further 
insight into the breadth of analytical situations in which 
GENN would be the most appropriate analytical choice.  
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