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Abstract— The advance of high-throughput experimental tech-
nologies poses continuous challenges to computational data
analysis in functional and comparative genomics studies. Gene
Ontology (GO) annotation and transcriptional profiling using
gene expression array have been two of the major approaches
for system-wide analysis of gene functions and gene interactions.
In the literature, extensive studies have been reported in each
aspect. Yet there is a lack of efficient algorithm that discover
associative patterns across these two data domains. We proposed
a mixture model associative artificial neural network to tackle
this deficiency. The algorithm inherits the theoretical foundation
of Adaptive Resonance Associative Map (ARAM), with essential
redefinition of pattern similarity measures and learning functions.
The proposed algorithm is capable of clustering data based on
both GO semantic similarity and expressional correlation, for
the purpose of systematically discovering genome-wide, highly
correlated gene groups, which in turn suggest similar or closely
related functions. We applied the proposed algorithm to the
analysis of the Saccharomyces cerevisiae (yeast) dataset and
obtained satisfactory results.

I. INTRODUCTION

Gene functions and gene interactions are among the central
topics of functional and comparative genomics studies. Recent
advance of genome-wide experimental technologies has made
it possible to investigate large number of genes in a systematic
fashion. Practices that study multiple genes in similar func-
tional families and/or multiple biological pathways in the same
experimental design are common nowadays, whereas compre-
hensive studies of global interactome networks are emerging
[31]. These high-throughput technologies often generate large-
scale data, and pose constant challenges to computational data
analysis research.

Given a library of unknown sequences, it has been a routine
paradigm to predict their functions through computational
approaches. Continuous efforts are being done to regularize the
functional annotation using controlled vocabulary for the ease
of comparison and categorization. The Gene Ontology (GO,
at http://www.geneontology.org) [8] has been widely adopted
for this purpose. GO provides a set of well defined annotation
terms organized by means of a directed acyclic graph (DAG).
Computational GO annotation of unknown sequences is es-
sentially based on sequential homology to existing sequences

with confirmed GO annotations. Studies have shown that GO
annotation generally conforms with other sequence similarity
based annotation paradigms such as TIGR’s [17], [19]. Besides
the notable advantage in controlled and formalized vocabulary,
the hierarchical structure of the GO DAG facilitates functional
annotation in different precision levels. The closer a term is to
the ontology root, the rougher the annotation is. Methods for
functional categorization based on GO have been extensively
documented in the literature [17], [18], [19], [20], [24]. They
usually involve an unsupervised learning approach to group
genes according to a pre-defined similarity (or contrarily,
dissimilarity/distance) function. Various similarity functions
with different theoretical bases exist in the literature, one of
which will be briefly reviewed in Section II-C.

While the semantic annotation and grouping of gene func-
tions are generally based on computational sequence homol-
ogy, transcriptional profiles are commonly adopted to investi-
gate and verify gene functions in a more biological manner.
The spread of genome-wide microarray technologies [7], [30]
has made it possible to obtain large scale gene expression
data in a short time frame. Experiments have shown that gene
products with similar expression patterns may have similar or
closely related functions (e.g. in the same biological pathway).
As such, systematic discovery of gene expression patterns is
of great value to biologists. A variety of clustering methods
have been applied to this problem and have shown satisfac-
tory performance [1], [9], [10], [13], [16], [25]. Commercial
software including GeneSpring (http://www.agilent.com) and
Spotfire (http://www.spotfire.com) have already gained a large
user population.

In both GO and gene expression analysis, grouping plays
an important role. By clustering highly-correlated genes into
different groups, we greatly reduce the work on investigating
individual genes and obtain a bird-eye-view of the whole
genome, which is essential to functional and comparative
genomics studies. Since we may group genes according to
either GO annotations or expression patterns, one natural
question would be: How high is the correlation between these
two types of groupings? In other words, if a set of genes are
found having similar expression patterns, would they really
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be annotated with closely related GO terms? Recent work
of Sevilla et al. [23] partially answered this question by
conforming the satisfactory correlations between expression
and different GO similarity measures. There report in turn sup-
ports the validity of GO annotation based on computationally
sequential homology.

Much to our surprise, while extensive research have been
done on pattern analysis individually from either GO or gene
expression data, few studies are reported to fully integrates
knowledge from both fields. In reality, it has been a routine
practice to investigate the major functional categories enriched
by the genes of interest reflected in a microarray experiment.
Yet there is a lack of intelligent and automatic paradigm to
assist such studies. In our prior practices, we had to randomly
pick up a group of genes with a certain expression pattern, and
further investigate their functions individually; or, to limit our
study to a set of genes with functions of interest, and further
observe their expression patterns. Either way has proven to
be human labor intensive, and rather critically, difficult to
navigate genome-wide data in a systematic manner. Recent
updates of some commercial software (such as GeneSpring
and Spotfire) improve human analytical efficiency by dis-
playing the pie-chart of GO term distribution, according to
a list of selected genes and pre-defined GO categories. Yet,
they are greatly dependent to human judgement and lack the
functionality to intelligently discover system-wide, significant
patterns.

To tackle this deficiency, we proposed a novel mixture
model artificial neural network (ANN) for systematical dis-
covery of gene patterns based on knowledge from both GO
annotation and gene expression. The proposed algorithm incor-
porates these two types of data into a single infrastructure and
system-widely identify significant gene grouping, with each
group containing highly correlated genes in terms of both GO
and expression similarities. We applied the proposed algorithm
to the public Saccharomyces cerevisiae (yeast) genome dataset
and obtained satisfactory results.

The rest of this paper is organized as follows. Section II
introduces our proposed algorithm in detail. Section III reports
our experiment on the yeast dataset. Section IV summarizes
our conclusions and proposes future work.

II. METHOD

A. Computational Challenges to Grouping Genes based on
GO and Expression Data

With reference to the term “grouping”, end users are expect-
ing an abstract view over the whole dataset – data within each
group are similar and/or closely related to each other, whereas
there are clear boundaries between different groups. With this
understanding, an appropriate definition of the (dis)similarity
measure is critical to the meaningfulness of the output clusters.

GO annotation and gene expression are provided in the
nature that, GO is descriptive while gene expression is quanti-
tative. Appropriate quantization of GO terms presents the first
challenge to our study. This topic anyway has been extensively
studied. Various prior studies are of valuable references to our
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Fig. 1. The architecture of Adaptive Resonance Associative Map (ARAM)
neural network.

studies. The integration of these two types of data however
remains as the greatest challenge. Since the data are from
different sources (knowledge domains), it is not theoretically
valid to normalize and present them into a single vector format
as most clustering algorithms require. Therefore our research
starts with reported algorithms that are capable of handling
inputs from multiple knowledge domains.

B. Adaptive Resonance Associative Map (ARAM)

The Adaptive Resonance Associative Map (ARAM) [26]
belongs to the family of Adaptive Resonance Theory (ART)
self-organizing neural networks [3]. Like another member
of the family, ART-MAP [4], ARAM is capable of incre-
mentally learning recognition categories (pattern classes) and
multidimensional maps of patterns. Yet compared to ART-
MAP, ARAM contains a simplified pattern matching and
learning process. The architecture of ARAM (Figure 1) can
be understood as an overlap of two ART networks. An
ARAM network has two individual short term memory (STM)
layers F a

1 and F b
1 , responding to independent input signals A

and B respectively, but an shared long term memory (LTM)
layer F2 that encodes the associated knowledge from these
two feature fields. The learning of the network is guided
by an orienting subsystem with two logical gates, defined
with two vigilance parameters (ρa and ρb respectively). The
logical gates conditionally switch and reset the network state
according to predefined rules, and hence affect knowledge
encoding in the LTM.

ARAM acquires its domain knowledge through an online,
hard competitive learning process. In summary, the recognition
neurons compete to each other in response to each incre-
mentally presented (online) input stimulation, with only one
neuron that wins the competition and gains knowledge from
the input (hard learning). The ARAM learning paradigm has
been comprehensively documented in the literature [26] and
is summarized below for a better understanding of this paper.

1) Inputs and Recognition Categories: ARAM requires
inputs A and B represented in vector format. There is a built-
in normalization link between the input and the STM layer
F1, denoted as Ia = �A and Ib = �B. The definition of the
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normalization link varies depending on the application. Each
LTM recognition category j in F2 layer is associated with
two adaptive weight templates, i.e. w = (wa

j |wb
j), wa

j and wb
j

being same dimensional as Ia and Ib respectively. Initially,
the F2 recognition field contains a null set (zero category).
Upon incremental presentation of input signals, it is adaptively
expanded to encode new knowledge.

2) Category Competition: In response to a input signal
I = (Ia|Ib), the similarity between the input and each LTM
recognition category j is evaluated according to

T (I, wj) = γTa(Ia, wa
j ) + (1 − γ)Tb(Ib, wb

j), (1)

where γ ∈ [0, 1] is an associative contribution parameter,
Ta(.) (or Tb(.)) is a predefined function, referred to as the
choice function, that measures the similarity in domain space
a (or b). The linear combination T (.) is referred to as the
network’s choice function. The category J that receives the
highest choice score T (I, wJ ) = max{T (I, wj)} is marked as
the winner of the competition.

3) Resonance or Reset: If the competition generates a
winner category J , its similarity to the input I is further
confirmed in domain spaces a and b individually, using another
set of match functions, i.e. Ma(Ia, wa

J) and Mb(Ib, wb
J). The

network is said to reach resonance if both match scores are
over the corresponding vigilance threshold ρ, denoted as

{ Ma(Ia, wa
J) ≥ ρa and

Mb(Ib, wb
J ) ≥ ρb,

(2)

during which network learning ensures, as defined in the next
step.

Mismatch reset happens when either of the match score does
not reach the vigilance value. During mismatch reset, the net-
work redo the winner selection and resonance check iterations
with mismatched categories excluded, until a selected winner
causes network resonance, or all LTM categories are reset.

4) Network Learning: Once the search ends and network
resonance is achieved, the attentional subsystem updates the
weight vector wJ by incorporating the input knowledge cor-
respondingly from field a and b, according to two learning
functions:

{ w
′a
J = La(Ia, wa

J ), and
w

′b
J = Lb(Ib, wa

J).
(3)

In case all LTM categories are reset but the network fails
to reach a resonance state (or when F2 is null upon the
presentation of the first input), the network switches to fast
commitment learning mode, which essentially expand the F2

recognition field by creating a direct copy of the input as a
new LTM category. That is, w

′a
new = Ia and w

′b
new = Ib.

It deserves to review a few unique features of the ARAM
architecture. Firstly, like ART, ARAM uses two functions
(choice and match) to evaluate the similarity between the
input and recognition category. These two functions may or
may not have same definition, optionally providing a different
view to conform the degree of pattern matching. Secondly, the
use of vigilance thresholds ensures only significantly similar

patterns may be grouped together. On the other hand, the
vigilance parameters primarily affect the clustering process.
Lower vigilance thresholds generally lead to fewer recognition
categories, and hence rougher clustering result. Lastly while
most importantly, ARAM provides an effective infrastructure
for learning of associative knowledge from two different
domains. Depending on the input signals, ARAM may be
applied to different learning tasks. Examples include text and
document classification [14], [27], personalized knowledge
management [28], and associative rule mining [29].

Variations of ARAM models exist in the literature, ac-
cording to the definition of normalization, choice, match
and learning functions. For example, ARAM-2A consists of
two ART-2A models [5] using second level normalization
and cosine similarities, while fuzzy ARAM consists of two
fuzzy ART models [6] using complemental normalization and
similarity functions derived from fuzzy set theory. However,
after close investigation of existing ARAM models, we find
that there is not an “out of box” solution for the analysis
of GO annotation and gene expression data. This is because
most reported work used same sets of similarity measures with
the same theoretical origin, as they assumed the inputs from
pattern fields a and b are isogenous. This however is not true
in our application.

Based on this understanding, we borrowed ARAM’s archi-
tecture and learning process which have well established the-
oretical foundation, but redefined a set of similarity measures
and learning functions that suite the nature of our heteroge-
neous data. We name our modified network Mixture Model
ARAM to differ our practice to existing work, highlighting the
fact that in our variation, fields a and b work on different data
models. The details of the proposed network is given below.

C. Mixture Model ARAM for GO Annotation and Gene Ex-
pression Data

1) Inputs and Recognition Categories: Our application of
the Mixture Model ARAM is straightforward: for each gene
product, we use ARAM’s pattern field a to encode its expres-
sion pattern and b to encode its GO annotation. Following
common practices, the expression pattern is presented in
vector format, while the GO annotation is presented as a
set of descriptive GO terms, denoted as I = (Ia|Ib) =
(−→exp|{go terms}). Understandably, each of the LTM recog-
nition category encodes an associative pattern w = (wa|wb),
where wa and wb respectively are the expression pattern and
GO annotation term(s) representative to the inputs that form
the corresponding category. Therefore, by investigating the
major recognition patterns (in terms of category size), we are
able to systematically review the significant gene functional
groups, in terms of similar expression pattern and closely
related functional annotations.

2) Pattern Field for Gene Expression: Since gene expres-
sions are represented in vector format, it is relatively not
difficult to handle them in the network. We understand that
normalization of gene expression is still an arguable topic
nowadays. Based on different natures of data, variations of
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normalization techniques. Thus our mixture model ARAM
network does not contain a fixed normalization link. Instead,
we assume all input expressions are properly pre-normalized.
Like the ART-2A [5] paradigm, we used symmetric choice and
match functions to evaluate gene expression similarity. That is,
both choice and match functions are defined with the Pearson
correlation coefficient between two expressions, denoted as:

Ta(Ia, wa) = Ma(Ia, wa) =
(Ia − E(Ia)) · (wa − E(wa))
||Ia − E(Ia)||||wa − E(wa)||

(4)
where E(.) and ||.|| are the mean (expectation) and norm
(length) of a vector respectively. Our use of Pearson correlation
coefficient measure follows the majority of reported work.
Particularly, if the expression is normalized with standard
distribution (with 0.0 mean and 1.0 norm), our definition is
equivalent to that of ART-2A, essentially being the cosine
similarity of two vectors.

As to network learning, we adopted the common adaptive
learning rule, given as:

w
′a = La(Ia, wa) = wa + η(Ia − wa) (5)

where the parameter η ∈ [0, 1] is commonly referred to as
the learning rate. With this learning process, the recognition
pattern adaptively correct its weights to reduce the error
between the recognition pattern and the input, so that when
the network is stabilized, the recognition pattern will reflect
the cluster centroid.

3) Pattern Field for GO Annotation: Given GO annotations
in format of descriptive terms, it is not necessary to further
normalize these terms. One of the focuses of our work is on
the measurement of GO similarity. Since the establishment of
GO generally follows the same paradigm on other lexical tax-
onomies such as the WordNet (http://wordnet.princeton.edu), a
variety of similarity measurements in lexical taxonomy study
have been applied to GO. Resnik [21] compared different
semantic similarity measures against human judgements. He
reported that in the controlled taxonomy, Information Content
[22] based measurement outperformed two other measures,
namely Edge Counting and Probability. Sevilla et al.’s study
[23] further showed that Resnik’s semantic similarity based
on Information Contents produced relatively more consistent
correlation to the gene expression similarity over two other
authors’. Therefore, we adopted Resnik’s Information Content
based similarity measure in our studies. The measure is
reviewed as below.

Information Content: Originated from probability studies,
the concept of Information Content has existed for multiple
decades [22]. Briefly, the information content of a lexical
concept/class c is quantified as the negated log of its likelihood
p(c) in the corpus, formalized as

i(c) ≡ −log(p(c)) = −log(
f(c)
N

), (6)

where f(c) is the frequency of the instances of concept c and
N is the corpus size.

In order to apply Information Content to GO, we treat
each GO term as a conceptual class that subsumes the term
itself as well as all its descendent (children) terms. Hence the
likelihood on a GO term t is calculated according to

p(t) =
size of{C(t)}

size of{C(root)} , (7)

where C(t) is the set of terms being subsumed by t, and root is
the most top level (root) term. The more specific a GO term
t is, the lower the likelihood p(t) is, and hence the higher
information content i(t) it has. Particularly, the information
content of the root term has the lowest value 0.0.

Similarity between two GO Terms: Based on the definition
above, Resnik [21] proposed the measurement of the similarity
between two GO terms as the information content of their
minimal subsumer. A so-called minimal subsumer of two
terms ti and tj , denoted as ms(ti, tj), is the subsumer that
has the minimal likelihood (and hence maximal information
content). To formalize:

sim(ti, tj) ≡ i(ms(ti, tj))
= −log(min{p(t)|t ∈ S(ti, tj)}), (8)

where S(ti, tj) is the subsumer set of term ti and tj , essen-
tially being their common ancestor terms.

Similarity between GO Annotations of Two Genes: While
Equation 8 measures the semantic similarity between two GO
terms, it is common that a gene product may be annotated
with multiple GO terms, which will lead to multiple term-to-
term similarities between two genes. We adopted a simple yet
commonly applied approach [15], [24], to induce the maximal
term-to-term similarity as the similarity between the GO
annotations of two genes. To formalize, suppose the multiple
GO annotations of two genes products gi and gj are denoted
as A(gi) = {ti1, ti2, . . . , tiP } and A(gj) = {tj1, tj2, . . . , tjQ}
respectively, their similarity is then calculated as:

sim(A(gi), A(gj)) = max{sim(tix, tjy)|x ∈ [1, P ], y ∈ [1, Q]}.
(9)

By applying the maximal term-to-term similarity as the sim-
ilarity between to GO annotations, we essentially identify
their subsumer that has the maximal information content, i.e.
maximal common factor.

Choice, Match and Learning Functions on GO Annotations:
While Equation 9 effectively evaluates the maximal common
factor of two genes’ GO annotations, this equation is not
normalized, in the sense that the similarity value may range
from zero to infinity. It is inappropriate to apply this definition
directly to the mixture model ARAM, because the calculation
of Equation 1 may be dominated by the score produced from
Equation 9, given that Equation 4 outputs a score in [−1, 1]
range. Inspired by the work of Jiang and Conrath [15] as well
as the fuzzy ART paradigm [6], we calculate the choice and
match scores by applying different aspects of normalization to
Equation 8. That is,

Tb(Ib, wb) =
sim(Ib, wb)
α + i(wb)

, (10)
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and

Mb(Ib, wb) =
sim(Ib, wb)
α + i(Ib)

, (11)

where sim(.) is given by Equation 9, i(.) is given by Equa-
tion 6, and α is a small positive constant to prevent zero
division. These definitions re-scale the choice and match
scores to [0, 1] as the information content of a term’s subsumer
is always less than or equal to the term’s information content.

With respect to the learning of GO annotation, we un-
derstand this process as the representation of the maximal
common factor among all inputs being grouped into the same
category. This idea harmonizes the definition of the minimal
subsumer. Thus, we have a straight forward definition of the
learning function:

w
′b = Lb(Ib, wb) = ms(Ib, wb), (12)

where the identification of the minimal subsumer ms(.) is
given by Equation 8.

Equations 4 through 12 complete our construction of the
mixture model ARAM network.

D. Summary of Network Parameters

This section briefly summarizes the parameters in the
proposed algorithm. In general, the network’s learning is
controlled with the associative contribution parameter γ ∈
[0, 1] (Equation 1), the vigilance thresholds ρa ∈ [−1, 1] and
ρb ∈ [0, 1] (Equation 2), and the learning rate η ∈ [0, 1]
(Equation 5). As to the parameter α in Equations 10 and 11,
it may be built in with a fixed small positive value (such as
1e-8).

γ decides the weights of the pattern fields during evaluation
of overall pattern similarities. Particularly, γ = 0.5 gives equal
weights to expression and GO annotation. As reviewed in
Section II-B, ρa and ρb mainly decide the group size as well
as the total number of groups over all inputs. Higher vigilance
thresholds lead to a larger number of smaller groups. Readers
should note that while ρa ∈ [−1, 1] according to the range of
the Pearson correlation coefficient (Equation 4), in practice, we
use a positive ρa setting as we want our recognition categories
contain positively correlated expression patterns only. The
learning rate η controls how fast the recognition pattern adapts
itself towards the new input knowledge. It should be noted
that, as studied by Bottou et al.[2], [12], a constantly too
high learning rate may cause network oscillation on densely
distributed input data. It has been a common practice to
initialize the learning with relatively low value (such as 0.1)
and to gradually reduce it while the learning proceeds.

III. EXPERIMENT

We applied the proposed mixture model ARAM neural
network to the genome-wide analysis of the budding yeast
(Saccharomyces cerevisiae) data. The purpose of our experi-
ment is to evaluate and validate the significant gene functional
grouping generated by the proposed algorithm, through com-
parison with results from well documented studies. The details
of our experiment are reported below.

A. Datasets and Pre-Processing

The yeast gene expressions provided by Eisen et
al. [11] had been extensively studied in the litera-
ture. The so-called Public Microarray Expression Data
(http://rana.lbl.gov/EisenData.htm) contains the expression
profiles of 6221 genes labeled with the corresponding open
frame reading (ORF) IDs. Each expression profile, maximally
eighty-dimensional, consists of an aggregation of data from
multiple experiments including time courses of the mitotic cell
division cycle, sporulation, the diauxic shift, and responses to
different shocks etc. [11]. The expressions had been normal-
ized by Eisen et al. and hence were used in our experiment
without alternation.

To facilitate our validation of gene functional groups,
our experiment used the expressions of those ORFs which
are annotated with known gene IDs. Approximately half of
the 6221 ORF IDs are annotated with gene IDs and func-
tional descriptions. We searched the Saccharomyces genome
database (SGD, http://www.yeastgenome.org) with the list of
gene IDs and downloaded their GO annotations in batch
(http://db.yeastgenome.org/cgi-bin/batchDownload). This con-
solidated into a list of 3088 genes, with corresponding gene ID,
functional description, expression, and GO annotation. Fur-
thermore, in view of the three independent, non-intersecting
categories of ontologies in the same GO infrastructure, namely
Biological Process, Cellular Component and Molecular Func-
tion, and the understanding that the Biological Process ontol-
ogy is mostly related to functional categorization, we limit
our study within this category only. This further reduced the
number of genes being tested in our experiment to 2974. In
addition, noting that there are two major types of relations
between GO terms, i.e. is-a and part-of, for the simplicity of
analysis, we followed Lord et al.’s practice [20] to treat them
equivalent to each other and consolidated GO into a uniform
is-a taxonomy.

B. Results and Discussions

We applied the proposed algorithm on the 2974 data records.
All inputs were randomly shuffled in presentation order and
sent to the mixture model ARAM for batch training. In each
learning iteration the input-category mapping was tracked and
compared to the mapping of last iteration to calculate the
prediction (i.e. category assignment) error rate. Learning of
the network stopped when the prediction error rate was below
1%, or after 50 learning iterations, whichever was sooner. We
adopted the default γ = 0.5 parameter for pattern association.
The learning rate η was initialized with 0.1 and was linearly
decreased by 10% in each new learning iteration once the
prediction error rate was below 20%. By fine-tuning ρa and
ρb thresholds, we were able to obtain different groupings over
the 2974 inputs.

The network stabilized after 9 learning iterations with set-
tings of ρa = 0.3 and ρb = 0.2, and generated 262 recognition
categories. Among them, 120 categories were relatively small,
in the sense that each of them contained less than 5 genes. This
is however of no surprise to us, considering the diversity of
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the GO annotations and gene expressions. On the other hand,
the 27 largest categories, each containing 30 or more genes are
of our major interest, as they grouped 1151, over 38% of all
inputs and thus reflected the significant genome-wide patterns.
In order to validate the discovered functional grouping, we
compared the representative GO annotation on each group
against SGD functional descriptions of its member genes –
Readers shall note that the knowledge on SGD functional
description was not used to train the network. In addition, we
plotted the gene expressions of each group’s member genes to
validate their correlation. Our inspection discovered that these
categories had given very satisfactory results: each recognition
category had successfully grouped a number of significantly
correlated genes, in terms of both expression profile and GO
annotation. In addition, the GO annotation had shown close
correlation to SGD functional descriptions. A few categories
are depicted in Tables I - V for extended discussions. Each
table illustrates the number of genes being clustered in the
category, the representative GO annotation of the category, as
well as an overview of the the expression profiles (each in
different color), the IDs and the SGD functional descriptions
of the member genes. Due to space constraint, the different
series are not labeled on the X-axis and the expression profiles
are not individually labeled.

Category 10 and category 29 caught our first attention.
It has been clearly shown that almost all genes grouped
under these two categories are related to protein synthe-
sis. Particularly, 76 of them are protein synthesis ribosomal
proteins, covering around 44% of all (177) known protein
synthesis ribosomal proteins over the full genome. We are
amazed with the highly correlated expression patterns they had
shown, which reflected the nature of their highly conserved
functions and were successfully captured by our experiment.
Interestingly, while genes from the two categories had nearly
identical expression patterns and functions, two different GO
terms, i.e. GO:0016043 (cell organization and biogenesis)
and GO:0043170 (macromolecule metabolism) were found
over the two categories. On the other hand, based on our
understanding, both GO terms sound very appropriate on these
genes, as they were based on different aspects of the protein
synthesis process (cellular process and metabolism respec-
tively). This reflects the inherent variety of GO annotations
and the somewhat subjectivity over GO term definition.

On the other hand, category 11 provides a different view on
the annotation power of GO terms. The 65 genes grouped in
this category had shown high correlated expressions, suggest-
ing closely related functions. Their SGD functional descrip-
tions referred to a variety of sub-functions during different
phases of cell cycle. If merely based on SGD functional
descriptions, it is not easy for a computational program or even
a human to group them together, without strong biological
domain knowledge. However, the organized GO hierarchy
well encoded the semantic relationship among their functions.
Through adaptive learning, our experiment successfully dis-
covered this significant functional group and annotated them
with an relatively general, yet appropriate GO subsumer term,

TABLE I

CATEGORY 10 OF THE MIXTURE ARAM OUTPUT OVER THE YEAST

DATASET, WHICH IDENTIFIES 40 PROTEIN SYNTHESIS RELATED GENES.

Category #10 (40 genes) GO:0016043 “cell organization and
biogenesis”

-5

-4

-3

-2

-1

0

1

2

3

 
 

RPL1B, RPL3, RPL5, RPL6B, RPL10, RPL11A, RPL11B, RPL12A,
RPL12B, RPL20B, RPL25, RPL34B, RPP0, RPP1A, RPS0A, RPS0B,
RPS4A, RPS4B, RPS11A, RPS14A, RPS14B, RPS15, RPS16B, RPS19A,
RPS19B, RPS21A, RPS22A, RPS23A, RPS23B, RPS27B, RPS28B,
RPS31 (“protein synthesis ribosomal protein”)
TIF1 (“protein synthesis translation initiation factor eIF4A”)
NCA3 (“ATP synthesis regulates expression of F0F1 ATPase subunits”)
GBP2, HMO1, ILV5, STE20, STM1, VMA2 (other related annotations,
not listed here due to page constraint)

TABLE II

CATEGORY 29 OF THE MIXTURE ARAM OUTPUT OVER THE YEAST

DATASET, WHICH IDENTIFIES 56 PROTEIN SYNTHESIS RELATED GENES

THAT HAVE SIMILAR EXPRESSION PROFILES OF THOSE OF TABLE I BUT

ARE ANNOTATED WITH A DIFFERENT GO TERM.

Category #29 (56 genes) GO:0043170 “macromolecule metabolism”

-5

-4

-3

-2

-1

0

1

2

3

4

 
 

MRPL11, RPL1A, RPL2B, RPL4A, RPL8B, RPL15A, RPL16B,
RPL18A, RPL18B, RPL20A, RPL23B, RPL27A, RPL27B, RPL30,
RPL31A, RPL32, RPL33A, RPL35A, RPL35B, RPL37B, RPL40A,
RPL40B, RPL42A, RPL42B, RPL43A, RPP1B, RPP2A, RPP2B, RPS5,
RPS6A, RPS7A, RPS7B, RPS8A, RPS10A, RPS12, RPS13, RPS21B,
RPS22B, RPS24A, RPS24B, RPS25B, RPS28A, RPS29A, RPS29B
(“protein synthesis ribosomal protein”)
ANB1, HYP2, PRT1, TIF2, TIF5 (“protein synthesis translation initiation
factor”)
EFB1, EFT1, EFT2 (“protein synthesis translation elongation factor”)
FUN12, RKI1, SHR3, TIF4631 (other related)

GO:0016043 (cell organization and biogenesis). This category
particularly reflects the advantage of GO annotation over
SGD’s natural language type functional description, as well
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TABLE III

CATEGORY 11 OF THE MIXTURE ARAM OUTPUT OVER THE YEAST

DATASET, WHICH IDENTIFIES 65 CELL CYCLE RELATED GENES.

Category #11 (65 genes) GO:0016043 “cell organization and
biogenesis”

-3

-2

-1

0

1

2

3

4

5

6

 
 

CNM67, NUF2, SPC19, SPC42, SPC98, STU2 (“cytoskeleton spindle
pole body component”)
ECM9, ECM11, GFA1, SMI1 (“cell wall biogenesis”)
AXL1, BUD5 (“bud site selection”)
NUP157, POM152 (“nuclear protein targeting nuclear pore protein”)
FHL1, RAP1, RTT102, SET1, SRB5 (“transcription” related)
HST1, IRS4, RIF1, SAS3, SIR1, SIR4 (“silencing” related)
SEC72, TIP20, YKT6 (“secretion” related)
BBP1, BIM1, CDC3, DIG2, GAL83, GLE2, GTR2, ISA1, KAR3, MSB1,
MSS4, NFI1, PAC11, PEA2, PEX2, PEX13, PKH2, PLC1, PMI40, PTC1,
REF2, RNP1, SPA2, STN1, STU1, SUR4, TBF1, TID3, UBC9, UME6,
VAM7, VIK1, VPS9, VPS30, WHI4, YRA1, YTA7 (other related)

as the prediction power of the proposed algorithm.
Besides the observed generalization of sub-functions, the

outputs of mixture model ARAM had also shown satisfac-
tory specialization. For example, category 12 successfully
identified 36 genes with energy transportation related func-
tions in common, as well as strongly correlated expressions.
The annotation with GO:0006091 (generation of precursor
metabolites and energy) satisfactorily summarized the nature
of their functionality. Moreover, category 35 contained 37
genes related to protein degradation and folding, with common
GO annotation GO:0043170 (macromolecule metabolism) as
well as highly correlated expressions.

Due to page constraint, we are not able to elabo-
rate all results across the 27 categories. The full re-
sults are downloadable via http://bioinfo.noble.org/manuscript-
support/he07cibcb.

IV. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we discussed our observation on the high
demand raising from functional and comparative genomics
studies, in terms of both computational GO annotation and
clustering of biological gene expressions. We targeted on the
difficulty over human inspection of joint GO annotation and
gene expression data for the purpose of identifying genome-
wide functional groupings, and proposed a novel artificial neu-
ral network to tackle this deficiency. Associative learning of
GO and gene expression knowledge still remains a challenge
to computational studies, as most existing algorithms work

TABLE IV

CATEGORY 12 OF THE MIXTURE ARAM OUTPUT OVER THE YEAST

DATASET, WHICH IDENTIFIES 36 ENERGY TRANSPORTATION RELATED

GENES.

Category #12 (36 genes) GO:0006091 “generation of precursor
metabolites and energy”

-4

-3

-2

-1

0

1

2

3

4

 
 

ADH1, ADH3, ADH4 (“glycolysis alcohol dehydrogenase”)
COX4, COX8, COX13, PPA2, QCR2, QCR8, QCR9 (“oxidative phos-
phorylation” related)
ATP1, ATP4, ATP5, ATP14, ATP17 (“ATP synthesis” related)
GLG1, GSY2, GSY1 (“glycogen metabolism” related)
FUM1, IDH1, IDH2, MDH3, LSC1, LSC2 (“TCA cycle” related)
CBR1, COX14, CYB2, CYB5, GCR2, GLC3, JAC1, MCR1, MDL2,
NCP1, TPS2, TSL1 (other related)

TABLE V

CATEGORY 35 OF THE MIXTURE ARAM OUTPUT OVER THE YEAST

DATASET, WHICH IDENTIFIES 37 PROTEIN DEGRADATION AND FOLDING

RELATED GENES.

Category #35 (37 genes) GO:0043170 “macromolecule metabolism”

-4

-3

-2

-1

0

1

2

3

 
 

PRE1, PRE2, PRE4, PRE3, PRE5, PRE6, PRE7, PRE8, PRE9, PRE10,
RPN10, RPT3, PUP1, PUP2, SCL1 (“protein degradation proteasome
subunit”)
RPN6, RPN7, RPN9, RPN12, RPT4, RPT5, RPT6 (“protein degradation
proteasome regulatory subunit”)
RPT1, UFD1, UMP1 (“protein degradation, ubiquitin”)
CCT3, CCT8 (“protein folding cytoplasmic chaperonin complex”)
BDF1, CDC48, HAP2, MPD2, PIB1, RBK1, RPN2, RPN11, SBA1,
VPS45 (other related)

on isogenous data only. Our proposed mixture model ARAM
network inherits the solid theory foundation of the ARAM
algorithm, with a full set of re-defined similarity measures and
learning functions to handle these heterogenous input patterns.
We believe our proposed algorithm is one of the few, if not
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first, computational approaches that fully integrate system-
wide GO and gene expression data in a single infrastructure.

We applied the mixture model ARAM network to the Sac-
charomyces cerevisiae (yeast) genome data. In general, within
each recognition category generated by the algorithm, genes
showed significantly high correlation in both GO annotation
and gene expression aspects. This shows that the design of
the mixture model architecture has delivered solid results that
meet our expectation. Our design is based on the assump-
tion that genes with high correlated GO annotations (which
could be computational) and expressions (biological) will have
similar or closely related functions (biological). To validate
this assumption, we further investigated the independent SGD
functional descriptions on the genes. We discovered that in
each category, there was a satisfactory overlap over the SGD
gene functional descriptions, which additionally harmonized
the network-learnt GO annotation over the category. This
reflects the prediction power of our proposed approach in
systematically discovering significant functional gene groups.

While our proposed algorithms worked well on the
extensively-studied and well-annotated yeast genome, it would
be interesting to see its performance on relatively new
genomes, whose genes’ functions are not confirmed or only
computationally predictable. Our future work is to apply the
algorithm to the Medicago truncatula genome with first-hand
Affymetrix GeneChip (http://www.affymetrix.com) data for
systematical study of gene functions. Our discoveries will be
presented in future publications.
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