
Evolutionary Parameter Setting of Multi-clustering

Dan Ashlock
Department of Mathematics

and Statistics
University of Guelph,

Guelph, Ontario, N1G 2R4
dashlock@uoguelph.ca

Ling Guo
Bioinformatics Program
Iowa State University,

Ames, Iowa, 50011
lguo@iastate.edu

ABSTRACT

Multi-clustering is a technique for amalgamating the
results of many runs of a standard clustering algorithm to
obtain a clustering of data which avoid artifacts introduced
by the underlying metric. Multi-clustering also yields an
advisory, called a cut plot, as to the number of “natural”
clusters present in the data. In order to perform multi-
clustering a number of parameters must be chosen. This
paper tests evolutionary algorithms that perform param-
eter setting for multi-clustering on synthetic data set with
designed numbers of clusters. A evolutionary algorithm
and an evolution strategy are compared. The superior
algorithm, the ES, is then used to set parameters for four
microarray-like data sets. Evolutionary parameter setting
is found to more than double the range in which the cut
plot detects the correct number of clusters when compared
to hand-chosen parameters arrived at by serial parameter
optimization. This paper also presents a new technique
for accelerating multi-clustering, iteration limiting, and
demonstrates that the technique may be implemented to
speed up multi-clustering without impairing performance.
The evolutionary results support the use of iteration
limiting in multi-clustering.

I. INTRODUCTION

Multi-clustering is a clustering technique that combines the
results of many clustering runs to achieve a type of clustering
that avoids including artifacts from the underlying metric
used by the clustering algorithm. The goal of this study is
to demonstrate that parameter selection for multi-clustering
can be automated prior to its application to the clustering of
microarray data sets. Multi-clustering is defined in [1] and
many mathematical properties of the algorithm are given there.
The authors are only aware of a modest amount of other work
in algorithmic parameter setting for clustering methods. An
example appears in [7]. Another approach to called multi-
clustering that fuses data from multiple runs of a clustering
algorithm appears in [2].

An advantage of amalgamating many runs of a basic
clustering algorithm with multi-clustering is that the clusters
found do not have a natural “shape”. If k-means clustering is
performed with the Euclidean metric then the clusters have a
strong tendency to be approximate spheres, the most compact

shape in that metric. Figure 1 shows the result of applying k-
means clustering to a donut-and-ball data set in which the two
“natural” clusters only one of which is an approximate sphere.
With two clusters, the correct number, k-means clustering
divides the data neatly and inappropriately in half. With six
clusters the central sphere is correctly identified as a cluster
but the outer ring is divided into five convex clusters. The
algorithm for k-means clustering is given as Algorithm 1.

The output of Algorithm 1 is a category function,

C : S → {0, . . . , k − 1}.
If two points i and j have the property that C(i) = C(j)
then we say that i and j are in the same cluster. We also say
that i is in cluster number C(i). The category function C is
a convenient mathematical way of summarizing the clusters.
It gives the number of the cluster containing a point. The first
cluster in the k-means algorithm given here is cluster number
0. A feature of k-means clustering is that it is sensitive to
its random initialization. If we were to re-run the k-means
algorithm used to produce the two pictures in Figure 1 with
a different set of initial cluster centers we would often get
a different clustering. In performing multi-clustering we will
exploit this sensitivity to random initialization.

Algorithm 1: k-means

Input: 1) A set S of points in R
n

2) A desired number k of clusters.
3) A bound B on the number of cycles permitted

Output: A category function
C : S → {0, . . . , k − 1}.

Details:
Choose k distinct points in S as initial cluster centers.
Repeat

Assign each point to the cluster whose center
it is closest to, breaking ties at random∗.

Recompute cluster centers as the average of all
points in the cluster.

Until (no points change their cluster assignment or
B cycles have occurred+)

Report the assignment of points to clusters as C.

* for real-valued data such ties seldom occur
+ for real-valued data B is seldom required

Suppose that we run k-means with too many clusters. In
the bottom picture in Figure 1 we see that running k-means

25

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

1-4244-0710-9/07/$20.00 ©2007 IEEE

Fig. 1. The result of using k-means clustering with two (upper) and six (lower) clusters on the donut-and-ball data set. Cluster membership is shown by
glyph type.

on the first donut-and-ball data set with six clusters correctly
discovered the central grouping. It also broke the donut into
five pieces. In this clustering, every pair of points that are in
a cluster together belong together. The problem is that most
of the pairs of points in the “donut” cluster are in different
clusters. Running a k-means clustering with an excess of
clusters gives information about which pairs of points belongs
together, but in a one-sided fashion. Positive examples are
correct while negative examples are uninformative. The key
observation that leads to multi-clustering is as follows. First,
any one k-means clustering with an excessively large number
of clusters yields useful information about which pairs of
points should be associated. Second, rerunning the k-means
algorithm yields potentially different information about which
points should be associated. If we could group information
from multiple k-means clusterings then we would get a much
better notion of which points should be associated.

Informally, k-means based multi-clustering proceeds as
follows. The user picks some number N of clusterings to
perform. He then picks a distribution D of possible numbers
of clusters. The algorithm performs N clusterings, selecting
the number of clusters in a given clustering from D. Before
clustering the algorithm initializes a set of pairwise connection
strengths for each pair of points with an initial strength of zero.
Whenever a k-means clustering places two points in a cluster
together the algorithm increases their connection strength
by 1. After running all N k-means clusterings, connection
strengths are divided by the number of clusterings performed
to yield connections strengths in the range [0, 1]. After all the
clustering is done and the final connection strengths have been

computed a cutoff value C is chosen. Only connections with
strength exceeding C are retained. If we view the surviving
connections as edges of a combinatorial graph [6] that has
the data items as vertices then the clusters are the connected
components of this graph. If we choose to make D a uniform
distribution on a number of possible cluster sizes then multi-
clustering requires three parameters: N and the upper and
lower bounds of D. The cutoff value C is not supplied as a
parameter. Rather we graph the impact of all possible values of
C to make a decision about the value of C used. This graph is
the cut plot. The multi-clustering algorithm is given formally
as Algorithm 2.

The cut plot is a nice tool for allowing the user to see
if there is a natural number of clusters. It is a function that
maps possible cut values C onto the number of connected
components that would result if the given cut value were used.
The cut plot yields information about “natural” numbers of
clusters. An example of such a cut plot for the donut-and-ball
data set is shown in Figure 2. Note that it has a large flat spot
at two clusters (the correct number of clusters).

Before proceeding to the problem of setting multi-clustering
parameters, one additional parameter that yields substantial
speed benefits needs to be added. Running a single instance
of k-means clustering gives no reason not to run the k-
means algorithm to completion. If k-means is run dozens
or even thousands of times there is a reason to stop the
algorithm before it runs to completion. Most of the information
about which points are together are harvested in the first few
iterations of the k-means algorithm. To exploit this a cut-off
number of iterations μ is added to the algorithm. If our k-

26

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1
N

um
be

r
of

 C
lu

st
er

s
cutoff C

Cut Plot

Donut-and-hole 1

Fig. 2. The data set, as clustered with multi-clustering, and the cut plot for the donut-and-ball data set.

means algorithm does not finish in μ steps then algorithm
stops anyway. Testing on the data sets used in this study
show that the number of data points moving between clusters
drops to less than 1% of the data in 5-10 iterations. The
incorrectly clustered points are thus a small fraction of the
points clustered. The number μ is one of the parameters
to be set by the evolutionary algorithm. If a large value of
μ is required then it can arise though evolution. This new
version of k-means clustering is called iteration limited k-
means clustering. The authors thank Steven Willson of the
Iowa State University Department of Mathematics for pointing
out the potential of iteration limiting k-means clustering.

The remainder of the paper is structured as follows. Section
II formally states the parameter setting problem and the fitness
function used to evolve solutions to it. Section III gives the
design of two different evolutionary algorithms used to set the
parameters. Section IV gives results while Section V discusses
the results and draws conclusions. Section VI gives tentative
next steps.

Algorithm 2: k-means multi-clustering

Input: 1) A set S of r points in R
n

2) A number N of clusterings to perform.
3) A distribution D of numbers of clusters.
4) A weight cutoff C, 0 ≤ C ≤ 1

Output: A category function
C : S → Z.

A cut plot
f : [0, 1] → Z

Details:
Initialize an r × r matrix Mof pairwise connection

strengths to contain all zeros
Repeat N times

Select an integer d from D
k-means cluster S with d clusters and stop number μ.
For each {i, j} ∈ S × S with i,j in the same cluster

Increment M [i][j]
Increment M [j][i]

end For
end Repeat
Normalize M[i][j] by dividing each entry of M[i][j] by N
Denote by W the graph on S with edge weights M[i][j]
For l equals 0 to N

Construct graph G with V (G) = S, E(G) pairs of
points for which M [i][j] > l/N

Compute number of connected components c of G
Add the point (l/N, c) to the cut plot

end For
For x with l

N
< x < l+1

N
, f(x) = f

(
l

N

)
.

Build a new graph on S with edges where M [i][j] > C
Enumerate the connected components of this graph.
C[i] is the number of the connected component containing i.

II. THE PARAMETER SETTING PROBLEM

Application of Algorithm 2 requires that the user choose the
number N of iteration limited k-means clusterings (ILKMC)
to perform, the distribution D of numbers of clusters to
requested from the ILKMC algorithm in the form of Dmin

and Dmax (the distribution is uniform on [Dmin, Dmax]), and
the iteration limit μ. A parameters setting for a run of multi-
clustering is thus the 4-tuple (N, Dmin, Dmax, μ). Given a set
of parameters, the multi-clustering algorithm is run on a test
data set with a designed number of clusters. The fitness of the
parameter set is the number of cut values C of the form i

100 ,

27

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

0 ≤ i ≤ 100, that yield the designed number of clusters. This
fitness function optimizes the largest flat region in the cut-plot
to agree with the designed number of clusters.

It is perhaps important to note that it is possible to design
test data sets that have ambiguous “correct” numbers of
clusters. A data set with a hierarchical clusters of clusters, for
example, can be designed to yield a cut plot with multiple
broad flat regions. None of these are “right”, they simply
detect different parts of the hierarchy. This explains the use
of the term designed clusters in this study. The evolutionary
algorithms described in Section III optimizes multi-clustering
parameters to detect the designed clusters; different designed
clusters will yield different parameter settings which are good
for different purposes. The data sets used to test the the
parameter setting evolutionary algorithms are shown in Figure
3. The upper data set is called the double horseshoe data set
while the lower is called the spiral data set. Both contain 600
points; the horseshoe has two designed clusters while the spiral
has three.

The more effective algorithm, the ES as we will see in
Section IV, was also applied to perform parameter setting on
four sets of data designed to be similar to microarray time-
series. These data sets are shown in Figure 4. All of these sets
of data have five designed clusters and are in six dimensions.
The microarray-like data sets were created by choosing a
reasonable time-series profile as the starting point for each
designed cluster. The members of each cluster were generated
by selecting a standard deviation and adding Gaussian noise
with the deviation to each point of each of the original profiles
to generate the cluster members. The number of points in
the data sets are 358, 527, 552, and 594 respectively as the
sets appear from top-to-bottom in Figure 4. The details of the
micro-array like clusters are given in Table I. These examples
were chosen to give the multi-clustering algorithm a diversity
of challenges in a small number of data sets.

An issue that deserves discussion is that of the choice of an
evolutionary algorithm for parameter setting. With only four
parameters a regular grid would seem to be a natural method
for parameter setting. The parameters in question are, however,
not ones on which the performance of the algorithm depends
in a reasonable, continuous fashion. The parameters are in
fact not even of the same type and their interactions are badly
understood. Thus the a-priori knowledge was insufficient to
design a search grid with any confidence. An evolutionary
algorithm was much simpler than performing an immense
number of runs needed to characterize the fitness landscape
for the parameters. In addition it is clear that this fitness
landscape must be searched again for new data sets - the
optimal parameters for different types of data sets are found
to vary.

III. THE EVOLUTIONARY ALGORITHMS

Two evolutionary algorithms are tested for setting the pa-
rameters of the multi-clustering algorithm. The first is an
evolutionary algorithm(EA) operating on a population of 20
sets of parameters for the multi-clustering algorithm. The

Fig. 3. The data sets used for testing the parameter setting evolutionary
algorithms.

second is a (1,10) evolution strategy(ES). Members of an
initial population for either algorithm are generated within
the following rages for parameters. The value of N in the
range [100,200]. The values of Dmin and Dmax are chosen
at random in the range [5, 60] subject to the limitation that
Dmax − Dmin ≥ 3. The parameter iteration cutoff μ for k-
means is chosen uniformly in the range [2,30].

The evolutionary algorithm is steady-state[5] using tourna-
ments of size two. In a mating event a tournament of two
population members is chosen uniformly at random. The better
parameter set is copied over the worse one, breaking ties
uniformly at random. The copy is then mutated. In the ES
mutations of the best parameter set replace all other population
members. The mutation operator used replaces one of N ,
Dmin, Dmax, or μ with a new value selected according
to the distribution used in the population initialization. The

28

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

TABLE I

NUMBER OF MEMBERS AND PER-POINT STANDARD DEVIATION FOR THE

DESIGNED CLUSTERS IN THE MICROARRAY-LIKE DATA SETS.

Data Set Cluster Members Std. Dev.
1 0 69 0.15
1 1 42 0.05
1 2 118 0.05
1 3 24 0.15
1 4 105 0.13
2 0 183 0.10
2 1 95 0.15
2 2 181 0.14
2 3 47 0.08
2 4 21 0.15
3 0 180 0.15
3 1 33 0.20
3 2 130 0.08
3 3 145 0.11
3 4 64 0.20
4 0 129 0.08
4 1 43 0.08
4 2 182 0.20
4 3 103 0.17
4 4 137 0.09

evolutionary algorithm is run for 215 mating events. The ES
is run for 25 updatings. The evolution strategy thus examines
10+9x25=235 new structures each time it is run and the EA
also examines 20+215=235 structures.

The small numbers of fitness evaluations used in these
evolutionary algorithms reflect the very high cost of the fitness
evaluation. At worst a fitness evaluation uses 200 iterations
of k-means with an iteration cutoff of 30 (typically k-means
would converge before this point), with only 5 clusters re-
quested (more clusters yield results faster). At these parameter
settings, multi-clustering is quite slow.

IV. RESULTS

Both algorithms, the EA and the ES, proved able to improve
the number of cut-plot points out of 100 that found two clusters
on the double horseshoe data set and three in the spiral data set.
The improvement in quality of the the best structure is about
13% for the horseshoe data set and about 10% for the spiral
data set. Table II gives a statistical summary of the results for
the horseshoe and spiral data sets.

TABLE II

GIVEN BELOW ARE BEST VALUES AND 95% CONFIDENCE INTERVALS FOR

THE 100 BEST-OF-RUN STRUCTURES FOR THE EA AND ES ALGORITHMS

ON THE HORSE-SHOE AND SPIRAL DATA SETS.

Fitness summary
Algor- Best 95% confidence
ithm Problem Fit interval on mean
EA Horseshoe 59 (54.7,55.4)
ES Horseshoe 61 (55.5,56.1)
EA Spiral 32 (26.7,27.3)
ES Spiral 32 (27.5,28.2)

Estimating mean performance with 100 runs of each algo-
rithm shows the ES is likely to be superior to the EA on the

Microarray-style data set 1.

L
og

 R
el

at
iv

e
E

xp
re

ss
io

n

Time 0 Time 1 Time 2 Time 3 Time 4 Time 5

-1.46

-0.79

-0.12

0.55

1.22

Microarray-style data set 2.

L
og

 R
el

at
iv

e
E

xp
re

ss
io

n

Time 0 Time 1 Time 2 Time 3 Time 4 Time 5

-2.53

-1.42

-0.32

0.79

1.89

Microarray-style data set 3.

L
og

 R
el

at
iv

e
E

xp
re

ss
io

n

Time 0 Time 1 Time 2 Time 3 Time 4 Time 5

-1.36

-0.71

-0.07

0.58

1.22

Microarray-style data set 4.

L
og

 R
el

at
iv

e
E

xp
re

ss
io

n

Time 0 Time 1 Time 2 Time 3 Time 4 Time 5

-2.29

-1.46

-0.64

0.18

1.01

Fig. 4. Parallel coordinate plots for the four synthetic microarray data sets
used for multi-clustering parameter setting.

29

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

TABLE III

BEST RESULTS ON THE SPIRAL DATA SET FOR BOTH THE EA AND ES.

N Dmin Dmax mu fitness
EA

138 32 55 3 32
120 40 50 3 32
107 40 58 2 32

ES
114 30 47 4 32

horseshoe data set but the difference is not significant at the
95% level. The best result for the ES on the horseshoe data set,
placing 60% of the cut plot on the correct value (predicting
two clusters) was N = 138 D uniform on the range [21, 35]
and an iteration cutoff of μ = 4. For the EA the best result,
placing 58% of the cutplot on the correct value was N = 196,
D uniform on the range [24, 36] and iteration cutoff μ = 4.
On the spiral data set the ES was significantly better than the
EA. The best parameter sets for the spiral data set are shown
in Table III.

The results for the application of the ES to the four
sets of data similar to microarray time series yielded the
results shown in Table IV. The difficulty of these data sets
varied substantially but the algorithm was able to find set of
parameters for all for data sets so that the correct number of
clusters was at least 30% of the cut plot.

TABLE IV

GIVEN BELOW ARE BEST VALUES AND 95% CONFIDENCE INTERVALS FOR

THE 100 BEST-OF-RUN STRUCTURES FOR THE ES ALGORITHMS ON THE

FOUR SETS OF DATA SIMILAR TO MICROARRAY TIME SERIES.

Microarray fitness summary
Best 95% confidence

Problem Fit interval on mean
Set 1 30 (22.3,23.3)
Set 2 76 (70.9,70.6)
Set 3 45 (37.0,38.2)
Set 4 36 (28.1,28.6)

V. CONCLUSIONS AND DISCUSSION

Both the EA and ES are capable of setting the parameters
for multi-clustering to values significantly better than those in
a random population. In the initial report of multi-clustering
[1] the parameters setting, chosen by hand, were N = 60, D
uniform in the range [10,100], and μ = 30. This default set
of parameters from the initial study were used 30 times and
found to be much worse than the evolved parameter settings.
A 95% confidence interval for the percentage of the cutplot
yielding two clusters is (21.2,23.8). Compare this with the
mid-fifties found routinely by the parameter setting algorithm.
The atrocious performance is probably the result of the initial
parameter setting studies having been performed on the donut-
and-ball data set where these settings yield a correct number
of clusters about 65% of the time (see the cutplot in Figure
2). This in turn suggests that parameter setting is needed for
each type of data.

The two evolutionary algorithms tested in this study are
both adequate for parameter setting and automate the process.
The by-hand parameter setting study used serial parameter
variation and, as such, is probably intrinsically inferior to
either of the evolutionary algorithms. On one of the two data
sets where the two algorithms were compared the ES proved
significantly better.

Examining the values of μ in best results from the two
evolutionary algorithms we see that in both μ <= 4. The
algorithm was permitted to select in the range [2,30]; in both
algorithms on the spiral and horseshoe data sets the values of
μ for best-of-run parameter sets were in the range 3-8 with
values above 6 being quite rare. This means that the potential
of μ to speed the multi-clustering algorithm without impairing
quality is supported by the evolutionary results. The value
μ = 30 represents a situation in which the underlying k-means
algorithm almost always terminates; evolutionary parameter
selection showed that this is an unnecessary luxury, at least
for the test data set used. This justification of the use of small
values of μ is the most important result of this study.

The mean value of μ was computed for the best-of-run
parameters found for all four sets of microarray-like data and
these means are summarized in Table V. These results also
support the idea that the value of mu can be profitably set to
small values. Since this yields a substantial time savings this
is indeed good news.

TABLE V

GIVEN BELOW ARE MEAN VALUES AND 95% CONFIDENCE INTERVALS

FOR MEAN VALUES OF μ IN THE 100 BEST-OF-RUN STRUCTURES FOR THE

ES ALGORITHMS ON THE FOUR SETS OF DATA SIMILAR TO MICROARRAY

TIME SERIES.

Microarray fitness summary
Mean 95% confidence

Problem μ interval on μavg

Set 1 3.55 (3.39,3.71)
Set 2 4.67 (4.41,4.93)
Set 3 6.20 (5.93,6.47)
Set 4 4.11 (3.88,4.34)

The attempt to select a set of microarray-like data sets
that would provide a diversity of challenges to the multi-
clustering algorithm was done by the use of intuition; the broad
variety of fitnesses obtained suggests that the effort succeeded.
The variability of the outcomes for the microarray data is
substantial with the easiest data set being correctly clustered
for 76% of the length of the cutplot while the hardest was
correct along only 30% of the cut plot. The hardest of the
6-dimensional data sets was only slightly harder than the 2-
dimensional spiral data set.

The results of this study suggest that there is no good
default set of parameters for multi-clustering. Instead, different
data sets have different good sets of parameters. The μ
parameter has a gratifyingly small range, and one in its lower
values, among the best-of-run evolved parameter sets. Other
parameters show no clear pattern beyond being similar when
they were evolved for the same data set. A larger set of

30

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

experiments is needed to determine if there are good rules
of thumb for setting the parameters.

One obvious rule of thumb is that the distribution D should
have a range that only includes numbers larger than the actual
number of clusters in the data. This is obvious because we
do not wish to force members of distinct natural clusters
to be together in any of the individual k-means clusterings.
Disconcertingly this rule of thumb is also wrong: during
testing of the k-means multi-clustering algorithm on a wide
variety of microarray-like data sets it was found that superior
results could be obtained by letting the number of clusters
chosen by the distribution D include numbers smaller than the
designed number of clusters. The reason for this is not clear
and is under investigation. This discovery also motivated the
current evolutionary parameter setting study.

The decision not to use any of the available biological
microarray data sets in this study was driven by the lack of a
good division into clear clusters in published biological data.
The yeast time-series data at Stanford, a standard data set
for microarray analysis software testing, was analyzed with
hierarchical clustering. This causes it to lack clear clusters
for testing the multiclustering software. Until the behavior of
the multi-clustering algorithm is more fully understood we are
reluctant to apply it to messy biological data.

VI. NEXT STEPS

One limitation of the multi-clustering technique is that it
is slow. When multi-clustering becomes the fitness function
of an evolutionary algorithm this limitation becomes painful,
yielding the small numbers of repetition and short length of
evolution in this study. Possibly the most important result of
this study is to show that stringent upper bounds on μ can
probably be used without impairing performance. If the result
stands it will speed both multi-clustering and additional evo-
lutionary exploration of the multi-clustering parameter space.

In addition to the time spent on individual k-means cluster-
ings, substantial time is also spent constructing the cut-plot.
In normal use the cut plot is of substantial utility; in the
parameter setting algorithms is functions as a fitness function.
There is room for algorithmic improvements to speed up the
cut plot algorithm. In order to compute the cut plot the number
of clusters resulting from some set of of cut-values must be
computed. Theorem 1, proved in [3], gives a finite bound on
the number of cut-values that must be computed.

Theorem 1: The cut plot f(x) is a non-decreasing step
function with at most r−m steps, where m is the number of
connected components in V , the weighted graph constructed
by the multi-clustering algorithm. These steps occur at the
weights of the edges of a maximal spanning forest of V.

Examine the cutplot shown in Figure 2. Most of the jumps
in the cutplot happen at the right hand side of the plot, well
after any large flat spots that indicate a natural number of
clusters. Construction of a maximal spanning forest can be
done with an efficient greedy algorithm such as a simple
modification of Kruskal’s algorithm[4]; using regula-falsi on
the critical weights obtained will permit the computation of

the exact fraction of the cutplot that yields the correct number
of clusters with roughly log(r−m) evaluation of the number
of clusters where r and m are as in Theorem 1. This should
permit substantial speed improvements to the fitness function
used in this study.

Assuming that the speed improvements have been imple-
mented then the parameter setting algorithm should be applied
to a greater variety of data sets and to biological microarray
data sets. Such additional data should allow an analysis to
determine which parameters as soft with respect to good
performance and which are not. Such an added collection of
data will permit an analysis to determine if good settings for
multiclustering are idiosyncratic to particular data sets or if
there are good default settings or rules of thumb for broad
classes of data sets.

Another avenue for investigation is the use of multi-
clustering for hierarchical clustering. This form of clustering is
most commonly used with micro-array data and the weighted
graph located with multiclustering can be used to create
a hierarchical clustering. As the cut-value is increased, the
resulting partitions of the data are consistent; once separated
points stay separated. Mathematically the successive partitions
resulting from increasing the cut-value refine one another. This
means that as we sweep the cut-value we obtain a hierarchical
relationship among the clusters for different cut values. The
result is a tree-structured description of the way the data
clusters at all cut-values, similar to the results of standard
hierarchical clustering algorithms. The details of using multi-
clustering as a hierarchical clustering tool are given in [3]; it
remains to test this tool.

VII. ACKNOWLEDGMENTS

The first author would like to thank the University of
Guelph for its support of this research. Both authors thank
Steven Willson of the Iowa State University Department of
Mathematics for pointing out the potential of adding the μ
parameter which substantially speeds the process of multi-
clustering.

REFERENCES

[1] D. A. Ashlock, E.Y. Kim, and L. Guo. Multi-clustering: avoiding the
natural shape of underlying metrics. In C. H. Dagli et al, editor, Smart
Engineering System Design: Neural Networks, Evolutionary Program-
ming, and Artificial Life, volume 15, pages 453–461. ASME Press, 2005.

[2] D. S. Frossyniotis, M. Pertselakis, and A. Stafylopatis. A multi-clustering
fusion algorithm. In SETN02: Proceedings of the Second Hellenic
Conference on AI, pages 225–236, New York, 2002. Springer.

[3] Eun-Youn Kim. Analysis of Game Playing Agents with Fingerprints. PhD
thesis, Iowas State University, Ames Iowa, 50010, 1995.

[4] J. B. Kruskal. On the shortest spanning subtree and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7:48–50,
1956.

[5] G. Syswerda. A study of reproduction in generational and steady state
genetic algorithms. In Foundations of Genetic Algorithms, pages 94–101.
Morgan Kaufmann, 1991.

[6] Douglas B. West. Introduction to Graph Theory. Prentice Hall, Upper
Saddle River, NJ 07458, 1996.

[7] Wei Yang, L. Rueda, and A. Ngom. A simulated annealing approach to
find the optimal parameters for fuzzy clustering microarray data. In SCCC
2005. 25th International Conference of the Chilean Computer Society,
pages 7–10, 2005.

31

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

