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Abstract—Since there are multiple sets of relevant genes 

having the same high accuracy in fitting training data called 

model uncertainty, to identify a small set of informative genes 

from microarray data for designing an accurate tumor classifier 

for unknown samples is intractable. Support vector machine 

(SVM), a supervised machine learning technique, is one of the 

methods successfully applied to cancer diagnosis problems. This 

study proposes an SVM-based classifier with automatic feature 

selection associated with a boosting strategy. The proposed 

boosting evolutionary support vector machine (named BESVM) 

hybridizes the advantages of SVM, boosting using a 

majority-voting ensemble and an intelligent genetic algorithm 

for gene selection. The merits of the BESVM-based classifier are 

threefold: 1) a small set of used genes, 2) accurate test 

classification using leave-one-out cross-validation, and 3) robust 

performance by avoiding overfitting training data. Five 

benchmark datasets were used to evaluate the BESVM-based 

classifier. Simulation results reveal that BESVM performs well 

having a mean accuracy 94.26% using only 10.1 genes averagely, 

compared with the existing SVM and non-SVM based classifiers. 

I. INTRODUCTION 

Microarray gene expression profiling technology is one 

of the most important research topics in clinical diagnosis of 

disease. The practical applications of microarray gene 

expression profiles include management of cancer and 

infectious diseases [1]. The normal cells can evolve into 

malignant cancer cells through a series of mutation in genes 

that control the cell cycle [2]. However, to identify such an 

optimal subset from thousands of genes is intractable, which 

plays a crucial role when classifying multiple-class genes 

express models from tumor samples. In addition, due to high 

degree of freedom in the search space, it may occur that there 

are multiple sets of relevant genes having the same high 

accuracy in fitting the training data that is so called model 

uncertainty. How to design an accurate tumor classifier with 

automatic gene selection and consideration of model 

uncertainty from microarray gene expression data is 

investigated in this paper. 

Genetic algorithm (GA) [3] is a randomized search and 

optimization technique that simulates the natural evolution by 

an iterative computation process. GA can consider multiple 

interacting attributes simultaneously rather than considering a 

single attribute at a time. Furthermore, GA is capable of 

searching for optimal or near-optimal solutions to 

optimization problems with complex and large search spaces. 

A number of GA-based gene selection schemes have been 

used in microarray data analysis. Li et al. (2001) [4] proposed 

a hybrid method of GA-based gene selection and k-nearest

neighbor classifier to assess the importance of genes for 

classification. Ooi and Tan (2003) [5] proposed an efficient 

hybrid approach based on GA and maximum likelihood 

classification.

Support vector machine (SVM) [6], a supervised machine 

learning technique, is one of the methods successfully applied 

to cancer diagnosis problems in the previous studies [7]-[12]. 

To build an efficient and effective model for classification, it 

is indicated that SVM performs better than some existing 

classification algorithms [8]. Statnikov et al. [13] investigated 

classification algorithms which can handle multiple classes 

and a large number of variables, and compared multi-category 

SVM to neural networks and k-nearest neighbor classifiers. 

The results indicate that the multi-category SVM is the most 

effective classifier for tumor classification. 

To cope with multiple sets of relevant features of model 

uncertainty, some useful approaches have been proposed, 

such as boosting algorithms [14], [15]. Li and Yang [16] used 

a model averaging approach to classification of microarray 

data by averaging over multiple single-gene models. Yeung et 

al. [17] presented a Bayesian model averaging approach as a 

multivariate feature selection method for multi-class 

microarray data. 

The intelligent genetic algorithm (IGA) is one 

customized version of the intelligent evolutionary algorithm 

[18] for solving specific problems. Ho et al. [19] proposed an 

interpretable gene expression classifier using IGA for 

microarray data analysis. Huang et al. [20] proposed an 

IGA-based classifier by selecting a minimal number of 

informative genes. The automatic gene selection and 

parameter tuning are simultaneously optimized by IGA, 

which can advance the classification performance and is 

beneficial to factor analysis from a large number of given 

features. Some of the IEA-based classifier design methods can 

refer the studies [21]-[23]. 

This study proposes a boosting evolutionary SVM (name 

BESVM) based classifier for tumor classification by 

majority-voting ensemble. The merits of the BESVM 

classifier hybridizing the advantages of boosting, IGA and 

32

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

1-4244-0710-9/07/$20.00 ©2007 IEEE



SVM are threefold: 1) automatic gene selection, 2) 

consideration of model uncertainty, and 3) achieving accurate 

and robust prediction of unknown samples using the selected 

features. The majority-voting ensemble classifier [24] is one 

of the simplest ensemble forms that can combine the outputs 

of multiple classifiers. By different weighting schemes, they 

can simply choose the predicted class by plurality from a 

classifier pool [25], [26]. The possible intervals of C and 

with grid space provide each SVM with parameters (C, ) as 

an independent SVM classifier. A threshold strategy in 

selection with SVMs is applied after the SVM models have 

been established. 

The effectiveness of BESVM is evaluated by designing 

an accurate tumor classifier with automatic gene selection and 

consideration of model uncertainty from microarray gene 

expression data. Five benchmark datasets were used to 

evaluate the BESVM-based classifier. Simulation results 

reveal that BESVM performs well having a mean accuracy 

94.26% using only 10.1 genes averagely, compared with the 

existing SVM and non-SVM based classifiers. 

II. SUPPORT VECTOR MACHINE 

SVM is a very popular method to deal with classification, 

prediction, and regression problems. Various SVMs 

introduced by Vapnik and other co-workers [6], [27] are 

powerful classifiers. For the binary SVM, the training data 

consist of n pairs (x1, y1), (x2, y2),…, (xn, yn), with xi
m and 

yi {-1,1}, i = 1, 2, …, n. The standard SVM formulation is as 

follows: 
n
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where w m is a vector of weights of training instances; b is 

a constant; C is a real-valued tradeoff (cost) parameter; i is a 

penalty parameter; and  is to map xi into a higher 

dimensional space. The SVM of (1) is called a linear kernel 

SVM when (xi)=xi. The SVM finds a linear separating 

hyperplane with the maximal margin in the higher 

dimensional space. C > 0 is the penalty parameter of error 

term. The SVM of (1) is called a nonlinear SVM when  maps 

xi into a higher dimensional space. 

For the nonlinear SVM, the value of variable w can be 

vary large or even infinite, so it is very difficult to solve using 

(1). The general method is to use the following dual 

formulation: 
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where e is the vector of all ones, C>0 is the supper bound, Q

is an n n positive semidefinite matrix, Qij  yi yj K(xi xj), and 

K(xi, xj) (xi)
T (xj) is a kernel function. Some commonly- 

used kernel functions are:

2

ji xx
e (Radial basis function), 

(xi
Txj/ + )d (Polynomial), and tanh( xi

Txj+ ) (sigmoid), where 

, d and are kernel parameters. The number of variables in 

(2) is the size n of the training dataset which is smaller than 

the dimensionality of (x).

Chang and Lin [28] develop a software tool LIBSVM 

(Library for Support Vector Machine) for support vector 

classification, regression and distribution estimation. 

LIBSVM uses the “one-against-one” approach [29] for 

multiclass classification. In the one-against-one approach, 

k(k-1)/2 classifiers are established where k is the number of 

classes. The classifiers between each pair of k classes are 

optimized using the following dual formulation: 
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After solving the optimization problem using (3), k(k-1)/2 

decision functions can be obtained. To predict a class label of 

a given instance x, the prediction for each of the k(k-1)/2 

classifiers is calculated using a voting strategy. If there is a 

class, say j, that receives the largest number of votes, the 

instance x is assigned to class j, where a tie is broken 

randomly. One advantage of using this method is that each 

classifier is easy to train since only the binary SVM is needed. 

Another approach to multiclass classification is called 

“one-against-all”. In this approach, k models of SVM are 

established. For each class j, the SVM is trained using all the 

instances in the class j as positives and the rest of instances as 

negatives. Previous research has shown that one-against-one 

outperforms one-against-all for multiclass classification [30]. 

III. INTELLIGENT GENETIC ALGORITHM 

The used IGA to optimize the parameters in S using the 

fitness function F(S), defined in (4), is given as follows: 

Step 1: Initialization: Randomly generate an initial 

population with Npop feasible individuals where each 

gene gi is unique in a GA-chromosome. 

Step 2: Evaluation: Evaluate fitness values of all individuals 

in the population. Let Ibest be the best individual in the 

population. 

Step 3: Use the simple ranking selection that replaces the 

worst Ps·Npop individuals with the best Ps·Npop

individuals to form a new population, where Ps is a 

selection probability. 

Step 4: Randomly select Pc·Npop individuals including Ibest,

where Pc is a crossover probability. Perform 

intelligent crossover operations for all selected pairs 

of parents. 

Step 5: Apply a conventional bit-inverse mutation operator to 

the population using a mutation probability Pm. To 

prevent the best fitness value from deteriorating, 

mutation is not applied to the best individual. 

Step 6: Termination test: If a pre-specified termination 

condition is satisfied, stop the algorithm. Otherwise, 
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go to Step 2. 

IV. THE PROPOSED BESVM

The two-level cross-validation achieving accurate and 

robust prediction of unknown samples using the selected 

features is applied, using leave-one-out cross validation 

(LOOCV) in the outer loop and a stratified 10-fold 

cross-validation (10-CV) in the inner loop [13]. The inner 

loop is used to determine the best performance of the boosted 

SVM models on the validation data. The outer loop is used as 

unknown samples for estimating the performance of the 

BESVM classifier. 

A. Chromosome representation 

Let S be the set of parameters {t1,…, tl, g1,…, gl} to be 

optimized. The control GA-genes ti are binary variables where 

the constant l is pre-defined by designers. The parametric 

genes gi [1, m] are serial numbers of genes in the microarray 

data. The variable ti is used to determine whether the 

corresponding gene of gi is selected or not. The advantage of 

using control genes rather than each parametric gene has an 

equal probability to be evaluated that is beneficial to the used 

IGA. All the parameters are encoded into a chromosome, as 

shown in Fig. 1. 

t1 t2 ··· tl g1 g2 ··· gl

Fig. 1. Chromosome representation. 

B. Fitness Function 

Fitness value guides IGA to choose offspring for the next 

generation from the current parents. For achieving the two 

objectives, maximizing classification accuracy R(S) and 

minimizing the number G(S) of relevant genes, the fitness 

function F(S) is a weighted sum with a weight w as follows: 

max F(S) = R(S) – wG(S).           (4) 

G(S) is the sum of the values of ti and R(S) is the 

accuracy of the ensemble classifier using these G(S) genes. 

The penalty term wG(S) is to further minimize G(S) while 

maximizing R(S). The accuracy R(S)=(RT(S)+RV(S))/2 where 

RT(S) is training accuracy and RV(S) is validation accuracy. 

Therefore, the used fitness function in the following 

simulations is as follows: 

max F(S) = (RT(S)+ RV(S))/2 – wG(S).   (5) 

C. The used SVM model 
The formulation in Section II can take nonlinearly 

separable cases into account by letting C be finite values. 

SVM has shown good performance in data classification that 

depends on tuning of several parameters. The parameters 

affect the generalization ability. The basic approach to SVM 

classification may be extended to allow for nonlinear decision 

surfaces. For this, the input data are mapped into a high 

dimensional space through a nonlinear mapping function 

which has effect of spreading the distribution of the data 

points in a way that facilitates the fitting of a linear 

hyperplane. The classification decision function is as follows: 
n

i

iii bxxKy
1

)),(sgn(           (6) 

where i, i = 1,…,n, are Lagrange multipliers. The magnitude 

of i is determined by the parameter C [30]. The RBF kernel 

function is used: 

k(xi-x)=
2

xxie                (7) 

where  is the parameter controlling the width of the Gaussian 

kernel. Therefore, tuning the cost parameter C and kernel 

parameter  is necessary to solve the classification problems. 

The SVM with different values of C and  is treated as an 

independent classifier. The 10-fold cross-validation test 

provides a bias-free estimate of the accuracy at a much 

reduced computational cost, and is considered an acceptable 

test to evaluate prediction performance of an algorithm [31]. 

IGA selects an optimal set S of relevant features for all the 

input data. To estimate the grid space of the SVM models, the 

validation accuracy is adopted. For obtaining the kth set of 

models which can be used to estimate RT(S), a threshold value 

t is specified that the top-rank t% of the SVM models are 

selected according to the training accuracy. Namely, there are

t% SVM classifiers SVMk having T SVMs in each fold of 

10-CV in the classifiers pool. 

D. Majority voting 

The majority-voting ensemble [24] is adopted in BESVM 

to design an accurate tumor classifier with automatic gene 

selection and consideration of model uncertainty. Based on 

the majority-voting ensemble for classification, generation, 

selection and combination can be conceived as outlined in Fig. 

2. The majority-voting ensemble classifier is one of the 

simplest ensemble forms that can combine the outputs of 

multiple classifiers. By different weighting schemes, they can 

simply choose the predicted class by plurality from a classifier 

pool [20], [30]. Assuming that the errors made by the 

classifiers are not highly correlated, the samples that are not 

accurately classified by one classifier have a good chance to 

be correctly classified by a plurality of the other classifiers. 

A combination of several SVMs will advance 

classification accuracy. Majority voting [32] is the simplest 

method for utilizing the kth set of SVM models SVMk. Let fj

(j=1, …, T) be a decision class of the jth SVM in SVMk where 

fj=s {1, 2, …, Ca}and Ca is the total number of classes. 

Then, let Ns be the number of SVMs whose decision class is 

class s. Then, the final decision class fmv(x) of SVMk for a 

given sample x is determined by 

fmv(x) = arg max s
s

N .             (8) 

The training accuracy RTk(S) and validation accuracy RVk(S)

of SVMk are estimated using the majority voting (8). 

control GA-gene parametric genes 
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E. The BESVM classifier 
1. Leave one out form N samples of the used dataset. 

2. Evolve a set of parameters S using IGA for gene selection 

through the step 3. 

3. Establish a best ensemble classifier SVMbest from SVMk,

k=1, …, 10. To establish SVMk, perform the following 

steps:

3-a) Split the N-1 samples into 10 folds. 

3-b) Evaluate the kth fold where k=1, …, 10 as follows: 

b-1) Train SVM models with the remaining 9 folds. 

b-2) Generate the set of SVM models using a grid 

space (C, ). 

b-3) Select the top-rank t% (=T) SVM models. 

Combine the selected T SVMs as an ensemble 

classifier SVMk.

b-4) Based on the major-voting strategy, compute 

validation accuracy using the kth fold. 

3-c) Choose the best ensemble classifier SVMbest in terms 

of the validation accuracy. 

4. Classify the test sample using SVMbest with the 

major-voting strategy. 

5. Calculate the accuracy of LOOCV and mean number of 

selected genes. 

V. EXPERIMENTS 

A. Data sets 

The proposed BESVM is evaluated using five datasets 

which are often used in recent literature on the classification 

problem in analyzing gene expression data. The datasets are 

described in Table I. The five multicategory datasets are 

available by download from http://www.gems-systems.org for 

non-commercial use. The five datasets have 2-5 distinct 

diagnostic categories, 50-102 patients and 5327-11225 genes, 

after the data preparatory steps [13]. A simple rescaling of 

gene expression values to [–1, 1] is performed to utilize SVM. 

B. Evaluating the BESVM classifier 

The BESVM classifier was implemented using VC++ 6.0 

on a PC. The parameters of IGA are as follows: population 

size Npop = 20, crossover rate Pc = 0.8, truncation rate Ps = 0.2, 

and mutation rate Pm = 0.2. In the set S of parameters, let the 

number of control GA-genes be l=15Ca and t=20. In this 

study we extended the ranges of SVM parameters: cost C 

={0.0001×2d, 0.001×2d, 0.01×2d, 0.1×2d, 1×2d, 10×2d, 100×2d}

and  ={0.0001×2d, 0.001×2d, 0.01×2d, 0. 1×2d, 1×2d}, d=0, 1, 

2, 3. There are 28×20 grid points of C and  with grid space. 

The stopping condition is to use 100 generations of IGA. 

For the proposed method, the classification accuracy for 

each dataset is calculated from results of outer loop LOOCV. 

The performance comparison is shown in Table II in terms of 

accuracy and number of used genes. Table II shows the high 

performance of BESVM where the mean accuracy is 94.26% 

using only 10.1 genes averagely. Compared with the result of 

MC-SVM in [13], the mean accuracy is 91.42% without using 

gene selection. The results reveal that the boosting strategy 

and the gene selection using IGA are useful to design the 

SVM-based classifiers in advancing accuracy and number of 

used genes. 

C. Evaluating the boosting strategy  
To further evaluate the boosting strategy without 

interference of the IGA-based gene selection, a prespecified 

number of genes were selected by the Wilcoxon rank sum test 

[33] as a non-parametric feature pre-selection method where 

G(S)= 10, 20, …, 100. Three SVM-based classifiers were 

studied for comparison: 1) 10-CV with major-voting and t=20,

denoted as 10CV-Top20%, 2) 10-CV without major-voting 

using the best one of the 10 SVM models, denoted as 

10CV-Best, and 3) no cross-validation is used, denoted as 

non-CV. The results are shown in Fig. 3. The results of Fig. 3 

show that the 10-CV with the boosting strategy is effective on 

average. The additional cost is the computation time and 

space for the extra SVM classifiers, which is worth doing. 

An advantage of the boosting strategy is its robustness of 

classification results. Fig. 4 shows the results of the three 

SVM-based classifiers using a box plot presentation. It is 

shown that 10-CV with major-voting (10CV-Top20%) is the 

most robust and accurate classifiers. In addition, the10-CV 

method is able to cope with overfitting problems. 

VI. CONCLUSIONS 

The proposed BESVM consisting of SVM, boosting and 

IGA has been shown effective for designing tumor classifiers 

from microarray data. The number of genes is usually much 

greater than the number of tissue samples available, and only 

a small subset of the genes is relevant in distinguishing 

different classes. Considering this characteristic of microarray 

data, the classifier design should avoid overfitting the training 

data in selecting a small set of genes by maximizing the 

performance of independent tests. 

It is essential to select a minimal number of relevant 

genes from microarray data while maximizing classification 

accuracy of independent tests for the development of 

inexpensive diagnostic tests. After computer simulation using 

five benchmark datasets, it reveals that BESVM could obtain 

not only higher classification accuracy but also a smaller 

number of relevant genes than the existing methods. In 

addition, the IGA-based gene selection method is an efficient 

method in designing classifiers for analyses of microarray 

data. 

This study has shown the individual abilities of SVM 

with boosting and IGA for gene selection. To our knowledge, 

the BESVM method has the best classification performance in 

terms of the number of used genes (10.08 genes on average) 

and test accuracy (94.26% using leave-one-out 

cross-validation). 
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Fig. 3. Performance comparisons of three SVM-based 

classifiers for evaluating the boosting strategy using 

major-voting ensemble on five datasets in terms of LOOCV 

accuracy and number of used genes. 

Fig. 4. The results of three inner procedures using a box plot 

presentation. 
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TABLE I 

THE FIVE DATASETS OBTAINED FROM THE WORK [13]. 

No. Data set Descriptions 
# of 

classes

# of 

samples 
# of genes 

1 Brain_Tumor1 5 human brain tumor types 5 90 5920 

2 Brain_Tumor2 4 malignant glioma types 4 50 10367 

3 Prostate_Tumor Prostate tumor and normal tissue 2 102 10509 

4 Leukemia1 
Acute myelogenous leukemia (AML), 

Acute lympboblastic leukemia (ALL) 

B-cell, and ALL T-cell 

3 72 
5327 

5 Leukemia2 AML, ALL, and mixed-lineage leukemia 

(MLL)
3 72 11225 

TABLE II 

THE LOOCV ACCURACIES AND NUMBERS OF USED GENES FOR BESVM AND 

NON-GENE-SELECTION CLASSIFIER MC-SVM. THE RESULTS OF MC-SVM 

ARE OBTAINED FROM THE WORK [13].

Data set # of genes in 

MC-SVM 
MC-SVM (%) BESVM (%)

# of genes in 

BESVM 

Brain_Tumor1 5920 91.67 94.00 12.03 

Brain_Tumor2 10367 77.00 85.00 15.25 

Prostate_Tumor 10509 92.00 95.10 7.06 

Leukemia1 5327 97.50 98.61 7.48 

Leukemia2 11225 97.32 98.61 8.57 

Mean 8669.6 91.10 94.26 10.08 
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Fig. 2. Illustration of outer and inner loops related to the boosting evolutionary SVM classifier.

Evolution using IGA for gene selection

Split the N-1 samples into 10 folds. 

N-1 samples (xi, yi), i=1, ..., N, i j

SVM11

C1, 1

SVM12

C1, 2

SVMcr

C28, 20

10-CV

kth fold as validation data9 folds as training data 

Select the top-rank t% SVM models, i.e., SVMk

Validate the ensemble classifier SVMk

Test data 

(xj, yj)

Inner loop: 10-CV 

Test the best one of SVMk , i.e., SVMbest

Determine the class label of the test data 

Classification accuracy of LOOCV  

Outer loop: LOOCV 
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