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Abstract- This paper presents two-way clustering of microarray data 

using fuzzy adaptive subspace iteration (ASI) based algorithm for 

knowledge discovery in microarrays. It is widely believed that each 

gene is involved in more than one cellular function or biological 

process. The proposed fuzzy ASI assigns a relevance value to each 

gene associated with each cluster. These functional categories are 

ranked based on their potential in providing maximal separation 

between the two tissues classes; which is an indication of 

differentially expressed genes (DEGs). Empirical analyses on 

simulated, 100 artificial microarray datasets are used to quantify the 

results obtained using the fuzzy-ASI algorithm. Further analyses on 

different microarray cancer datasets revealed several important 

genes that are relevant with various cancers.  

 

Keywords- Fuzzy Clustering, Two-way clustering, Knowledge 
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I. INTRODUCTION 

Microarrays measure expression of thousands of genes under 

some experimental conditions. These conditions are normally 

labeled on the basis of some external information such as, clinical 

identification of tissue samples or expression of genes with 

respect to time [1]. Genes relevant to the pathology under 

investigation are expected to be up or down regulated between 

healthy and diseased tissues. The ranking of the genes depends on 

the feature selection techniques. The genes are generally ranked 

based on two criteria, i) individual differential expression of a 

gene between two tissue cases, or ii) co-expressed genes offering 

high discrimination between two tissue cases. The co-expression 

depends on the complex interactions between the genes. Both of 

these criteria require filtering of irrelevant genes (feature 

selection) for further processing. The feature selection is an 

important problem because only a subset of genes may be 

responsible for a biological process (for example, formation of 

tumor). The rest of the genes form noise and mask the underlying 

message. Most of the techniques based on co-expression assign 

each gene to a single cluster. It is widely known that each gene 

might be involved in more than one biological process. The 

allocation of each gene to a single cluster does not ensure this 

characteristic of the genes. Hence it is necessary to design a 

clustering algorithm which assigns a gene to multiple functionally 

relevant clusters based on their membership values to each cluster. 

The fuzzy clustering process addresses the process of one gene 

involving in more than one cellular process. 

The proposed Fuzzy-ASI clustering algorithm as shown in Fig. 1 

employs a progressive two-way clustering of the expression data 

to functionally classify the genes and to find DEGs [2-8]. The 

two-way clustering method employs one-way clustering in both 

dimensions. The clustering of one dimension is dependent on the 

clustering of the other dimension. Although variations of this 

method exist, most algorithms involve all the samples in the 

clustering process. One can possibly argue that samples that are 

noisy may result in false alarms. This problem can be addressed 

by employing an Adaptive Subspace Iteration (ASI) algorithm 

which performs all its calculations in Eigen-space, minimizing 

such possibilities. Further noise may be eliminated by employing 

fuzzy clustering [9]. The noise points are represented by low 

membership values with in a cluster. By employing a proper 

threshold the algorithm can be made robust to the noise. The two-

way clustering process as shown in Fig. 2 provides insight into 

genes having similar functions. The functionality of unknown 

genes is found in the process of grouping of the genes. The 

samples are clustered using the gene clusters formed ignoring the 

tissue labels initially and later the label information is used as 

ground truth to rank the clusters. 

The clustering methods which have been used rigorously 

include hierarchical methods   [10-12], self organizing maps [13] 

and k-means clustering [14]. All these algorithms come under 

heuristic based approaches. In hierarchical clustering, the 

relationship among the variables (genes) is shown by a tree which 

depicts the similarity or dissimilarity among the groups of 

features. The advantage of such a method is that one may focus on 

more interesting details but, these methods lack robustness. The 

unsupervised projection-

based method, for example, 

the self organizing map 

(SOM), provides low-

dimensional representation 

of an input data space. This 

method is easy to 

implement but for large 

datasets this algorithm is 

not favorable and is 

computationally intensive. 

The K-means algorithm 

requires apriori knowledge 

about the data to initiate the 

algorithm and is very 

sensitive to the initialization. Further, choosing an algorithm that 

suits the data under consideration is problematic. Also most of the 

algorithms have similar performance which makes the choice 

 
Fig 1: A framework for progressive 

clustering. 
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much more difficult. It is also well known that all the heuristic 

algorithms have one inherent problem of determination of number 

of clusters.  

A number of fuzzy based clustering algorithms are employed 

for microarray data. The most common algorithm used is the 

Fuzzy-C-means  algorithm [15]. Many variations of this algorithm 

exist although most of them focus mainly on the fuzzification 

factor [16]. The subspace-based methods are relatively faster and 

computationally efficient and also produce good clustering of very 

high dimensional data. The Fuzzy-ASI algorithm [17] employed 

in this paper is a variant of the nested subset method (hard 

clustering method) and provides best possible feature selection for 

clustering [18, 19]. In this paper, Davies-Bouldin index is used to 

measure the quality of clusters for varying number of classes [20]. 

The number which offers highest quality clusters is considered 

optimum. Often this is estimated by plotting the quality indices vs 

number of clusters. The number of clusters corresponding to the 

knee of such a plot is a good estimate of the number of clusters in 

the data. 

The Fuzzy-ASI based algorithm is expected to play an 

important role in data mining applications as it uses the synergy 

between dimensionality reduction and soft- clustering. The 

subspace-based algorithm is unique in the way it performs 

clustering and also provides interpretation of the groups formed in 

the process of clustering [17, 21]. The ASI algorithm 

simultaneously performs: a) dimensionality reduction, b) 

identification of subspace structure associated with each cluster 

and c) updates the memberships based on the subspace structures. 

Similarity between the data points is found in the Eigen-space and 

hence, the clustering of the data is robust against arrangement of 

samples. The ASI algorithm is also very robust against 

initialization conditions as the optimization procedure involved 

here iterates over the fore mentioned steps until a local minimum 

is reached. Additional features include automatic determination of 

the importance of features in the formation of clusters, dynamic 

allocation of new data points to clusters without repeating the 

whole process, automatic estimation of centroids of each cluster, 

ease of implementation, less computational intensive and ability to 

handle high dimensional data. 

The two-way clustering mechanism identifies genes with a 

correlated level of expressions and these gene groups are ranked 

based on their potential to discriminate the known tissue cases. 

The ranking of the cluster depends on the ability of the co-

expressed genes in the cluster to offer high discrimination 

between the samples. The clusters which offer high discrimination 

are highly ranked and vice versa. The high ranked clusters are 

potential candidates for finding the differentially expressed genes 

(DEGs). The performance of the two-way clustering technique 

heavily depends on the framework used for computing. For 

example, Tang et al. reported an inter-related clustering format [8] 

based on an iterative process which is very tedious and uses 

heuristics to define the number of clusters. McLachlan et al. 

assume a model of distribution to cluster the genes [22]. This 

process is limited by the unique characteristics of the microarray 

data which has limited samples. Getz et al. proposed a procedure 

called coupled two way clustering [6] by iteratively applying one 

way clustering with in the subgroups of genes and tissue clusters 

from the previous iteration. This method leads to too many 

iterations resulting in a tedious search as groups become smaller 

and smaller [23]. 

The two-way clustering 

algorithm as shown in Fig. 2 

on the other hand analyzes 

the gene groups into all 

possible resolutions as shown 

in Fig. 1. The ability of 

clusters to differentiate 

different tissue cases is then 

studied at different 

resolutions. The clusters 

which offer meaningful 

sample clustering are 

analyzed further. The tissue 

groups obtained using each 

gene group is compared with 

the actual class label (for 

example, tumor or normal) of 

the tissues. The gene clusters 

providing tissue clusters with 

high consistency with respect 

to the label information are 

highly ranked and vice versa. 

Please note that the genes are ranked here group-wise but not 

individually. Also, no assumption about the distribution of the 

data is made. This process extracts co-expressed genes based on 

maximal separation between two tissue cases. 

This paper also uses an automated 3D star coordinate based 

projection (3D SCP) for projection of tissues using DEGs formed 

[24]. A good analysis of performance of all these techniques may 

be found in [18, 24]. Some of the advantages of 3D SCP include 

(not limited to):  i) Dynamic projection of data points, ii) Multiple 

views of visualization, iii) Relative ease of interpretation, iv) Ease 

of implementation, v) Visual clusters and vi) No human 

intervention. In this paper, PCA and automated 3D SCP are 

employed for visualization and validating the DEGs obtained 

using the unified framework. 

II. MATHEMATICAL BACKGROUND 

The Fuzzy-ASI is an iterative method to cluster the data. It 

involves an optimization process that iteratively identifies the 

subspace structure. A subspace structure is a linear combination 

of original feature space. The weights determine the samples that 

are important in formation of the cluster and also provide data 

reduction. Let us consider that 
nxmW  is the dataset where the 

symbols ''m , ''n  represents the number of samples and the number 

of genes, respectively. Also assume that there are ''k  number of 

clusters; 
nxkD  is the partition matrix; 

mxkF is the subspace 

structure associated with each cluster. The columns of the F 

matrix contain the weights of the samples. Hence, 
nxkWF)(  

represents the projection of the data onto the subspace. Let  '' S  

be the projection of centroid of each clusters onto the subspaces 

 

 
Fig. 2.  Flowchart of two-way 

clustering using the ASI algorithm 

for functionally classifying genes and 

finding the differentially expressed 

genes. 
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defined by the matrix '' F . The relationship between the '' S , ‘F’ 

and ‘D’ is given by:  

.***)*( 1 FWDDDS TT −
=    (1) 

The optimization function ''O  is given by: 

.
2

1 2
FDSWFO −=

   (2) 

Fuzzy ASI Algorithm 

Begin clustering 

Step 1: Begin Initialization 

Initialize ‘ D ’ with random values such that each row  adds up 
to 1. 
Initialize ‘F’ with Random values; 

End Initialization 
Step 2: Compute ‘S’ using equation (1); 

Step 3: Compute '' 0O  using equation (2); 

Step 4: Perform optimization; 
Begin Optimization 
While (

1O <
0O )   //Continue as long as the optimization 

value decreases 

Step 4-1: Update ‘ D ’ given by the formulae in equation (4) 
         for i = 1 to n 

( ) SWFjP −=)( ; j=1...k        (3)         

Step 4-2: Membership Assignment 

∑=
j

jipjiPjiD ),(/),(),( ; j=1...k (4) 

end for 

Step 4-3: Update '' F given by the formula in equation (5); 

( )( )( )
kn

TT

n

T WIDDDDIWEF
 : 1

1)( −=
− ;  (5) 

Step 4-4: Compute Step 2; 

Step 4-5: Compute '' 1O  using equation (2); 

Step 4-6: If ( )01 OO <  ;       //Check for the      terminating condition//. 

 
0O  = 

1O ; 

End optimization 
End Clustering 

 
In Eq. 3, P  is a similarity measure between the vectors. In Eq. 

5, ‘E’ represents eigen vectors of the enclosed equation and 

k:1 represents first ''k eigen vectors corresponding to the highest 

eigen values. The output of the algorithm is ‘ D ’ and ‘ F ’. Here, 

‘ D ’ offers the cluster memberships and ‘ F ’offers the weights of 

the samples forming the clusters defined by the matrix ‘ D ’. The 

elements of the matrix )( DDT  contain the size of the clusters. 

Using the fuzzy-ASI clustering, genes may belong to multiple 

clusters with different memberships. Based on the membership, 

biological significance and hence the relevance of the gene with a 

cluster may be estimated. If the membership is low, the relevance 

is low and hence such genes form noise and must be pruned from 

the cluster. A choice of an appropriate threshold is hence 

necessary. The progressive framework besides providing 

partitions at user defined resolution, also provide an interesting 

choice for the threshold. At each resolution, since each of the 

clusters has to be divided into two partitions, the genes with 

memberships near 0.5 may be assigned to both the clusters and 

the ones with high memberships may be assigned to the 

respective clusters. The proper choice of number of levels for the 

progressive framework is obtained using cluster validation 

metrics. Davies-Bouldin index [20] is used to estimate the quality 

of clusters at every iteration, lower the value, better is the quality 

of clusters. The resolution level and hence the number of clusters 

which provide highest quality of clusters is chosen. A plot of 

Davies-Bouldin index value at each resolution is plotted. The 

elbow in the plot as shown in Fig. 5 is used as an indication of 

proper choice of resolution at which the progressive framework 

can be terminated. More of this will be discussed in the Section 

III. The differentially expressed genes are obtained using two-

way clustering of microarray data using Fuzzy-ASI for 25=n  

different iterations and the number of times a gene is found to be 

differentially expressed is listed. A gene may be listed more than 

once in each iteration because each gene might be a part of 

multiple clusters that are functionally related to the genes. Such 

genes are highly scored. Each gene is given a confidence value by 

summing up the score for 25 iterations and then normalized to 

obtain a value between ( ]1 ,0 . Genes with high confidence value 

are chosen to be differentially expressed and further studied. The 

biological aspects of this list are also thoroughly studied as shown 

in Section III. 

 

III. EMPIRICAL ANALYSES 

Empirical analyses on both simulated and real microarray data 

sets were conducted to illustrate the efficacy of the proposed 

Fuzzy-ASI based soft clustering method. The main objective is to 

compare the performances of both soft and crisp clustering 

algorithms on same data set.  In particular, the crisp clustering 

based methods such as SOM, ASI-based crisp clustering and the 

proposed Fuzzy-ASI based clustering are compared using 100 

artificially generated microarray datasets. Further analyses were 

performed using a number of real microarray cancer datasets viz. 

Gastric cancer, colon cancer and leukemia. The empirical 

analysis shows that Fuzzy-ASI performed well in uncovering 

potential genes that may be involved in pathogenesis using 

microarray data. 

 

Case Study 1: Simulated dataset 1 

The artificial dataset is simulated to have two non-separable 

classes along the principal diagonal. The first class is generated 

by using the relation tyx == . Where ''t takes on 20 values 

equally spaced between -1 and 1. A Gaussian noise of mean 0 

and standard deviation 1 is added independently to x and y . The 

second class is generated similarly but by adding a constant 1. 

The noise added is independent to the noise added to class 1. The 

data is clustered using Fuzzy-ASI and compared to results using 

SOM which provides hard clustering. The SOM clustering of the 

data is shown in the Fig. 3 (a). The points near the boundary of 

two clusters have high relevance with both the clusters. Such 

relevancy however may not be captured using hard clustering. 

Fuzzy-ASI using progressive framework at resolution 1 on the 

other hand as shown by ellipse in Fig. 3(c) assigns those points to 
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both clusters with relevant memberships. The ‘c1 and c2’ in the 

legend of Fig. 3(c) represent points assigned to both the clusters 

with relevant memberships. Using the Davies-Bouldin index, the 

optimum number of clusters is estimated to be 4 for SOM and the 

optimum resolution was estimated to be 2 for Fuzzy-ASI using 

progressive framework. Fig. 3(b) shows the 4 clusters obtained  

using SOM. 

As shown in Fig. 3(b), 

the boundary of 

separation is not clear. 

There are multiple 

points as shown by the 

circles which have 

relevance with adjacent 

clusters. Those points as 

shown in Fig. 3(d) have 

been assigned to 

multiple clusters with 

appropriate 

memberships. The ‘c1 

and c2’ & ‘c3 and c4’ in 

the legend of Fig. 3 (d) 

represent points 

common to ‘class1 and 

class 2’ & ‘class 3 and 

class 4’, respectively. 

The overlapping points 

as shown by the circles 

in Fig. 3(d) represent 

points belonging to 

multiple clusters with 

appropriate 

memberships. As shown 

in Figs. 3(c) and (d), the 

progressive framework 

provides relationships 

among the clusters at 

user defined resolution.  

 

Case Study II: Artificial 

microarray datasets 

 It was established in 

[25] that microarray 

datasets follow 

lognormal distribution. 

The artificial microarray 

datasets used in this 

paper are generated 

based on a hierarchical model. The data in each of the classes are 

drawn from normal distributions. The prior distributions of means 

are normally distributed and variances follow a gamma 

distribution. Means are chosen in such a way that data from 

different cases have small differential expression for DEGs and 

marginal or no differential expression for non differential 

expressed genes (NDEGs). Unequal variances are used for both 

cases for differentially expressed genes as proposed in [25, 26]. 

The performance of three clustering algorithms viz. Fuzzy-ASI, 

Hard-ASI and SOM following two-way clustering are studied 

using 100 artificially generated microarray datasets. It has 

previously been established that Hard-ASI based algorithm 

performed better for knowledge discovery in microarray data 

when compared to well known ranking and clustering algorithms 

[19, 27-29]. In this paper, the performance of Fuzzy-ASI is 

compared with that of Hard-ASI and SOM. As shown in Fig. 4, 

Fuzzy-ASI 

performed better in 

finding DEGs from 

microarray data. The 

true positive fraction 

(TPF) and false 

positive fraction 

(FPF) are calculated 

by finding number 

of genes found to be 

differentially 

expressed using the 

algorithm and 

indeed are differentially expressed when compared with ground 

truth and genes found to be differentially expressed and are not 

differentially expressed when compared with ground truth. For 

Fuzzy-ASI & Hard-ASI, the resolution level, and for SOM the 

number of clusters is estimated using Davies-Bouldin indices. 

Fig. 5 shows the index values calculated using Davies-Bouldin 

index for Fuzzy-ASI algorithm on one artificially generated 

microarray dataset. The elbow point in Fig. 5 shows that 

resolution level 9 is optimum for this dataset and hence is the 

terminating point for the progressive framework shown in Fig. 1. 

 

REAL MICROARRAY DATASETS 

The relatively better performance of Fuzzy-ASI in knowledge 

discovery is established using artificial microarray datasets. The 

Fuzzy-ASI algorithm is now applied on real cancer datasets to 

functionally classify the genes and to find differentially expressed 

genes. Please note that the differential expression of the genes is 

not found by ranking the genes independently but by ranking the 

gene clusters based on their ability to differentiate different tissue 

cases. 

 

Case study III: Gastric 

Cancer Dataset 

The objective of this 

empirical analysis is to 

identify genes 

distinguishing primary 

gastric cancers and 

metastatic gastric 

cancers from 

neoplastic gastric 

cancers which are 

otherwise morphologically indistinguishable. Approximately 

30300 genes are used to study expression patterns of 90 primary 

gastric cancers, 14 metastatic gastric cancers and 22 neoplastic 
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Fig. 3. Clustering of simulated dataset1 

a) Two clusters using SOM, b) four 

clusters using SOM c) Fuzzy-ASI at 

progressive clustering level 1 and d) 

Fuzzy-ASI at progressive clustering 

level 2. 
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Fig. 4. Roc curve showing performance of 

Fuzzy-ASI with respect to ASI and SOM 
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required for clustering of artificial microarray 

data using Davies-Bouldin Index 
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gastric cancers. The preprocessing steps mentioned in [30] are 

used resulting in 5200 genes for further study. The two-way 

clustering using Fuzzy-ASI is applied to find DEGs between 

neoplastic gastric cancers and other gastric cancers. The co-

expressed genes which are also consistently differentially 

expressed with high confidence value are: 

Metallothionein 1G (confidence 100%), Metallothionein 1F(100%), 
Metallothionein 1F functional DNA(100%), RecQ protein like 5 (100%), 
MARCKS-like 1 (100%), Early estrogen induced gene 1 protein (96%), 
Secretoglobin family 2A member 1(96%), Somatostatin (96%), 
transmembrane family, member 2 (96%), transmembrane family member 
2 (84%), Beta 1,4-N-acetylgalactosaminyl transferase-transferase-III 
(92%), Acyl-Coenzyme A oxidase 1, palmitoyl (84%), diacylglycerol kinase 
delta(68%), signal induced proliferation associated 1 like 3 (75%), 
dermatopontin (75%), sulfotransferase family, cytosolic 1C member 1 
(75%), protein disulfide isomerase family A, member 2 (73%), glutathione 
peroxidase 3(plasma) (77%) and cysteine and glycine rich protein 3 (77%). 

Analysis indicates that several potential genes responsible for the 

disease are identified by the algorithm. These genes include (but 

not limited to) 4 Metallothionein genes, 2 tumor proteins P53, 4 

Gastric cancer related proteins, 4 trasmembrane proteins etc.  

Fig. 6 shows the projection of different tissues projected using 

DEGs as features using 3D SCP. As  

shown in Fig. 6, different tissues were clearly separated using 

DEGs. 

Case stydy IV: Colon 

Cancer Dataset 

Colon cancer is second 

most cause of cancerous 

deaths in western world. 

Affymetrix 

oligonucleotide array 

complementary to more 

than 6500 human genes are used in this study. The gene 

expression is studied using 40 tumor samples and 22 normal 

samples. The preprocessing of this dataset resulted in 2000 

interesting genes which 

have been used as input 

to Fuzzy-ASI based 

two-way clustering [2]. 

The differentially 

expressed genes with 

high confidence value 

are: 
Human cysteine rich protein 
exons 5 and 6 (100%), 
human Hsa. 8125 (75%), 
human desmin gene 
(100%), human cysteine rich protein (100%), human hmgI mRNA for high 
mobility group protein Y (90%), uroguanylin precursor (92%), myosin 
heavy chain nonmuscle (100%), mitochondrial matrix protein precursor 
(100%), human gene for heterogeneous nuclear ribonucleoprotein (75%), 
human cysteine rich protein (92%), macrophage migration inhibitory factor 
(96%), tropomyosin fibroblast and epithelial muscle type (88%), 
complement factor D precursor (92%), nucleoside diphosphate kinase A 
(100%), transcription factor IIIA (100%), human serine kinase mRNA 
complete cds (100%). Myosin regulatory light chain smooth muscle 
isoform (88%), hevin like protein (96%), H.sapiens mRNA for p cadherin 
(80%), human vasoactive intestinal peptide(88%), human monocyte 
derived neutrophil activating protein (76%), human aspartyl tRNA 

synthetase alpha 2 subunit (96%), collagen alpha 2 (96%) and gelsolin 
precursor (90%). 

Analysis on colon cancer dataset indicates several genes with 

common function such as 6 ribosomal proteins, 2 muscle related 

proteins, 2 mitochondrial proteins and several membrane 

proteins. Other important genes include heat shock protein, 

human cysteine rich proteins, Desmin genes, integrin associated 

protein, Human nucleolar protein and complement factor D etc. 

Fig. 7 shows the projection of tissues using 3D SCP. As shown in 

Fig. 7, ALL and AML tissue cases clearly separate using DEGs 

as features. 

 

Case Study V: Leukemia Dataset 

Leukemia is the leading cause of death due to malignant diseases 

in children in the US. Gene expressions of approximately 6817 

genes are used to classify two types of acute Leukemia (ALL and 

AML). The data consists of 47 (38 B-cell and 9 T-cell) cases of 

ALL and 25 cases of AML. The data is divided into a training 

class containing 38 samples and a test class containing 34 

samples. The class labels for training class are available from the 

author [31]. The pre-processing proposed by author resulted in 

3571 genes, the rest of the genes are eliminated. The data is 

further separated into training and test classes. Using the training 

data, the Fuzzy-ASI algorithm is applied to identify the genes that 

maximally differentiate between the two classes (ALL and 

AML). These DEGs are further used as features for clustering the 

test tissue cases. Empirical analysis shows that DEGs used as 

features separated the different tissue cases and identified tissues 

from test case correctly. The differentially expressed genes with 

high confidence value are: 

KIAA00
97 
gene(10
0%), 
KIAA01
95 
gene(78
%), 
tenascin 
(78%), 
cpg-
Enriche
d Dna clone E06 (100%), Glacinamide Ribonucleotide synthetase(100%), 
bactericidal Bpi Gene (92%), pepsinogen a precursor (75%), HIV1 tata 
element modulatory factor (85%), induced myelpid leukemia cell 
differentiation protein MCL1 (100%), ly-9 mRNA, phosphomevalonate 
kinase mRNA(100%), large praline-rich protein BAT3 (75%), alpha-1 
collagen type II gene (95%), GTF2B general transcription factor IIB (78%), 
actinin alpha 2(75%), insulin activator factor(90%), clone 
A9A2BR11(CAC)n.(GTG) (78%), peroxisomal enoyl-CoA hydratase like 
protein (78%), EB1 mRNA(85%), ZNF177 KRAB zinc finger protein (75%), 
IAP homolog B(MIHB) mRNA (85%), guanine nucleotide binding 
protein(78%) and D53(95%). 

Analysis revealed several genes that may be involved in 

Leukemia progression. Some of these genes are KIAA0097, 

HIV1-tata modulator y factor, RBL1, D53, MCL1, Insulin 

activator factor, malignant melanoma metastasis (KiSS-1), EB1 

and putative transmembrane protein etc. 

As shown in Fig. 8 (a), different tissue cases clearly separate 

using DEGs found from training set. The DEGs are further used 
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Fig. 6. 3D SCP of Gastric cancer 

dataset 
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Fig. 7. 3D SCP of Colon cancer dataset 
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                       (a)                                                (b) 

Fig. 8. 3D SCP Visualization of  (a) Training class only  and (b) 

Both training and test class. 
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to categorize the unlabeled tissue test cases. As shown in Fig. 

8(b), the DEGs clearly separated different tissue cases for the test 

case. 

IV. CONCLUSTIONS AND FUTURE DIRECTIONS 

A two-way fuzzy-ASI based clustering for knowledge discovery 

from microarray data is developed and empirically evaluated. The 

goal here is robust selection of DEGs and functionally classifying 

the genes. It is widely believed that one gene may be involved in 

more than one cellular function or biological process. To take this 

into account, the ASI-based crisp clustering algorithm is modified 

to accommodate soft clustering. This is achieved by introducing 

the notion of confidence measure on the samples by introducing 

fuzzy membership. The ASI model with relevance of each gene 

to each cluster is also explored to answer some important 

biological questions (cf. section III). 

 A progressive framework is used for two-way clustering of the 

microarray data using fuzzy-ASI algorithm. Empirical analysis 

shows that the fuzzy ASI-based algorithm is robust against 

arrangement of samples and offers a meaningful clustering result. 

The co-expressed genes which are also highly differentially 

expressed are highly ranked. The simulation is repeated 25 times 

and the number of times a gene is differentially expressed is 

noted. The high ranked genes found to be highly differentially 

expressed are further studied by 3D SCP to see if they perform 

well in separating different tissue cases correctly.  

The robustness of fuzzy-ASI based two-way clustering 

algorithm in identifying the DEGs is validated by using 100 

artificial datasets. Further analyses were also performed on a 

number of real cancer datasets. The analysis of all the three 

cancer datasets showed some association with tumor generating 

proteins such as P53 and HIV-tat. It is also seen that most of the 

genes involved in all the three cancers are associated with metal 

ion binding, DNA and protein synthesis, cell differentiation, 

apoptosis, cell proliferation and metabolic activities, a few to 

mention. 

The fuzzy-ASI based two-way clustering algorithm as of now 

provides the user with functionally classifying genes and 

differentially expressed genes. It does not explicitly state the 

relations among the genes in the sense that ‘if the gene X is over 

expressed, how the gene Y expresses?’ These relations among the 

genes may be of interest and may provide interesting insight into 

the functionalities of genes. Such a relational map depicting the 

dependence-relations among several interesting genes will be 

explored in future research. 
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