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Abstract—Predicting tumor malignancies is an important but 
difficult task. For many tumors, especially neural and endocrine 
tumors, traditional pathological and histological analyses often 
can not effectively distinguish benign from malignant tumors. 
Developing synergistic bioinformatics and computational 
intelligence system is effective, because deterministic cancer 
markers do not always exist in individual patients. We proposed 
a parallel paradigm of cancer and use a number of ensemble 
methods including Boosting, Bagging and Consensus 
Networking, and have designed a novel classification scheme that 
advantageously combines several computational intelligence 
algorithms such as the variants of Self-Organizing Feature Map 
(SOFM) algorithms and the Maximum Contrast Tree (RMCT) 
algorithms. Boosting and Bagging have been advantageously 
combined. When all of the above are integrated into one 
synergistic intelligent medical decision system, the prediction 
power for the task has been significantly boosted. The system and 
features are validated by diagnosing new patients and by a 
number of laboratory molecular biology measurements. The 
outcomes of the research have improved cancer diagnosis and 
treatment planning, and may lead to diagnose microscopic 
diseases and better understanding of human genome mechanisms 
relating to malignant transformation.

Keywords— Computational Intelligence, Bioinformatics,  Parallel 
Paradigm of Cancr, Benign, Maliganant Transformation. 

I. INTRODUCTION

Predicting malignancies plays essential roles not only in 
revealing human genome mechanisms of potential malignant 
transformation, but also in discovering effective prevention 
and treatment of cancers.  
   Recently, the National Human Genome Research Institute 

and National Cancer Institute, both part of NIH, U.S. 
Department of Health and Human Services, have launched 
The Cancer Genome Atlas (TCGA) with an overarching goal 
of understanding the molecular basis of cancer to improve our 

ability to diagnose, treat and prevent cancer [8]. 
      The perspective of the TCGA project is that “cancer is 

not a single disease but a collection of diseases that arise from 
different combinations of genetic changes. Scientists must 
analyze the genetic material from different tumors and many 
patients to uncover the tell-tale genetic signatures of different 
cancer types” [8]. Based on the mission of TCGA, we have 
proposed a further Parallel Paradigm of Cancer: it is not 
only the genetic changes such as mutations of genes but also 
changes of gene expressions and regulatory networks that are 
eventually responsible for cancer development. Under this 
parallel paradigm, not only mutations of genes cause changes 
in gene regulatory networks; but also un-mutated genes with 
differential expressions and alternative splicing may also 
trigger the changes in the differential regulatory networks that 
are also responsible for cancers, especially when cells are in 
an abnormal environment. Because of the tiny differences 
between cancer and normal tissue in their same genotypes, 
however, their biological behaviors “phenotypes” are very 
different. Therefore, we investigate the differential 
expressions of genes among normal, benign and cancerous 
tissues in addition to the bioinformatics survey of human 
genome and cancer genetics. We need to solve current 
challenges in cancer diagnosis and prognosis: 

Ineffectiveness:  Modern medical image technologies such 
as CAT scan, MRI scan, PET and X-rays all have their own 
problems and limitations. A detectable tumor tissue 
usually contains more than a hundred million tumor cells, 
which is 0.1 gram of a cluster of irregular tumor tissue in 
weight and a quarter inch in dimension. Those invisible 
tumor tissues are commonly referred to as microscopic 
diseases that are not diagnosable [1,9]. All these 
guarantee ineffectiveness.  

Inaccuracy:  Highly characteristic (deterministic) cancer 
markers are not likely found for every individual patient. 
Accurate diagnosis and prognosis require verification of 
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tumor biological behaviors which are largely unpredictable. 
Confirmations of cancer are typically made by pathological 
and histological analyses, which are not always effective, 
especially for neural and endocrine tumors. Therefore, 
many patients are actually diagnosed tumors of visible 
sizes but unknown malignancies.  

Inconsistency:  The existence of multiple but inaccurate 
diagnostic methods guarantees inconsistency among 
differential diagnoses in many patients. We can not rely on 
any one of the multiple tumor associated antigens alone, 
because using another one independent may result a 
different diagnosis. 

Inefficiency: Because PET may detect much smaller tumors 
than CAT, MRI and X-rays and because blood and urine 
tests for screening cancer antigens are not always 
effective, from time to time, patients are identified of 
possible cancer that need further procedures for firm 
confirmations. But those procedures do not always work. 

We need to solve above problems by developing synergistic 
bioinformatics and computational intelligence medical 
decision systems. This paper is a further development of our 
prototype system in [1] and advantageously combined the 
computational intelligence algorithms we developed before in 
[2-4]. We focus on the neural and endocrine tumors that are 
hard to identify malignancies [1,14,15].    

According to NHGRI-NIH, the cost to sequence genomes 
will be covered by major insurance policies. The era of 
affordable patient-specific medicine based on the full 
complement of genes is not too far away. However, 
deterministic cancer markers do not always exist in individual 
patients because even for the same type of cancer, the genetic 
mechanisms may be different. Human genome is abundant 
with alternative splicing – same gene but different protein 
products. To support our parallel paradigm of cancer, we 
developed a novel synergistic medical decision system to 
predict malignancies of human pheochromocytomas and 
paragangliomas and tumors of Cushing’s syndrome of 
different adrenocortical diseases because identifying 
malignancies of all above tumors challenges all methods in 
pathology, histology and medical images [1,13-15].  

Pheochromocytomas arising from the adrenal gland are 
closely related to paragangliomas arising from the 
paraganglionic system. The bioinformatics screening of 
human genome and statistics on patients have identified that 
only approximately 1/5 of pheochromocytomas are genetically 
inherited, resulted from mutations of the human genes SDHB, 
VHL, RET, NF1 and SDHD that cause the familial 
pheochromocytomas and extra-adrenal paragangliomas. 
Roughly 1/4 of paragangliomas are genetically inherited, 
resulted from mutations of human genes SDHD, PGL2 and 
SDHC. Most of those tumors are benign, however at least 8% 
of pheochromocytomas and 3% paragangliomas metastasize. 
Tumors of Cushing's syndrome are also related to the adrenal 
gland. Cushing’s syndrome is called hypercortisolism or 
hyperadrenocorticism caused by excessive levels of the 
endogenous levels of corticosteroid  hormone cortisol secreted 
by the adrenal glands that are related to the regulations by the 
pituitary gland and hypothalamus in the brain. Strictly, 

Cushing's syndrome refers to excess cortisol of any etiology 
while Cushing's disease which account to roughly 2/3 
Cushing’s syndrome refers only to hypercortisolism secondary 
to excess production of adrenocorticotropin (ACTH) from a 
pituitary gland adenoma. The rest of 1/3 Cushing’s syndrome 
are tumors of a group of adrenocortical diseases that include 
adrenocortical carcinoma (ACC), adrenocortical adenoma 
(ACA) and adrenocortical hyperplasia (ACH). They all lead to 
hypercortisolism. Most of those adrenocrtical tumors are 
benign, however at least 1/6 of them metastasize. All of the 
above tumors are neuroendocrine tumors and are all difficult 
to identify malignancies based on clinical symptoms and 
pathological features. The above situations also suggest our 
parallel diagram that the aetiology of those neuroendocrine 
tumors are not limited to mutations of genes but also 
differential gene expressions that affect the gene regulatory 
networks. That is why we choose those tumors for developing 
a synergistic intelligent medical decision system. 

TABLE I
 EXPRESSION PROFILES OF FHIT, KI-67 AND PCNA IN ADRENOCORTICAL 

DISEASES WITH CLINICAL INFORMATION

Negative (%) Total  Positive (%) 
Patients

FHIT Ki-67 PCNA FHIT Ki-67 PCNA

Age<40 16.67 70.00 3.33 83.33 30.00 96.67 

Age>40 11.05 26.32 10.53 78.95 73.68 89.47 

Male 57.14 58.82 0.0 42.86 41.18 100 

Female 15.62 78.12 9.37 84.38 21.88 90.63 

Left side 11.43 68.86 7.14 78.57 31.14 92.86 

Right side 14.29 76.19 4.76 85.71 23.81 95.24 

TABLE II
EXPRESSION PROFILES S OF FHIT, KI-67 AND PCNA IN ADRENOCORTICAL 

DISEASES OF DIFFERENT MALIGNANCIES

Negative (%) Total  Positive (%) 
Tissue

FHIT Ki-67 PCNA FHIT Ki-67 PCNA

ACC 57.14 14.83 0.0 42.86 85.17 100 

ACA 3.85 92.31 3.85 96.15 7.69 96.15

ACH 0.0 100.0 22.22 100.0 0.0 77.78 

II. JOINT ROLE OF TUMOR ASSOCIATED GENE EXPRESSIONS

In many cases, pathological analyses and patient’s 
symptoms are not sufficient to identify malignancies 
especially for neural and endocrine tumors. We use 
bioinformatics techniques to survey the human genome and 
tumor genetics and have identified several tumor associated 
markers such as expression profiles of hTERT, cyclin E, 
P27kip1, FHIT, Bax, Bcl-2, Fas, FasL, PCNA, and Ki-67 that 
are useful for predicting tumor malignancies of Cushing’s 
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syndrome and pheochromocytomas and paragangliomas. We 
investigated the role of an enzyme called telomerase in the 
process of tumor [1,12,21]. In human genome, telomerase is a 
protein complex composed of at least two sub-units that are 
coded by two different genes: hTERT (human Telomerase 
Reverse Transcriptase) and human Telomerase RNA (hTERC 
or hTR). It appears that inactivation of P53 [15] - a tumor 
suppressor and retinoblastoma proteins (pRb) are associated 
with telomeres shortening, thus affecting the integrity of 
human genome. At the activation of telomerase, cells may be 
“immortal” just like tumor cells. Cell arrest gene P27kip1 [16] 
belongs to a member of the universal cyclin-dependent kinase 
inhibitor family, which is able to arrest cell cycle [13] 
progression by complex cyclin-dependent kinase, therefore 
P27kip1 can be considered as a tumor suppressor gene along 
with FHIT (Fragile Histidine Triad). Fas is a tumor necrosis 
factor receptor and FasL is Fas ligand. Bax and Bcl-2 [15] are 
apoptosis related factors. PCNA, Ki-67 [15] and Cyclin E. 
[16] are all cell cycle [13-16] and cell proliferating related 
genes. We performed experiments to measure the expression 
levels of all above genes such as measuring those tumor-
associated antigen levels by immunochemistry and measuring 
mRNA by in situ hybridization using cDNA probes. Our 
precise experiments showed likely high level of expressions of 
hTERT in malignant and borderline tumors (a separate group 
between benign and malignant tumors), but unlikely in benign 
tumors and no expressions in normal tissues [1]. Our 
experiments indicated clear tendencies that levels of 
expressions of cell proliferating related antigens such as 
PCNA, Ki-67, Cyclin E. and tumor necrosis related factors 
such as Fas, FasL increase while malignancies increase. The 
levels of expressions of cell arrest gene P27kip1 and tumor 
suppressor gene FHIT decrease while malignancies increase. 
Apoptosis related factors such as Bax and Bcl-2 are not highly 
characteristic because we do not know if necrosis - a distinct 
feature in malignancies is triggered by apoptosis or not. Tables 
1-2 show the tendency patterns of FHIT, Ki-67 and p27Kip1 
of ACC, ACA and ACH from our experiments. It appears that 
there are statistical significances of those gene expression 
levels, but none of them are deterministic. Tumor occurrence 
rate increases monotonically with age. The general pathway: 
Normal Tissue -> Benign -> Malignant Cancer cannot be 
reversed spontaneously. According to the multistage theory of 
cancer [10], cancer is originated from one or small number of 
specifically differentiated cells that usually take years to grow 
into visible size. If benign stage occurs as microscopic disease 
(invisible tumor [9]), then it is not detectable. A normal cell 
maintains a completely ordered gene expressions and 
regulatory networks while a tumor cell is not. Our parallel 
paradigm indicates that the degrees of malignancies are 
roughly proportional to the degrees of disorder in gene 
expressions and regulatory networks. This can be viewed by 
chaos theory [11] that an ordered system can “spontaneously 
evolve” to a disordered system. Table 1 shows that a 
malignant cancer marker Ki-67 [15] is evidently highly more 
likely expressed and tumor suppressor FHIT is slightly less 
likely expressed among patients above age 40. The overall 

degree of disorder of Ki-67, FHIT and PCNA expressions is 
higher for age over 40. Although PNCA (Proliferating Cell 
Nuclear Antigens) does not support the scenario of age, it is a 
highly characteristic malignant cancer marker as shown in 
table 2. It is possible that gene expressions of normal tissue 
surrounding malignant transformed tissue can be influenced 
by microscopic diseases. One clue coming from PCNA as 
shown independent of age in table 1 is actually detectable in 
certain normal tissues adjacent to some cancers. These 
phenomena concur with our parallel paradigm of cancer and 
may enable us to diagnose microscopic diseases. This 
motivated us to develop a synergistic bioinformatics and 
computational intelligent medical system to predict tumor 
malignancies using those tumor associated genes jointly.   

III. THE MOLECULAR BIOLOGY EXPERIMENTS

Training instances are from tumor and tissue samples that 
are formalin fixed and paraffin wax embedded. All samples 
were inspected and reviewed dually by both pathological and 
molecular biology methods to ensure that all tumors have 
shown the classical histology and typical immunochemical 
patterns for neuroendocrine markers. Malignancy is defined as 
the presence of metastasis and/or extensive loan invasion. 
Tumors without metastases, but having some histological 
suspicious features are categorized as borderline tumors. The 
borderline tumors are more common in neural and endocrine 
tumors because it is so difficult to identify malignancies from 
benign tumors. The demographic data, clinical characteristics, 
and laboratory findings were all carefully annotated from the 
clinical records, laboratory finding, and follow-up data after 
treatments. We are authorized to use of those tumors and 
tissues for research purpose only.  

  To determine hTERT mRNA expressions, in situ
hybridization experiments were performed using a standard 
clinical hTERT ISH Detection Kit [1]. We designed the 
biotin-labeled cDNA probes complementary to the hTERT 
mRNA using verified mRNA sequences. After removal of 
paraffin and dehydration, tissue slides were pretreated with 
proteinase K and then fixed with paraformaldehyde in 
phosphate-buffered saline (PBS) with standard procedures. 
The slides were hybridized and were then incubated with 
Avidin-Biotin-HRP Complex. Color reaction was detected by 
incubating slides in diaminobenzidine solution containing 
hydrogen peroxide, counterstained with hematoxylin. Darker 
colored nuclei and occasionally cytoplasmic stains are 
regarded as positive signals. Controls for specificity were 
performed by pre-treating tissue sections with RNAse and 
slides hybridization without probes. As positive controls, 
hybridization to known positive samples of bladder carcinoma 
tissue was performed. Traditionally only metastasized tumors 
are considered as malignant. We used immunochemical 
approaches to measure the levels of gene expressions.  
     Paraffin covers were removed from tissues and then placed 
on poly-1-lysine coated slides. Paraffin was cleared out in 
xylene, and samples were re-hydrated. For antigen unmasking, 
the tissues were treated by standard molecular biology 
laboratory procedures. Tissue sections were then washed in 
PBS. FHIT rabbit polyclonal antibodies were from Zhongshan 
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Biotechnology (Beijing, China). Ki-67 and PCNA mouse 
monoclonal antibody kits (ready-to-use) were the products 
from Maixin Biotechnology Development Co. (Fuzhou, 
China). Immunochemical procedures were mainly performed 
using the Maxvision™ HRP-Polymer anti-Mouse IHC Kits. 
For each antibody, negative control was performed using 
Immunol Staining Primary Antibody Dilution Buffer from 
Beyotime Institute of Biotechnology, instead of the primary 
antibody. We use the known positive samples of bladder 
carcinoma tissues, gastric adenocarcinoma tissues and lupus 
nephritis etc tissues as positive controls for hTERT protein, 
Ki-67 antigen and P27Kip1 and stomach tissue as the positive 
control for FHIT etc. All immunostained slides were inspected 
and analyzed using high-resolution Microscope Image 
Analyzer DMR+Q550 (Figures 1-3). Darker colored nuclear 
staining markers are regarded as positive signals, whereas 
cytoplasmic staining (non-specific background staining) 
markers are considered as negative. At least 10 (actually 20 or 
more) randomly chosen high-power (HPFs [x400]) areas were 
used to determine the antigen expression levels. As shown in 
Figure 3, left side have more concentrated stains than right 
sides, technically, randomly sampling more areas in a tissue is 
better. However, the immunochemical experiments are highly 
qualitative but least quantitative and also least expensive 
among all other methods. 10 randomly sampled areas are 
enough. We only use 4 levels of antigen expressions; 
therefore, the number of randomly sampling areas such as 10 
areas or 20 areas would not likely matter at all as explain 
below: The expression level is measured as percentage of the 
number of positively stained tumor cells counted in all 
sampled areas over the total number of tumor cells counted in 
all sampled areas, the result is the average of those ratios over 
all sampled areas (at least 10 or 20 areas). If those average 
stained ratios are less than 5%, then they are considered as 
negative. 5%-25% positively stained cells are considered low 
levels of expressions (+), 25% -50% are considered as 
medium (++) whereas those with >50% positive tumor cells 
are considered high levels of expressions (+++). In general, 
we use above 4 levels to indicate a gene expression level; 
therefore, the numbers of randomly sampled areas such as at 
least 10 areas or 20 areas should not affect the results of above 
4 levels. But just sample one or two areas may cause 
inaccuracy. As shown in fig. 3, apparently the left area has 
more percentage of cells stained than right area and if the 
percentage of cells stained is at the threshold values say 5%, 
25% or 50% or around those percentages, expression levels 
may change from one grade to another. Statistically such 
situations are considered as rare events that can drastically 
affect the results, and that is the reason we sampled at least 10 
or 20 area randomly to avoid classifying expression level one 
grade higher or lower. Never the less the immunochemical 
methods are not quantitative but are just qualitative. There are 
several other more quantitative methods that are more 
expensive but do not necessarily mean much better. For 
example, DNA microarray [17] has advantage of measuring 
gene expression levels of many genes simultaneously but 
usually also comes large noises and less specificity for 

individual genes. We consider whether an antigen is expressed 
or not is more important than the exact level of expression. All 
slides for FHIT and all other antigens for immunochemistry 
experiments have been dually evaluated by both pathological 
and cancer molecular biology analyses. Above are just brief 
description of our detailed experiments to qualitatively 
measure the gene expression levels of hTERT, PCNA, Ki-67, 
P27Kip1, FHIT, Cyclin E., Bax, Bcl-2, Fas and FasL. Note 
Fig 3 shows that tumor suppressor FHIT is highly expressed 
in ACH – aggregation of “normal” tissue, while Fig. 1 shows 
that FHIT is not expressed in malignant cancer ACC and Fig. 
2 shows FHIT is medially expressed in benign tumor (ACA). 
Those results do support our parallel paradigm on cancers. 

Fig. 1.  Adrenocortical Carcinoma (ACC) FHIT Negative (-)

Fig. 2.   Adrenocortical adenoma (ACA) FHIT Medium Positive (++).  

Fig. 3.   Adrenocortical Hyperplasia (ACH) FHIT Strong Positive (+++). 

IV.THE FEATURE SELECTION (FS) AND FILTERING

In classification problems, we are often interested in 
maximizing the true positive rate (also called the sensitivity), 
as this rate reflects the ability of the classifier to detect the 
“signal”. Our system is to predict whether or not a given 
patient has malignant cancer (in this case the “signal” is 
“having malignant carcinoma”), then the cost of saying that 
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the patient does not have malignant carcinoma when in fact 
the patient does (the false negative rate) is much higher than 
the cost of saying that the patient has malignant cancer when 
in fact the patient does not (the false positive rate). Thus it is 
more important to make the false negative rate smaller than it 
is to make the false positive rate small. Since true positive rate 
= 1 - false negative rate and true negative rate = 1 - false 
positive rate, it is desirable in many applications to make the 
true positive rate (i.e. the sensitivity) large at the expense of 
the true negative rate (i.e. the specificity).  Sensitivity makes 
the y-axis and (1-specificity) makes the x-axis in Receiver 
Operating Characteristic (ROC) curve. A complete prefect 
random “classifier” gives a diagonal line with Youden Index  
=  0 (Youden index is the sensitivity + specificity – 1), while a 
perfect deterministic classifier always gives both sensitivity 
and accuracy equal to 1 with Youden Index = 1. A large ROC 
area and a large Youden Index indicate a good classifier. In 
our case, a true positive corresponds to the case of correctly 
classifying a malignant cancer patient. Malignant cancers tend 
to be less distinctive than benign compare to normal tissues 
[1]. Characteristic tumor associate gene expressions may turn 
on to have the desirable properties that they can be used to 
enhance sensitivity at the expense of specificity. To qualify for 
features measured by our experiments in the classifier, any 
two features must not be statistically correlated, and must give 
a satisfactory distance separation in the feature space (between 
classes) and must offer good generalization for the predictor 
[2]. Feature selection (FS) and filtering algorithms are divided 
into wrapper-based, or embedded, or filter-based FS. 

A. Wrapper-based feature selection 

    Wrapper algorithms are interactive FS by using the 
inductive principles of learning principle in the FS steps. 
Wrapper algorithms usually outperform other FS but are 
extremely computationally expensive. 

B. Embedded feature selection algorithms 

    Decision Trees and CART (classification and regression 
trees) exemplify embedded feature selections; the process of 
selecting a feature to split at each node of the tree is implicitly 
a feature-selection step.  

C. Filter-based feature selection algorithms 

    Those preprocessing FS algorithms are independent to 
the learning algorithms and are usually computationally least 
expensive. We implemented a number of this type of FS [2-
4,20] that including: 

i. T-test
ii. The Chi-Square Goodness-of-Fit test. 

iii. The Bi-Normal Separation (BNS). 
iv. Fisher’s Permutation test 
v. Distance Measures. 

vi. Principle Component Analysis (PCA) 
vii. Information Gain - how a decision tree selects a 

feature to split. 
We used a distance based FS. Let’s consider a two-class, 

malignancy and benign. Given two features: X and Y, D(X)
and D(Y) measure the separation of two classes subject to 

feature X and feature Y, respectively. If D(X) > D(Y), feature X
is selected or if D(X) < D(Y), feature Y is selected. Hence, the 
decision rule is:  D(X) >< D(Y )

Distance measure can be in pair each time for every 
feature. After sorting these distances, we selected a number of 
most useful features for separating two classes. However, 
distance-measure based FS works in a pair-wise manner. We 
also used another feature selection method called Principle 
Component Analysis (PCA) to reduce the feature dimension. 
PCA can handle multiple features simultaneously. PCA is also 
called Karhunen-Loeve (K-L) transformation. K-L 
transformation is an orthonormal transformation of a vector 
~X to same dimensional vector ~Y. In the transformation 
domain, the first principle component is the normalized linear 
combination with maximum variance; the second component 
has the next largest variance and so forth. Based on such 
ranking, only those with largest variance are preserved and the 
others are neglected. In fact the principle components are 
ranked by their ability to distinguish among classes. The 
implement procedure is as follows. Assume there are N
instances in the training set and M features, Let ~ X represent 
a population of N-dimensional vectors, mean value of each 
feature mx has been calculated. The mean value of each feature 
and KL transformation have been performed, the resulting 
covariance matrix of ~Y has been analyzed. Some features are 
correlated with each other. The correlation factor xy of two 
features X and Y can be obtained by the following equation: 

xy
E E

= E[X Y ] - E[X ]E[Y ]
E[X (E[Y2 2] [X] ] [Y ] )2 2

Our FS are made by decision rules based on both PCA and 
above distance measurements.  

V. THE SYNERGISTIC MEDICAL DECISION SYSTEM

Training samples are 41 selected pheochromocytomas and 4 
paragangliomas, 14 selected adrenocortical carcinoma, 26 
selected adrenocortical adenoma, and 9 selected 
adrenocortical hyperplasia. There are also 9 selected normal 
adrenal glands from patients underwent nephrectomy of renal 
tumors. Both above FS methods ruled out apoptosis related 
factors Bax and Bcl-2. Fas and FasL correlated strongly. FS 
ranked the highly useful features in the following order: 
PCNA, Ki-67, hTERT, Cyclin E, FHIT, Fas and P27kip. The 
system uses the above 103 patients’ samples with 
experimentally measured features of above 7 genes and further 
developments of our techniques in [2-4]. In principle we rely 
on the data and techniques that are generated and developed 
by us rather than others to ensure every scientific effort is 
reliable, accurate and rigorous to the best of our knowledge. 

A. The Ensemble Method 

Recently, there has been a surge of interest in using a 
machine learning technique called ensemble method to 
enhance the performance of smart engineering systems 
Ensemble method is a diverse class of methods that seek to 
combine the decisions of several computational intelligent 
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classifiers in order to reduce misclassifications of a classifier. 
This class includes: 

1. Consensus networking – In this approach, the test instances 
are fed into several computational intelligence classifiers 
and majority voting of the classification decisions of these 
classifiers are taken. 

2. Boosting – This approach is a computational intelligence 
machine learning meta-algorithm. At each boosting round, 
a “weak” learner is trained with the data and output of the 
learner is feedback to the learned function, with some 
strength. Then, the data is re-weighted and boosting is 
focused on the data that are difficult to learn in the next 
boosting round, so that future “weak” learners will attempt 
to reduce the mis-classification errors.  

3. Bootstrap Aggregation (“Bagging”) – In this approach, the 
original data set is sampled (with replacement) to form M
“bags” of data, each equal in size to the original dataset; a 
classifier is constructed based on each of the M bags. Then, 
given an instance to be classified, it can be fed it into each 
of the M classifiers to take the majority vote of these 
classifiers in forming the final classification decision.  
Ensemble methods have been shown to be effective at 

reducing the generalization error. Several issues arise in the 
design of such a medical decision system:   

What types of classifiers and ensemble methods 
should be combined? 
How should they be combined? 

As to the first question, our intelligent system combines 
the predictions of decisions from RMCT – Recursive 
Maximum Contrast Trees [4], PSHNN - Parallel Self-
Organizing Hierarchical Neural Networks [6] and SOFM – the 
new variants of Self-Organizing Feature Map Algorithms [2]. 
As to the second question, we are investigating a multistage 
classification scheme in which each stage is composed of 
multiple classifiers whose decisions are combined by majority 
voting and consensus. Instances that are misclassified by the 
first stage are passed to the second stage. The idea being that 
by only focusing on the instances misclassified by the first 
stage, the second stage can concentrate on the more difficult 
parts of the feature space and so on. Our algorithm in the 
intelligent medical decision system is as follows: 
• First step: 
– Construct two very different computational intelligence 

classifiers, the SOFM [2] and RMCT [4]. 
–  Pass the test instance to both classifiers: 

- If both classifiers agree, then this is the consensus 
prediction. 

- If they disagree, this may indicate the instance is 
difficult to predict reliably. Then we use the second 
step with additions of a third classifier and a more 
powerful computational intelligence algorithm 
namely the Boosting with Bagging to break the tie. 

• Second step: 
– Construct an additional classifier, PSHNN [6]. 
– Pass the test instance to all 3 classifiers (SOFM, RMCT 
and PSHNN), but each classifier is also trained by 

Boosting with Bagging; the consensus prediction is 
obtained by taking the majority vote of all 3 classifiers.  

Our development of new variants of Self-organizing 
Feature Map algorithms (SOFM) [2] is inspired by Kohonen’s 
SOM (Self-Organizing Maps) [7] and Ersoy’s PSHNN 
(Parallel Self-organizing Hierarchical Neural Networks) [6] 
algorithms but differs from the neural networks SOM 
algorithm by dropping the topological neighborhood and 
replacing it with the concept of a global neighborhood 
generated by ranking with significant variants denoted as 
variants of Self-Organizing Feature Map algorithm (SOFM). 
The new algorithm solves two common severe problems of 
SOM and many other Neural Networks (NN) algorithms.  

Results of many NN and SOM are affected by the order in 
which instances are presented to the network [5-7]. For 
a medical decision system, we need solid robustness 
and accuracy in diagnosis, especially when we deal 
with fatal diseases.  

The trajectories of the neurons can oscillate wildly as a 
result from many NNT and SOM algorithms [5-7]. Our 
new SOFM solves the problems using a stepwise 
procedure to minimize the objective function [2].  

Q (t) = 1
2

2

n
m x W tij i

n e u r o n jin s ta n c e i
j| | ( ) | |

where gradient of Q with respect to the weight vector Wk of 
neuron k is: w n i k k i

in s c e i
k
Q m W t x1

,
ta n

( ( ) )    

The novel batch update rule of the SOFM is thus given as: 
W t W t m W t xk k t n i k k i

in s ta n ce i

( ) ( ) ( ) ( ( ) ),1 1

Because the novel batch update of SOFM [2] performs 
gradient descent on an “averaged” error surface, the 
trajectories of neurons is much less variable that gradient 
descent rule in SOM. When used jointly with our fixed initial 
neuron assigned and fixed small learning rate, the SOFM 
algorithm is not affected by the order in which instances are 
presented to the network. However, whenever the SOFM and 
RMCT in the Consensus Networking machines give 
conflicting decisions, we need additional computational 
intelligence algorithms to break the tie. This motivated us to 
develop a new computational intelligence algorithm called the 
Boosting with Bagging that is applied to SOFM, RMCT and 
PSHNN for the final majority voting decision.  

B. The Boosting with Bagging 

Boosting is a computational intelligence method that can 
be combined with Bagging to improve the performance of a 
classifier. We demonstrated that when combined 
appropriately, Boosting with Bagging is resistant to over-
fitting and the variance of the overall estimator is reduced, 
while the bias remains roughly the same [2-4]. Boosting with 
Bagging has been applied to SOFM, RMCT and PSHNN for 
the final majority voting decision. We are interested in 
incorporating useful confidence information into the 
intelligent system. We combine bagging with a generalization 
of traditional boosting algorithm that allows confidence 
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information to be incorporated. The combined Boosting with 
Bagging algorithm emphasizes on weaker learner for each 
boosting run. Assuming we have N training instances, then we 
construct a classifying function f xi( ) . Class label yi is either 
0 or 1. The square error of the classifier f xi( )  is given by:  
error i f x yi i( ) { ( ) }2 . The procedure of Boosting with 
Bagging is described as following:  Initialization: 0 = 1; t = 
1; Wi = Pi = 1/N where i = 1, 2, 3, ...,N. for t = 1 to T. Take n
subsamples, choose one of subsamples that gives smallest 
error. 
                    

t i
t

i

N

ty iP h x
i

1

1( ( ))
  Update coefficient t ,

weight Wi of training instance and probability Pi of instance at 
t boosting round. 
                                          

t
t

t

ln( )
1

W W ei
t

i
t a h xt y i

t
i1 ( )

P W

W
i

t i
t

i
t

i

N
1

1

1

1

                                                                      t = t + 1;  End

The confidence instance x  belongs to class k is determined by 
the following equation: 1 2 2 3, , , ,........ n

The Boosting with Bagging will reduce variance error but 
will not affect bias error; it can be verified as following: 

Assume that we want to form an estimator of a quantity 
based on observations. We can express the error of this 
estimate as the sum of a variance component and a bias 
component. Let us assume observations x x x xn1 2 3, , ........
Estimator ( , , ........ )x x x xn1 2 3 and corresponding true 

( , , ........ )x x x xn1 2 3 . Thus 

Error E E E E

E E E E E

[( ) ] [{ ( ) ( [ ] )} ]

[( [ ] ) ( [ ])( [ ] ) ( [ ] ) ]

2 2

2 22

E E E E E E E

Var Bias
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2

And there are m observed estimators: 1 2 2 3, , , ,........ n ,
average their predictions to obtain an overall estimation. The 
variance of the overall estimate is: 

V a r V a r
m m

V a ri
i

m

i
i

m

( ) ( ) ( )1 1
1

2
1

1 1 1
2 2

1m
Var

m
mVar

m
Vari i i

i

m

( ) ( ) ( )

.while the bias of the overall estimate is: 
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Therefore, we can see that variance of the overall estimator 

is reduced, while the bias remains roughly the same. The 
Boosting with Bagging improves the performance of the 
intelligent system.  

TABLE III 
PERFORMANCE COMPARISONS OF THE ENSEMBLE METHOD (E.M.) AGAINST 

DIFFERENT COMPUTATIONAL INTELLIGENCE ALGORITHMS: SOFM, SOM,
RMCT, PARALLEL SELF-ORGANIZING HIERARCHICAL NEURAL NETWORKS 

(PSH), DECISION TREES (DT) AND SUPPORT VECTOR MACHINES (%) 

E.M SOFM SOM RMCT PSH DT SVM 

Accuracy 95.1 94.5 88.7 93.8 89.6 88.3 87.9 
Standard 
Deviation 2.1 2.8 4.6 2.3 3.2 5.1 4.8 

VI. RESULTS, DISCUSSION AND CONCLUSION

Based on our experience, currently there is no universal 
effective therapy for malignant neural and endocrine tumors. 
There is no precise histological or pathological method to 
distinguish between benign and malignancies among those 
tumors. The treatments and prognoses are not only just quite 
different, but also very often determined inappropriately. 
Malignancies are largely unpredictable. We are part of the 
international efforts to search for deterministic malignant 
cancer markers. As our research proceeds, we found that 
developing synergistic bioinformatics and computational 
intelligence system is effective, because deterministic cancer 
markers do not always exist in individual patients. We are 
responsible to launch bioinformatics study of human genome 
and cancer genetics in identifying useful features in the 
development of the synergistic bioinformatics and 
computational intelligence system for the task. We will 
continuously using some of bioinformatics techniques we 
developed [1-4] to screen the human genome and other 
sequence data to identify more features for the task. We will 
improve above synergistic bioinformatics and computational 
intelligence system to predict malignancies of more types of 
tumors with following purposes:   
1.   To discover and identify useful features for predicting 

tumor biological behaviors. 
2.  To experimentally verify these features, and to jointly 

utilize them in designing medical decision systems. 
3.  To discover mechanisms of human genome relating 

malignant transformation.  
4.  To exploit the synergy between bioinformatics and 

computational intelligence. 
5. To diagnose microscopic diseases and to treat cancer.  

For many types of tumors, malignant transformation from 
mortal, normal cells to “immortal” cancer cells is often 
associated with the activation of telomerase and subsequent 
telomere maintenance. However, malignant transformation is 
also often associated with differential gene expressions and 
inactivation of one or a few tumor suppressor genes. A normal 
cell must maintain a completely ordered gene expressions and 
regulatory networks while tumor cell must not. Our parallel 
paradigm indicates that degree of malignancies is roughly 
proportional to the degree of disorder in gene expressions and 
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regulatory networks. This concurs with theory of chaos [11] 
that an ordered or less disordered system can “spontaneously” 
go to a disordered or higher disordered system. This scenario 
is generally valid for “spontaneous” solid tumors, excluding 
the leukemia and virtual infected cancers which are not 
“spontaneous” tumors that benign tumors do not exist as mid-
steps between normal and cancerous tissues. However, most 
cancers do take several steps and “long” time before the 
normal tissues transform into malignancies. If joint cancer 
associated antigens are detectable in a benign or even normal 
tissue, this may indicate a sign of malignant transformation. 
But deterministic cancer markers are not likely found in 
individual patients, we therefore developed this synergistic 
bioinformatics and computational intelligence medical 
decision system utilizing multiple tumor associated markers 
jointly in combination with the machine learning techniques 
we developed before [1-4]. Results showed when 
advantageously combine those techniques into one integrated 
synergistic intelligent system; the prediction power has been 
significantly improved to an overall accuracy of 95.1% +/- 
2.1%. Benchmarks of the synergistic Ensemble Method (EM) 
system with a component of SOFM against other popular 
algorithms such as Support Vector Machines (SVM-light [19], 
6.01), decision trees [18], SOM [7] and the Parallel Self-
organizing Hierarchical Neural Networks (PSH [5,6]) are 
reported in Table 3 using a “leave one out” validation test on 
the 103 patients. The intelligent system use the variants of 
SOFM alone reached an overall 94.5% accuracy (Table 3). 
Because of random seeds and different order of input 
instances, the results may slightly different in the overall 
performance from one run to another even using same data of 
103 patients.  
       The system has been put in test and validation for new 
patients. So far the system has reliably predicted 6 
malignancies that are later confirmed by the presentations of 
metastasis and or extensive loan invasions. There is no 
conflicting report such as predicted benign but found 
metastasis. We still need longer follow up time to record all 
tumor recurrences for further validation of the system. The 
statistical test based on the limited available patients indicated 
the system has achieved a high confidence level on predicting 
malignancies and is generally reliable to predict malignancies 
of the types of neuroendocrine tumors. We will continuously 
search for potential markers for different types of tumors and 
validate those markers by using cDNA probes via quantitative 
RT-PCR - quantitative reverse transcriptase polymerase chain 
reaction, DNA microarray, FISH - Fluorescent In situ
Hybridization and immunochemistry (if all affordable). The 
system is expected to be further extended to predict 
malignancies of different types of tumors.  

The exciting results we obtained mark the beginning of 
further systematic research on developing more reliable and 
more accurate diagnostic tools utilizing the synergistic 
laboratory molecular biology, bioinformatics and 
computational intelligence. This also motivated our great 
interest in revealing the human genome mechanism relating to 
potential of cancer development from normal tissues. The 
research has many potential applications, not only provides a 
viable alternative diagnostic tool and better understanding of 

human genome mechanisms, but also provides useful 
information for better treatment planning and cancer 
prevention. We will further explore those applications and 
fulfill the task of predicting tumor malignancies. 
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