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Abstract—Trigger asynchrony is a phenomenon when the 
ventilator is out of synchronization with breathes of respiratory 
patients. The occurrence of trigger asynchrony would cause 
discomfort and harms to the patients. Thus understanding the 
trigger asynchrony situation for better setting the ventilator 
parameters to lower the possibility of occurrence of trigger 
asynchrony is critical to respiratory patient care. This paper 
proposes the combination of neural networks and wavelet 
feature extraction for trigger asynchrony detection. The 
performances using various training situations are also 
compared. A breath cycle is composed of inspiratory phase and 
expiratory phase. In this paper we also explore the performance 
differences between the situation when the neural network 
detection is applied with the same trained neural network for 
inspiratory and expiratory phases and the situation when the 
detection and  is applied with different neural network for 
inspiratory and expiratory phases. It was found that although 
separating detection with different neural networks for the 
inspiratory and expiratory phases requires slightly more time, it 
achieves higher performance than that the detection is applied 
with the same neural network for both phases. The results are 
also compared with the results by physicians’ observations for 
accuracy evaluation. 

I. INTRODUCTION

Respiratory failure is a life-threatening condition in which 
the body's respiratory apparatus is unable to provide adequate 
delivery of oxygen to the blood and removal of carbon dioxide 
from the blood. Mechanical ventilation can effectively assist 
breathing in respiratory failure by taking over the vital role of 
the respiratory muscles, inducing rhythmic inflation and 
emptying the lungs, decreasing the work of breathing, 
supporting the gas exchange, etc. 

In some mechanical ventilation modes, the ventilator 
pressure support is triggered by the inspiratory effort of the 
patient. There are many causes which may result in trigger 
asynchrony (TA)[1][2]. Trigger asynchrony may cause the 
patient uncomfortable and harms to the patients. As such, 
detection of trigger asynchrony is considered one important 

issue for providing high quality health care to respiratory 
patients. 

Currently Trigger asynchrony detection relies on 
observance of the patient, the airway pressure or airway flow 
waveform by doctors, respiratory therapists and nurses, which 
not only requires high human attention and is also not timely.  
Based on these considerations, this paper explores the 
detection of trigger asynchrony by combining the neural 
networks and wavelet features. A breath cycle is composed of 
inspiratory and expiratory phases. Basically the inspiratory 
and expiratory phases TAs expose slight different features. 
Thus it is expected that separating the detection into 
inspiratory TA detection and expiratory TA detection could 
increase the performance. However this separation also 
implies more training effort and slightly more detection time. 
In order to understand the difference between these two 
situations, this paper also explores the performances of TA 
detection in the two situations. 

Based on the aforementioned descriptions, the process of 
this paper contains the inspiratory and expiratory phases 
segmentation. A soft-thresholding de-noising algorithm[9] is 
applied to remove the turbulence noises. Then, in the 2nd phase, 
“wavelet transformation with thresholds” which will be 
described in detail later is applied on the inspiratory phase 
signal and expiratory phase signal separately for trigger 
asynchrony candidate selection. The classification phase uses 
multilayer perceptrons neural network (MLPNN)[11] to 
recognize TAs in TA candidates. The recognition accuracy of 
the algorithm will be compared with the recognition accuracy 
of the human eye. The architecture of the algorithm is 
illustrated in Fig. 2.  

The remaining parts of the paper are organized as follows. 
Section II describes the segmentation of the breath cycle into 
inspiratory and expiratory phases. The soft threshold de-
noising method is also described in this section. Section III 
addresses the selection of TA candidate based on the wavelet 
subband data. The trigger asynchrony detection with 
multilayer perceptrons neural network was illustrated in 
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Section IV. The experimental results were illustrated in 
Section V. Finally Section VI draws the conclusions. 

Fig. 1 The waveform of trigger asynchrony and waveform similar with but 
not trigger asynchrony. 

Fig. 2 Architecture of  the algorithm. 

II. INSPIRATORY AND EXPIRATORY PHASES 
SEGMENTATION

The respiratory waveform can be partitioned into 
inspiratory phase and expiratory phase. The phenomenon of 
trigger asynchrony is slightly different in the inspiratory phase 
and the expiratory phase. Furthermore, the transition period 
near the boundary of the inspiratory phase and the expiratory 
phase exposes some signal feature similar to trigger 
asynchrony, for example, the trigger synchrony shown in Fig. 
2. Thus it is expected that separating the detection into 
inspiratory TA detection and expiratory TA detection would 
increase performance. As such, in this section the breath cycle 
is segmented into inspiratory phase and expiratory phase. A 

period of inspiratory phase or expiratory phase is called a 
segment for simplicity. 

Fig. 3 the damping like inspiratory TA and inspiratory TA 

In most case, the airway flow is positive in the inspiratory 
phase and negative in the expiratory phase. When the phase 
changes from inspiratory phase to expiratory phase, the airway 
flow crosses zero point. Thus this paper adopts “zero airway 
flow rule” for the phase segmentation: A point at time t 
(second) is defined as a zero cross point if  S(t)*s(t-0.01)<0 or 
[s(t)=0 and s(t+0.01)≠0]. However, usually there are small 
local flows causing the airway flow damping around the zero 
crossing point. Thus the breath time frequency in physical 
situation is taken into consideration for avoiding the 
interferences from damping phenomenon. Consider the 
general situation that breath frequency would not be higher 
than 50 times per minute. Also the inspiratory phase and the 
expiratory phase would not be shorter than 1/4 of a breath 
cycle. Thus if we let Cj, 1≤j≤m, where m is the total number of 
zero-cross point, be the zero-cross points, the zero cross point 
Ck would not be considered a segmentation point if the time 
period between Ck and Ck+1 is smaller than 1/4 of breath cycle, 
which is 60/(50*4). 

Once a breath cycle is segmented into inspiratory phase 
and expiratory phase, the results are applied to a soft-
threshold based de-noising process.(This step is optional) The 
de-noising process employs a derived soft threshold on the 
frequency domain signals which has been processed by a low 
pass filter and boundary effect canceller to remove the noises 
which is assumed to be Gaussian distribution.  

III. TRIGGER ASYNCHRONY SELECTION 

The trigger asynchrony is considered the 1 cmHg 
esophageal pressure (Pes) drop[3] as shown in Fig. 1, where 
we can also usually see that the drop of esophageal pressure 
leads to the drop of airway pressure (Paw) and the rise of 
airway flow. In clinic, the normal characteristic of trigger 
asynchrony is found to have a u-shaped(or v shaped for some 
shapes are like v character) local minimum with 0.3~2 sec 
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width. However several other situations may also cause the 
U(or v) shaped(or v shaped) signal[8]. Consequently, how to 
detect the local minimum u(or v) shaped signal without 
interfered by the noises is the key essential in the detection of 
trigger asynchrony. The algorithm will be introduced in this 
section is called “wavelet transformation with thresholds”. 

Wavelet transform has the capability of extracting local 
frequency characteristic [4][5]. Thus it is employed to extract 
the local u(or v) shaped feature for trigger asynchrony 
detection. Discrete Wavelet Transform(DWT) has several 
characteristics such as multiresolution and subband concepts. 
The DWT generate a set of expansion functions such that any 
signal in L2(R) (the space of square integrable functions) can 
be represented by the series: 

f(t)=
/ 2

,
,

2 (2 )j j
j k

j k

a t kψ −
                         (1) 

where the two-dimensional set of coefficients aj,k is called the 
discrete wavelet transform (DWT) coefficients. [5] The 
wavelet transform decomposes the signal into different levels 
which differ in the series of low-pass or high-pass filters 
applied [6].  

After wavelet decomposition, the TA’s local frequency 
should be evaluated for selecting the subbands for analysis. 
Based on the physical phenomenons, the width of an TA is 
0.3~2sec, which implies that the cycle of the main frequency 
component of a TA is generally 0.6~4sec. Thus, the frequency 
of TA is generally in the range of 0.25~1.67Hz. From practical 
situations it is also found that the width of TA is mostly in the 
range of 0.3~0.7 sec. So the main frequency component of TA 
is in the range of 0.714~1.67 Hz which covers the frequency 
bands of d6 and overlaps with the frequency bands of d5 and d7
[7] as listed in TABLE I. Within the three frequency bands, d5
has the highest resolution, d6 reveals as the most dominant 
frequency band. Comparatively, d7 has less resolution and 
only occasionally occurs. Thus in our approach d5 and d6 are 
adopted as the major frequency bands for TA analysis and 
detection.  

TABLE I
THE FREQUENCY BANDS OF D5,D6 AND D7 WITH 0.01 SECOND SAMPLING TIME.

Decomposition Band range(Hz) 
d5 1.5625~3.125 
d6 0.78125~1.5625 
d7 0.390625~0.78125 

For TA detection from the frequency bands, firstly the 
local minimum points are found by the following criteria: 
dl[x+1]-dl[x]>θL and dl[x-1]-dl[x]>θL, where dl[x] means the 
value of xth point of l level wavelet decomposition and θL is 
the threshold for the local minimum, named local minimum 
depth threshold(LMDT). These detected local minimum are 
chosen as possible TA.  However, there are several situations 
which may cause the false TA. As such they need to be 
considered to remove the false TA, as described in the 
following. (A) In the inspiratory phase, there are damping 
signals which also expose the local minimum feature as shown 
in Error! Reference source not found.. The candidates 
exposing damping are filtered by the following criteria: if dl[x-
1]-dl[x-2]>ths, this candidate is a damping. (B) When a breath 

triggers the ventilator to support the patient’s breath 
successfully, the u(or v) shape of airway pressure which is 
trigger synchrony as shown in Fig. 1 also causes the local 
minimum and may be misrecognized as TA. Since the 
successful trigger is often followed by a climbing-up shape of 
Paw and it is often at the beginning of inspiratory phase, thus a 
detection of steep (climbing-up) or flat is performed: If dl[x]-
dl[x-1]<thf,  the edge is flat. On the other hand if dl[x]-dl[x-1]> 
ths, the edge is steep. If it is flat, the number of flat occurring 
is then counted. If the occurrence is greater than tthf(flat time 
threshold), the u(or v) shaped local-minimum is considered a 
TA. On the other hand, if it is a steep edge, the number of 
steep edge occurrence is also counted. If the number is greater 
than tths(steep time threshold), the u(or v) shaped local-
minimum is not TA candidate. For the remaining if flat count 
is smaller than tthf and steep count is smaller than a tths after 
the decomposed segment is iterated thoroughly, the local-
minimum is also considered a TA candidate. 

As described previously, the TA occurs on the position 
with local minimum in the breath signal. Thus the previously 
described approach basically performs TA detection based on 
the u(or v) shaped local-minimum along with some extending 
features after the local u(or v) shape feature. Despite of the 
adoption of extending features it was still found that noise 
interferences often cause significant amount of false positive 
detection. Thus how to further reduce the false positive has 
become one critical issue after the TA candidate selection. In 
this paper, a multilayer perceptron neural network was 
adopted for further selecting the TAs from the TA candidates 
in order to reduce the false positive. 

IV. MULTILAYER PERCEPTRON FOR THE RECOGNITION OF 
TAS FROM TA CANDIDATES

In this section, the multilayer perceptron neural network 
is proposed for the recognition of trigger asynchrony from the 
TA candidates selected in the previous section. This 
multilayer perceptron neural network is designed to contain 
201 input nodes, 20 hidden nodes and one output node, as 
shown in Fig. 4, used to indicate whether the input data is TA 
segment or not. The TA candidate selection method 
mentioned in the previous section will identify the point 
where the TA is likely to locate. These positions represent the 
points where u(or v) shaped local minimum is detected. With 
this point as the center, a period of 2 second samples in the 
original breath signal, which contains 201 data points, are 
extracted and used as the inputs to the multilayer neural 
network for classification. The batch mode of training is 
adopted. The transfer function of the hidden layer neurons 
and the output layer neuron is the Hyperbolic tangent sigmoid 
transfer function: 

y = 1
1

2
2 −

+ − xe
                   (2) 

where y is the output, x is the input. It’s mathematically 
equivalent to tanh(x).  

Since the TA candidate selection method selects the 
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candidates which has local minimum, it is found that the 
candidate selection usually obtains extra positive data rather 
than misses data. It was also found that if the neural network 
based TA recognition is applied on all the breath cycle, 
namely all of data without pre-selection, the complexity of 
the data would cause the degradation of the network 
performance. Based on this consider, it is designed that the 
neural network is targeted for TA recognition among the TA 
candidates.  

In order to properly capture the property that the network 
makes the recognition following TA candidate selection, the 
training of the neural network is performed also on the 
candidate data. As such both TA and non-TA training samples 
were obtained from the results of the candidate selection. One 
of the benefits for this approach is that the TA detection can 
then be divided into domain reduction followed by the 
recognition. The TA candidate selection method chooses the 
candidates in order to reduce the classification domain into 
more narrow region. Thus when the process is in the 
classification phase by neural network, the data consistency is 
increased and variation is reduced. Thus it is expected to 
achieve a higher recognition rate. 

Fig 4. The two layer perceptron neural network for TA 
recognition from candidates. 

Based on these descriptions, the data of true positive and 
false positive from the candidate selection are sampled for 
training the network. The ground truth is obtained based on 
esophageal pressure, where a true TA would cause the 
esophageal pressure to drop about 1 cmHg. On the other hand, 
noise caused signal variation would not involve the drop in 
esophageal pressure. Thus if a TA candidate does not has the 
characterstic of the esophageal pressure drop larger than or 
equal to 1cmHg, this data would be considered a negative 
case for the network training. 

In order to evaluate the effect to classification performance 
when different training approaches and different threshold 
values are applied in the candidate selection, several 
experiments are conducted on the network training. In all of 
the experiments, the following parameter values are adopted: 

ths=3(cm-Hg), thf=0.5(cm-Hg) and θL=1.2.  

(1) Dual-d5-2times-den-insp_asym: In this test, two MLPs 
is used, one for the recognition of the inspiratory TA 
and the other for the recognition of expiratory TA. The 
training set for the neural network for inspiratory phase 
is asymmetric. That is, the number of non-TA 
examples for training the neural network is about two 
times the number of TA examples, considering that the 
TA candidates contain more non-TA than true TA in 
inspiratory phase. On the other hand, the network for 
expiratory phase has symmetric training samples. In 
other words, about the same number of non-TA and TA 
data samples are used for training. In this experiment 
d5 decomposition is used for candidate selection and  
tths=2, tthf=2. 

(2) Dual-d5-1time-den: In this test, two MLPs are used 
where one is for inspiratory phase and the other is for 
expiratory phase. In this experiment, both networks 
use symmetric data training, that is, the same numbers 
of non-TA and TA samples are used for both 
inspiratory and expiratory neural networks. Also, d5
decomposition is used for candidate selection and 
tths=2, tthf=2. 

(3) Dual-d6-1time-den-insp_asym:This experiment has 
similar condition as the situation in (1). That is, two 
MLPs are used for inspiratory phase and expiratory 
phase. Asymmetric data were used for training the 
network for inspiratory TA recognition, and symmetric 
for expiratory TA recognition. The only difference is 
that d6 decomposition of DWT is used, tths=1 and 
tthf=1. 

(4) Single-d6-2times:  

This experiment uses one MLP for the recognition of 
TA. As such, the samples from the inspiratory phase 
and expiratory phase are adopted for the training. Also, 
symmetric data are used for training and d6
decomposition of DWT is used. tths=2, tthf=2. De-
noising is not used. 

(5) Single-d5-2times:  

This experiment has the same condition as that in (4) 
except that d5 decomposition of DWT is used. Also 
tths=2 and tthf=2. 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

For testing the proposed approach, 7 breath sequences 
collected with airway pressure and airway flow were used for 
the test. Each breath sequence has more than 1000 seconds of 
length. In order to better understand the situation of candidate 
selection, Table II, and III illustrate the results of three 
expiratory breath sequences after the TA candidate selection 
phase without applying the de-noising algorithm. The TA 
candidates selected here are treated as TA. The results listed 
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in these tables include: 

(1) Correct expiratory segment type 1(CES1): Each 
expiratory segment may contain several TA points. 
In this evaluation, if the number of detected TAs 
matches the number of true TAs, this segment is 
considered a correctly detected expiratory segment  
type 1(CES1).  

(2) Classification rate type 1(CR1): This is defined as 
the number of correctly detected expiratory 
segments (CES1) divided by the total number of 
expiratory segments.  

(3) True positive TA (TP): This is defined as the true 
positive of TA. That is, the number of detected TA 
candidates which are TAs. 

(4) True positive rate(TPR): This is defined to be the 
true positive TA divided by the total number of TAs.  

(5) False positive TA(FP): This is defined as the false 
positive TA. That is, the number of detected TA 
candidates which are not TAs. 

(6) TA Misrecognition rate (TAMR): This is defined as 
the number of false positive TA divided by the total 
number of segments. 

From the results, we can see that if the value of θL
increases, the true positive decreases. It also shows the 
relatively high false positive (FP) on all the situations. In 
order to maintain a significant high value of true positive, the 
θL for our candidate selection is set to be 1.2 for selecting the 
candidate TAs for further recognition in the neural network 
stage. 

Based on these results, the θL is set to be 1.2 in the 
candidate TA selection for higher true positive and not 
including too much false positive. The candidates selected are 
then fed to the neural network for classification. The results 
after neural network classification for 6 breath sequences are 
shown in Table V, where each row lists the result for a breath 
sequence, and the last row gives the average results. Within 
each row there are 6 sub-rows, where the first 5 sub-rows 
give the results for the 5 test methods with different 
parameter sets as described in the previous section, namely,  

(1) Dual-d5-2times-den-insp_asym. 

(2) Dual-d5-1time-den. 

(3) Dual-d6-1time-den-insp_asym. 

(4) Single-d6-2times. 

(5) Single-d5-2times. 

For comparison, the last sub-row lists the results by 
experienced therapist’s observation for TA detection. The 
results listed in Table V include: 

(1) File name (FN): Simplified File Name. 

(2) Number of Segments(S). 

(3) Classification rate (CR): This is defined as the 
number of correct segments (CS) divided by the 
total number of segments. In the evaluation, only if 
all the detected TA positions in a segment are 
within 1 second from the true TA positions and 
there is no false positive TA in this segment, this 
segment is considered a correct segment.   

(4) Correct segments comparing ratio (CSCR) which is 
defined as the number of correctly detected 
segment by our approach divided by the number of 
correctly detected segment by doctor or therapist 
observation,  

(5) True positive rate(TPR): as described before. 

(6) True positive comparing ratio(TPCR), which is the 
true positive rate by this approach divided by the 
true positive rate by therapist observance. 

(7) TA Misrecognition rate(TAMR): as defined above. 

(8) TA misrecognition comparing ratio(TAMCR): This 
is the TA Misrecognition rate (TAMR) by 
experienced therapist observance divided by the 
TAMR by this approach. 

(9) Avg.: Average data. 

Table II 
The expiratory phase TA recognition result of file TANEW8(N8) with 12 expiratory TAs and 915 

expiratory segments. 
θL CES1 CR1 TP TPR FP TAMR 

1.2 715 78.14% 8 66.67% 245 13.01%
1.5 760 83.06% 8 66.67% 174 13.01%
1.8 802 87.65% 8 66.67% 119 13.01%
2.1 834 91.15% 8 66.67% 82 8.96%
2.4 852 93.11% 7 58.33% 62 6.78%
2.7 860 93.99% 5 41.67% 51 5.57%

 Table III  
The expiratory phase TA recognition result of file TANEW16(N16) with 161 TAs and 932 expiratory 

segments. 
θL CES1 CR1 TP TPR FP TAMR 

1.2 504 54.08% 135 83.85% 459 49.25%
1.5 543 58.26% 125 77.64% 390 41.85%
1.8 574 61.59% 119 73.91% 351 37.66%
2.1 605 64.91% 105 65.22% 301 32.30%
2.4 619 66.42% 95 59.01% 274 29.40%
2.7 652 69.96% 87 54.04% 230 24.68%

By referring to Table IV, the result of mode --Dual-d5-den-
insp_asym which uses two neural networks for inspiratory 
and phase and expiratory phases recognition, d5
decomposition of DWT-- has the best and the most balanced 
performance comparing with the therapist observation results. 
In this situation the proposed approach reveals 100.75% 
CSCR, 72.68% TPCR, and 407.10% TAMCR. However if we 
would like to obtain better TPCR, the Dual-d5-1time-den with 
85.37% may be chosen.  

From the results, we can also see the result variation for 
different patients or different situations. This is due to that 
these patients are in different ventilators and therefore may  
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Table IV  
Test result of the algorithm with 6 breath sequence data files.  

have different TA width and depth. However, generally 
speaking, the algorithm provides satisfactory results for most 
breath sequences, compared with the therapist performance. 

The following is a comparison of Dual-d5-den-insp_asym 
(mode 1) and Dual-d5-1time-den(mode 2): mode 1 has lower 
true positive rate (TPR) since it adopts asymmetrical 
inspiratory phase training which filters out more inspiratory 
phase trigger asynchrony but it also has lower false positive 
rate (FPR) since it filters out more inspiratory phase false 
positive trigger asynchrony. Due to the high FPR of mode 2, 
mode 1 has higher CSCR. 

Mode Dual-d6-1time-den-insp_asym(mode 3) has 
extremely low TPR since the d6 decomposition has slightly 
lower resolution than the breath frequency bands. It filters out 
many lower width TAs automatically. But it also has lower 
FPR because it filters out many points which is not TA but 
similar with TA. 

Mode d6-1time inherits the low resolution of d6 so it 
performs worse than mode 1 in CR, TPCR and TAMCR. 

By the result and the requirement of balanced TP and FP, 
the mode 1 Dual-d5-den-insp_asym is suggested to be the 
best solution with good and balanced performance of CSCR, 
TPCR, TAMCR. 

Different modes may reveal different performances for 
different breath sequences. For example, in N03, Dual-d6-
1time-den-insp_asym has better performance than Dual-d5-
den-insp_asym. That’s because this sequence contains very 
few TAs, namely only 1 TA. Both modes correctly detect this 
TA, which gives the same true positive. But as d6 has lower 
resolution, it generally picks less TAs from the noise, giving 
less false positive. As such Dual-d6-1time-den-insp_asym has 
smaller TAMR 0.38% than the Dual-d5-den-insp_asym 4.88%. 
This situation results from the case of very few TAs, causing 
insufficiency in the true positive statistic. 

In the future, the more detailed statistics of the TA 
properties including width, depth and main frequency band 
shape can be explored to refine the algorithm to achieve 
better results. 

VI. CONCLUSIONS

Trigger asynchrony is a phenomenon when the ventilator is 
out of synchronization with breathes of respiratory patients. 
The occurrence of trigger asynchrony would cause discomfort 
and harms to patients. In the past, TA detection is performed 
through doctor or therapist observance, which requires high 
human resources and is usually untimely. This paper explores 
the combination of wavelet transformation and neural 
networks for trigger asynchrony detection. In contrast to 
commonly applied signal processing approaches where the 
wavelet transformation is used for extracting features which 
are then applied to the neural networks as the input for 
classification, this paper uses the wavelet transformation for 
problem domain reduction. After that, the neural network is 
applied in the restricted domain for pattern classification. 
With this approach the feature space domain can be reduced 
before applied into the neural network. As such the neural 
network classification rate can be significantly increased 
compared with the situation when the domain is not 
restricted. 

In order to give detailed comparison on the wavelet 
coefficients in the candidate selection efficiency, various 
wavelet sub-bands were selected for testing based on the 
main  frequency component of TA phenomenon in airway 
pressure signal. The results were compared with the results 
obtained from doctor observance, the adopted approach in the 
past. Results also demonstrate a significant competitive 
performance, showing its prominence in TA detection. 
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FN CR CSCR TPR TPCR TAMR TAMCR
99.22% 99.91% 16.67% 0.52% 150.00%
99.74% 100.43% 0.00% 100.00% 0.43% 180.00%
94.47% 95.13% 0.00% 100.00% 5.01% 15.52%
93.78% 94.43% 16.67% 6.39% 12.16%
97.58% 98.26% 0.00% 100.00% 2.50% 31.03%

11
(6TAs, 
1158S, 

Patient A) 
99.31% 0.00% 0.78%
96.83% 97.93% 100.00% 100.00% 4.84% 7.69%
62.94% 63.65% 100.00% 100.00% 55.12% 0.68%
99.07% 100.19% 100.00% 100.00% 0.37% 100.00%
63.13% 63.84% 100.00% 100.00% 47.30% 0.79%
75.05% 75.89% 100.00% 100.00% 29.98% 1.24%

N3 
(1TA, 537S, 
Patient B) 

98.88% 100.00% 0.37%
98.91% 103.06% 11.76% 33.33% 1.71% 231.47%
98.04% 102.15% 29.41% 83.33% 1.31% 304.17%
97.61% 101.70% 17.65% 50.00% 1.31% 303.01%
97.61% 101.70% 23.53% 66.67% 1.74% 228.13%
96.36% 100.40% 23.53% 66.67% 2.78% 142.59%

N8 
(17TA, 

1839S, Patient 
C)

95.98% 35.29% 3.97%
92.82% 95.29% 57.46% 69.68% 1.00% 360.00%
92.75% 95.22% 58.33% 70.74% 1.00% 360.00%
89.16% 91.54% 18.86% 22.87% 2.79% 128.57%
87.03% 89.35% 41.23% 50.00% 8.44% 42.52%
90.82% 93.24% 47.81% 57.98% 7.71% 46.55%

N13 
(228TA, 

1504S, Patient 
D, no 

Tracheostomy) 
97.41% 82.46% 3.59%
95.05% 103.76% 18.92% 175.00% 2.86% 702.56%
88.67% 96.80% 44.59% 412.50% 16.94% 118.61%
96.44% 105.28% 5.41% 50.00% 1.06% 1889.66%
91.09% 99.44% 9.46% 87.50% 7.07% 283.94%
86.58% 94.52% 39.19% 362.50% 12.61% 159.30%

N20 
(74TA,  

2728S, Patient 
E) 

91.61% 10.81% 20.09%
97.42% 99.40% 0.00% 0.00% 1.41% 16.67%
96.36% 98.32% 15.79% 100.00% 2.11% 11.11%
96.60% 98.56% 0.00% 0.00% 1.06% 22.22%
93.43% 95.33% 0.00% 0.00% 4.34% 5.41%
96.01% 97.96% 10.53% 100.00% 2.82% 8.33%

N21 
(19TA, 

852S, Patient 
D,  

Tracheostomy) 
98.00% 10.53% 0.23%
96.39% 100.75% 43.19% 72.68% 1.96% 407.10%
92.03% 96.19% 50.72% 85.37% 9.51% 83.90%
95.34% 99.65% 14.78% 24.88% 1.90% 419.51%
90.62% 94.72% 31.01% 52.20% 8.32% 95.96%
91.10% 95.22% 42.03% 70.73% 8.41% 94.90%

Avg. 
(326TAs, 
7766S) 

95.67% 59.42% 7.98%
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