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Abstract – Since 1960, scientists have observed unexpected 

interactions between proteins of distinct pathways or 

molecules in the cells. These interactions have been termed 

as crosstalk and increasing evidence portrays crosstalk as an 

important component for a cell’s robustness. In this study 

we use the insulin and adrenaline pathway as an example 

while employing machine learning techniques to study the 

crosstalk between the two pathways. Insulin and adrenaline 

are two important regulators of glucose metabolism and 

other physiological processes in rat skeletal muscles. While 

adrenaline’s effects require cAMP and PKA and insulin’s 

effects require PKB, recent evidence indicates possible 

crosstalk between the two pathways via Epac (Exchange 

protein directly activated by cAMP) in some cell types.The 

results show that the model can explain the crosstalk 

consistent with the biological finding.  

I. INTRODUCTION 

 Over the past decades, many signalling molecules 

(proteins, lipids and ions) and the way through which they 

communicate via signalling pathways have been 

identified and elucidated. Extracellular cues trigger 

multiple sequential events in which signalling proteins are 

physically and chemically modified; e.g. covalent 

modifications (phosphorylation), recruitment, allosteric 

activation or inhibition and binding of proteins; affect 

subsequent proteins and culminate in a specific 

phenotypic cellular response [1]. It is now apparent that 

signalling does not necessarily occur only in parallel 

linear pathways, but rather through a large and complex 

network of interacting signalling networks [2]. With 

signalling proteins from different pathways interacting 

directly (e.g. phosphorylation) or indirectly (e.g. via 

regulation of gene expression), it is now understood that 

interpathway cross-talk can reflect underlying 

complexities within a cellular signalling network causing 

the output of a signalling pathway to depend non-linearly 

on the input [3], [4], [5]. 

Crosstalk is generally described in biochemistry and 

molecular biology as indirect influences between 

signalling pathways. The term encompasses positive and 

negative signalling, layered changes in gene expression 

and feedback between signalling proteins [6]. Crosstalk 

can also be described as specific interactions between 

proteins of more than one signalling pathway. Crosstalk 

events can be observed when there is a shared component 

between two or more different pathways or in protein-

protein interactions. This general and specific description 

implies that crosstalk acts to balance signal specificity 

(e.g. one output for one specific input) and signal integration 

(e.g. one output for many inputs). 
1
 

The specificity of biological responses is largely generated by 

the combinatorial integration of pathway crosstalk and the 

versatility of component functions [7]. Since 1960, biological 

studies of crosstalk have increased exponentially suggesting 

that crosstalk is an important phenomenon in cell signalling; 

which poses the question: to what extent does the consequence 

of crosstalk affect the robustness of a signalling cell? Fig 1 

shows the number of published articles in PubMed since 1960. 

 

Number of articles in PubMed.

Suvery done at 15:30 on Wednesday 22 February 2006.

Number in 2006 is an estimation.
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Fig 1: Experimental studies on crosstalk since 1960 till February 2006. 

 

There have been two main streams of research in signaling 

network complexity. The first is to use mathematical modeling 

approaches like differential equations systems. The second is 

to use graphic models or Bayesian net approaches [8].In recent 

research, machine learning methods have been applied to gene 

expression data for study and discovery of genetic, regulatory 

pathways [9], [10] as well as to protein data to understand 

signal-response cascade relationships [8] and find casual 

relationships among biological pathways with success. 

Machine learning techniques have a rich history in 

bioinformatics studies. They can represent complex non-linear 

relationships among multiple interacting molecules; they can 

accommodate noise which is inherent in biological data and 

describe statistically meaningful direct as well as indirect 
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influences that proceed through addition unobserved 

components. 

Previous crosstalk models of MAP Kinase pathways have 

been studied using linear models with considerable 

success [11].In the present study we have investigated the 

crosstalk between adrenaline on the insulin signalling 

pathway in rat skeletal muscles Insulin and adrenaline are 

two of the most important regulators of physiological 

processes like glucose metabolism, ion transport and 

protein synthesis in skeletal muscles [12]. Adrenaline has 

well characterised effects in muscle which via binding β-

adrenergic receptor activates cAMP and PKA resulting in 

the breakdown of glycogen[13].On the other hand, 

insulin’s effects on a wide range of processes, simulation 

of glycogen synthase, GLUT4 glucose transporter 

translocation, protein synthesis, and gene expression, 

require the PI3-kinase dependent activation of 

PKB[12].Previous studies have shown cAMP elevating 

agents to activate PKB in some cell types [14] and PKB 

activation in others[15],[16]. Recent evidence indicates 

cAMP can regulate PKB in some cell types via Epac 

(Exchange protein directly activated by cAMP). This 

suggests possible crosstalk between insulin and adrenaline 

signaling in muscle. In this study we use using the logistic 

categorical model and neural network model to 

investigate the crosstalk between the two pathways. 

II. SYSTEMS AND METHOD 

A. Dataset 

The biological measurements used in the study are from a 

published dataset [12].Figure 2 shows the two distinct 

pathways of adrenaline and insulin where cAMP-

mediated PKB activation requires the presence of the 

GTPase exchange factor Epac (exchange protein directly 

activated by cAMP) to regulate crosstalk. The dataset is 

created to study the effect of adrenaline on the insulin 

pathway via its effect on protein kinase B (PKB) with the 

aid of antagonist and agonists. The dataset consists of 89 

data points. The following are the antagonists and the 

agonists used in study: the effect of adrenaline on insulin-

stimulated PKB phosphorylation was blocked by timolol 

(β-blocker), whereas phentolamine blocked the α-

receptors. The β -agonist isoprenaline imitated the effect 

of adrenaline on PKB phosphorylation and cell permeable 

cAMP analogue (db-cAMP) mimicked the effect on PKB 

phosphorylation. 

 

 

 

 
 
Fig 1:  The figure denotes the two signalling pathways Adrenaline and Insulin. 

In this study of skeletal muscle cells, adrenaline crosstalks with the Insulin 

pathway via cAMP elevating agent Epac. The crosstalk is mirrored in the 
amplification of PKB activation. 

 

B. Experimental design  

The results are achieved by using a k-fold cross validation. The 

data is divided into k subsets. Each time one of the k subsets is 

used as the validation set, while the remaining k-1 subsets 

form a training set. The advantage of this method is that it 

matters less how the data gets divided, every data point gets to 

be in a test set exactly once, and gets to be in a training set k 

times. The average error across 5 trials is computed and the 

variance of the resulting estimate reduces with a high K value. 

We employ the 5 fold cross validation in this study. 

The regularisation constant takes 7 values, i.e., 1.0E+00,1.0E-

01, ,1.0E-02, ,1.0E-03, ,1.0E-04, ,1.0E-05, ,1.0E-06 

 

C. Algorithms 

We investigate two models in this study. The first is referred to 

as a logistic categorical model while the second is a neural 

network model. 

 

Model A: logistic categorical model 

We denote by nx  an input vector, where each element of nx  

is binary indicator indicating if a specific activator or inhibitor 

is present as well as if a protein is phosphorylated. We denote 

by nt  a corrupted observation from a real model 

parameterised by a weight vector w, 

),( wxnn fy =  (1) 

In a logistic categorical model, we have the model as 

)exp(1

1

wx ⋅−+
=

n
ny  

(2) 

This model introduces a limited nonlinearity. The error 

function is defined as 

nnn yte −=  (3) 

The objective function with a regularisation term is defined as 

[ ]wwee
TT

 
2

1
λ+=LO  

(4) 
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Here λ  is called a regularisation constant, 
T),,,( 21 l

L eee=e  and T),,,( 21 l
L www=w . The first 

derivative of LO  with respect to w is 

QeXw T −=∇ λLO  (5) 

Here 

dknnkx ≤≤≤≤= 1,1}{
l

X  (6) 

and 

l≤≤−= nnn yy 1)}1({diagQ  (7) 

The second derivative LO  with respect to w is 

XAQQXIΛ )( T −+=∇∇= λLO  (8) 

Here Λ  is called the Hessian matrix and 

l≤≤−= nnn ye 1)}21({diagA  (9) 

The weight update is then defined as 

) ())( ( T1T1 QeXwXAQQXIΛw −−+−=∇−=∆ −− λλLO  (10) 

The significance of each signalling component and 

external-cues can be assessed by the Z score. First, the 

standard deviation of each weight is 

kkkwSE Λ= ˆ)(  (11) 

Here kkΛ̂  is the kth diagonal element of 
1−Λ . The Z 

score is defined as 

)( k

k
k

wSE

w
Z =  

(12) 

It can be seen that the Z score is used to test the 

hypothesis that kw  is zero. If || kZ  is large, the 

hypothesis is denied, hence the kth input (signalling 

component or external-cue) is significant. 

 

Model B: neural network model 

In neural network model, we introduce a hidden neuron 

representing the function of signalling proteins in the 

Adrenaline pathway. Fig 3 shows a corresponding neural 

network structure, where one hidden neuron is introduced 

for all the signalling components in adrenaline signalling 

pathway. Doing this is for simplification as introducing 

more neurons in this signalling pathway may not 

introducing meaning information but computational cost. 

We treat the insulin signalling pathway in the same way 

omitting all the signalling components because we are 

only interested in the target signalling component (Akt) to 

see if it is affected by the adrenaline signalling pathway. 

 

 
Fig 3: The neural network structure where a hidden neuron is introduced in the 

adrenaline pathway. 

 

We denote by 
A
nx  an input vector for the adrenaline signalling 

pathway including db cAMP, isoprenalin, timolol, 

phentolamine and adrenaline.  

)exp(1

1
1

An
n A

h
wx ⋅−+

=  
(13) 

 

We denote by 2nh  (we use H rather X for convenience here) 

the input to the insulin signalling pathway (insulin) and by 

2Hw  the weight of 2nh , an unknown hidden effect. We 

denote by 1Hw  the weight of the hidden neuron. The Akt 

activity is then model as 

)exp(1

1

Hn
ny

wh ⋅−+
=  

(14) 

Here 
T

21 ),( nnn hhh =  and 
T

21 ),( HHH ww=w . We also 

denote by nt  a corrupted observation from a real model. The 

regularised objective function is 

( )[ ]HHAAN wwwwee
TT

 
2

1 T
++= λO  

(15) 

The first derivative of NO  with respect to Hw  is 

QeHww T )( −=∇ HHN λO  (16) 

Here Q is defined in equation (7) and 

21,1}{ ≤≤≤≤= knnkh
l

H  (17) 

The second derivative of NO  with respect to Hw  is 

HAQQHIwwΛ )( )()( T −+=∇∇= λHNHN O  (18) 

Here )( HN wΛ is called the Hessian matrix and A is defined 

in equation (9). The weight update equation for Hw  is then 

defined as 

) ())( ()()( T1 1T
QeHwHAQQHIwwΛw −−+−=∇−=∆ −−

HHNHNH λλO  (19) 

The first derivative of NO  with respect to Aw  is 

QReXww T
2 )( AHAAN w−=∇ λO  (20) 

Here Q is defined in equation (7), 

11,1}{ −≤≤≤≤= dkn
A
nkA x

l
X  

(21) 
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and 

l≤≤−= nnn hh 111 )}1({diagR  (22) 

The second derivative of NO  with respect to Aw  is 

))(( )()( T
1 AAHANAN w XBAQXIwwΛ −−+=∇∇= λO  (23) 

Here A is defined in equation (9) and 

l≤≤−= nnn he 11)}21({diagB  (24) 

The weight update equation for Aw  is then defined as 

) ())( ()()( TT
1

1 1 QeXwXBAQQXIwwΛw AAAAHANANA w −−−+−=∇−=∆ −− λλO  (25) 

The standard deviation of each weight (all weights) is 

kkkwSE Λ= ˆ)(  (26) 

Here kkΛ̂  is the kth diagonal element of 1−Λ  (both 

)(1 AN wΛ−  and )(1 HN wΛ− ). The Z score is defined as 

)( k

k
k

wSE

w
Z =  

(27) 

It can be seen that the Z score is used to test the 

hypothesis that kw  is zero. If || kZ  is large, the 

hypothesis is denied, hence the kth input as well as the 

crosstalk component (the hidden component) is 

significant. 

III. RESULTS AND DISCUSSION 

Signalling through the insulin pathway is critical for the 

regulation of intracellular and blood glucose levels. 

Insulin binds to its receptor leading to phosphorylation of 

the β-subunits and the tyrosine phosphorylation of insulin 

receptor substrates (IRS).IRS activates phosphoinositide 

3-kinase (PI3K) through its SH2 domain, thus activating 

the intracellular concentration of PIP2 and PIP3. PIP3 in 

turn activates phosphatidylinositol phosphate-dependent 

kinase-1 (PDK-1), that subsequently activates Akt/PKB 

This results in the translocation of the glucose transporter 

(GLUT4) from cytoplasmic vesicles to the cell membrane 

[17].Adrenaline on the other hand is a hormone that is 

part of the fight or flight mechanism to protect the body in 

situations of acute stress. Adrenaline binds to its β-

adrenergic receptor activating cAMP and PKA. 

         The primary objective of this study is to investigate 

the weights associated with the input cues as well as to 

study the crosstalk between adrenaline and insulin 

signalling pathways via the activation of PKB (protein 

kinase B). The logistic categorical model and the neural 

network model is employed in this study. Fig 3 shows the 

R-squares for two models with different regularisation 

values. It can be seen that two models show very similar 

performance, where the neural model slightly outperforms 

the logistic model when 20.140.1 −≤≤− ee λ . 
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Fig 3: The R squares for the neural network model and the logistic categorical 

model. 

 

The weights, standard error and the Z scores are shown in 

Table I. It can be seen that except for Phentolamine, all the 

other indicator play an equal role for Akt phosphorylation. 

Phentolamine in fact has a lower magnitude then the other 

inputs used. It is interesting to note that in the biological 

experimental study while the effect of adrenaline on insulin-

stimulated PKB phosphorylation was blocked by timolol (β-

blocker), the blockade of α-receptors with phentolamine was 

without effect[12]. The negative weights for timolol and 

phentolamine are indicators of their inhibitive association with 

PKB activation. The logistic model is represented as  

 

    1.98            1.95                  0.73             0.59            0.77              0.76             0.51           

)85.4Ins01.4cAMP83.1Phe06.0Iso72.1Tim58.1Adr66.1( −×+×+×−×+×−×= ρy

 

TABLE I 

STIMULATION RESULTS FOR THE LOGISTIC MODEL  

 Weight Standard error Z score 

Adr  1.66 0.51  3.27 

Tim -1.58 0.76 -2.08 

Iso  1.72 0.77  2.24 

Phe -0.06 0.59 -0.10 

cAMP  1.83 0.73  2.51 

Ins  4.01 1.95  2.06 

Bias -4.85 1.98 -2.45 
The table shows the weights, standard errors and Z scores in the logistic 

model..The inputs and outputs are abbreviated as follows Adr for Adrenaline, 

Tim for Timolol, Iso for Isoprenaline, Phe for Phentolamine,cAMP for cAMP, 

and Ins for Insulin.The weights for timolol and phentolamine are negative 

depicting their association with PKB activation in the insulin pathway. 

 

The weights, standard error and the Z scores are shown in 

Table 2. It can be seen that except for Phentolamine, all the 

other agonist, antagonists and proteins indicate an equal role 

for Akt phosphorylation. .Again, it is  interesting to note that in 

the biological experimental study the blockade of α-receptors 

with phentolamine had no effect on the crosstalk between 

adrenaline and insulin pathways [12]. It is also very interesting 

to see that the crosstalk between the Adrenaline and Insulin 

signalling pathways have been confirmed by the weight 

associated with the hidden neuron (3.72) with the Z score as 
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4.31 meaning that the null hypothesis that the crosstalk 

between two signalling pathways has been strongly 

denied. The neural model is presented as below. 

 

 0.19                  0.37             0.31            0.39              0.39             0.25             

)49.1cAMP22.2Phe12.0Iso08.2Tim14.2Adr09.2( −×+×−×+×−×= ρA

 

    1.94            1.88                 0.86           

)53.5Ins00.4A72.3( −×+×= ρy
 

where A is Adrenaline 

 
TABLE II 

RESULTS FOR THE  HIDDEN NEURON IN THE NEURAL 

NETWORK MODEL 

 Weight Standard error Z score 

Adr  2.09 0.26  8.12 

Tim -2.14 0.39 -5.53 

Iso  2.08 0.39  5.32 

Phe -0.12 0.31 -0.38 

cAMP  2.22 0.37  6.01 

Bias -1.49 0.19 -7.76 

The table shows the weights, standard errors and Z scores for the hidden 

neuron in the Neural network model.The inputs and outputs are 

abbreviated as follows Adr for Adrenaline, Tim for Timolol, Iso for 

Isoprenaline, Phe for Phentolamine,cAMP for cAMP, and Ins for 

Insulin.The weights for timolol and phentolamine are negative depicting 

their association with PKB activation in the insulin pathway. 

 

TABLE III 

RESULTS FOR THE OUTPUT NEURON IN THE NEURAL 

NETWORK MODEL 

 

 Weight Standard error Z score 

Adrenaline(crosstalk)  3.72 0.86  4.31 

Insulin  4.00 1.88  2.13 

Bias -5.53 1.94 -2.85 

The table shows the weights, standard errors and Z scores for the output 

neuron in the Neural network model.  
 

IV. CONCLUDING REMARKS 

It is now a well-established fact that signaling pathways 

do not function in isolation and increasing evidence for 

the complex signalling topology suggest non-linear inter-

pathway crosstalk in a cell. Crosstalk between proteins 

can be quite complex depending on type of ligand, ligand 

concentration and intensity of signalling. As an extension 

of previous work using linear statistical models [15], this 

paper employs the use of non-linear methods like neural 

networks and logistic categorical model to discuss the 

crosstalk between signaling pathways using adrenaline 

and insulin signaling pathways as an example. We employ 

the extra cellular cues and inhibitors to aid in capturing 

the crosstalk interaction between the two pathways. While 

both models show very similar performance, the neural 

network model outperforms the logistic model when 

model when 20.140.1 −≤≤− ee λ .The crosstalk is 

confirmed by the weight associated with the hidden 

neuron with the Z score as 4.31.While this preliminary 

work using non-linear methods has captured the non-

linearity between the two pathway ,future work will focus 

on developing the machine learning methods used to 

increase sensitivity to the data as well as employ new datasets 

of other pathways. 
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