
Inference of Gene Regulatory Networks using
S-System: A Unified Approach

Haixin Wang and Lijun Qian
Department of Electrical Engineering

Prairie View A&M University
Prairie View, Texas 77446

Email: HWang, LiQian@pvamu.edu

Edward Dougherty
Computational Biology Division

Translational Genomics Research Institute (TGen)
Phoenix, AZ 85004

Email: edward@ee.tamu.edu

Abstract— In this paper, a unified approach to infer gene regu-
latory networks using the S-system model is proposed. In order to
discover the structure of large-scale gene regulatory networks, a
simplified S-system model is proposed that enables fast parameter
estimation to determine the major gene interactions. If a detailed
S-system model is desirable for a subset of genes, a two-step
method is proposed where the range of the parameters will be
determined first using Genetic Programming and Recursive Least
Square estimation. Then the exact values of the parameters will
be calculated using a multi-dimensional optimization algorithm.
Both downhill simplex algorithm and modified Powell algorithm
are tested for multi-dimensional optimization. Simulation results
using both synthetic data and real microarray measurements
demonstrate the effectiveness of the proposed methods.

I. INTRODUCTION

The advances of DNA microarray technologies and gene
chips have allowed biologists to analyze the genetic behaviors
among different genes. After image processing of the DNA
microarray photos, it is possible to discover gene regulatory
networks (GRNs) which are complex and nonlinear in nature.
Specifically, the increasing existence of microarray time-series
data makes possible the characterization of dynamic nonlinear
regulatory interactions among genes.

Because GRN models are difficult to deduce solely by
means of experimental techniques, computational and mathe-
matical methods are indispensable. Biochemical systems such
as GRNs are commonly modeled by systems of ordinary
differential equations (ODEs). Much research has been done
on GRN modeling by linear differential equations using time-
series data. However, nonlinear differential equation models,
such as an S-system [1], can model much more compli-
cated GRN behavior [2]. In general, modeling GRNs may
be considered as a nonlinear identification problem. Assume
that there are N genes of interest, define xi as the state
(such as the gene expression level) of the ith gene, then the
dynamics/interactions of the GRN may be modeled as

dxi

dt
= fi(x1, x2, · · · , xN ) (1)

where the nonlinear functions fi need to be determined from
time-series microarray measurements.

Inference of GRNs using S-system model from time-series
microarray measurement data has attracted a lot of attentions

recently. The S-system model is given by:

dxi

dt
= αi

N∏

j=1

x
gi,j

j − βi

N∏

j=1

x
hi,j

j , (i = 1, ..., N) (2)

where xi is the state variable. αi and βi are the positive rate
constants. gi,j and hi,j are the exponential parameters called
kinetic orders. If gi,j > 0, gene j will induce the expression
of gene i. On the contrary, gene j will inhibit the expression
of gene i if gi,j < 0. hi,j will have the opposite effects on
controlling gene expressions compared to gi,j . S-system is a
quantitative model which is characterized by power-law func-
tions. It has the rich structure capability of capturing various
dynamics in many biochemical systems [3]. In addition, the
S-system model has been proven to be successful in modeling
GRNs [4], [5], [6], [7], [8], [9]. Hence, the S-system model
is adopted for modeling GRNs in this paper.

In order to solve the nonlinear parameter estimation prob-
lem, or equivalently the nonlinear optimization problem, evo-
lutionary algorithms are applied by many studies. In [7],
genetic algorithm and a crossover method called Simplex
Crossover (SPX) are used to solve the optimization problem.
In addition, a gradual optimization strategy is applied to
increase the number of predictable parameters. The authors
successfully inferred the dynamics of a small genetic network
constructed with 60 parameters for 5 network variables and
feedback loops. A Memetic Algorithm (MA) is applied in [4]
to enhance the optimization process. It is shown that MA
performs much better than the standard evolution strategies.
Other improvements over standard evolutionary algorithms
include the differential evolution algorithm employed by [5]
and the cooperative coevolutionary algorithm proposed in [6].

The identification of the S-system requires the estimation of
2N(N +1) parameters simultaneously. Although the proposed
schemes in the literature have successfully inferred small scale
GRNs, they can not be directly applied to the inference of large
scale GRNs because of their high computational complexity.
In this paper, a simplified S-system model that captures the
essential gene interactions is proposed. Although the proposed
simplified S-system model is still nonlinear, the correspond-
ing parameter estimation problem becomes linear. Hence,
parameter estimation algorithms with very low computational
complexity, such as the Recursive Least Square (RLS) [18]
algorithm, may be applied to infer the simplified S-system
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model.
After parsing the entire GRN using the proposed simplified

S-system model, a detailed S-system model may be obtained
for a subset of genes that are of special interests. We propose a
two-step method to infer the detailed S-system model. Firstly,
a range search procedure using genetic programming [13]
and RLS estimation is applied to determine the range of the
parameters. We would like to point out that the range of
the parameters are assumed to be known in most previous
works [5], [6], [7], [8], which is not realistic. Then a multi-
dimensional optimization algorithm is needed to further pin-
point the values of the parameters. In this paper, both downhill
simplex algorithm [11] and modified Powell algorithm [10] are
tested for multi-dimensional optimization. A decomposition
procedure that allows to investigate the genes one-at-a-time is
applied to S-system model in [8]. In this study, we also employ
the same decomposition procedure to reduce the dimensions
of the optimization problem.

The remainder of the paper is organized as follows: The
proposed simplified S-system model and the corresponding
identification scheme are illustrated in Section II. Section III
presents a two-step method to provide the parameter estimation
for an exact S-system model and the simulation results are
given in Section IV. Section V contains some concluding
remarks.

II. SIMPLIFIED S-SYSTEM

The task of identifying GRNs may be considered as an op-
timization problem. The goal is to minimize the identification
error and keep the model as simple as possible, which may
be achieved by minimizing the following fitness function

fitness =

N∑

i=1

[

M∑

k=1

(xi(k)− xtar
i (k))2 + Ci] (3)

where M is the number of data points, xtar
i is the target time

series and xi is the obtained time series given by the obtained
S-system model. Ci is a penalty term that may be set to be
proportional to the complexity of the model. For instance, Ci

may be chosen as Ci = w
∑

j [|gi,j | + |hi,j |], where w is a
design parameter.

In this section, a simplified S-System model will be derived
from the standard S-system model. Note that equation (2) may
be re-written as

dxi

dt
= αi

N∏

j=1

x
gi,j

j ∗ (1−
βi

∏N

j=1 x
hi,j

j

αi

∏N

j=1 x
gi,j

j

) (4)

In a S-system , all αi and βi and the state variables are always
positive. Hence, a logarithm function can be performed on both
sides of the equation (4):

log(
dxi

dt
) = log(αi) +

j=N∑

j=1

gi,j ∗ log(xj) + log(1− x̄i) (5)

where

x̄i =
βi

∏N

j=1 x
hi,j

j

αi

∏N

j=1 x
gi,j

j

(6)

The different values of x̄i may lead to different solutions as
explained in the follows.

1) When x̄i � 1
From the Taylor-series expansion of the logarithm func-
tion log(1 − x) = −x − x2

2
+ ..., we can simplify

equation (4) to the following approximation

log(
dxi

dt
) ≈ log(αi) +

j=N∑

j=1

gi,j ∗ log(xj) (7)

2) When x̄i � 1
Using the same Taylor-series expansion we can get the
following approximation

log(
−dxi

dt
) ≈ log(βi) +

j=N∑

j=1

hi,j ∗ log(xj) (8)

3) When x̄i ≈ 1
In this case, dxi

dt
≈ 0. The gene i stays at a steady state

and its steady state value may be deduced directly from
the measurements of the experiment.

The biological explanation of the assumptions made above
is that during protein synthesis and gene expression, the active
and thus interesting genes are either activated or inhibited.
Therefore, the main activities of the interesting genes can be
covered by the proposed simplified S-system model. Although
the simplified S-system model may not be exact, the major ac-
tivities of the genes can be modeled with reasonable accuracy.
If indeed an exact S-system model of certain subset of genes
is needed, a two-step method may be used as described in
detail in the next section of the paper.

Note that although the proposed simplified S-system model
is still nonlinear, the corresponding parameter estimation prob-
lem becomes linear. Hence, parameter estimation algorithms
with very low computational complexity, such as the recursive
least square (RLS) algorithm, may be applied to infer the
simplified S-system model. The procedures are outlined as
follows. Here a simple example is given to illustrate the

Step 1, Initialization: Preprocess the raw time-series
data xi and make sure there is no negative value.
Step 2, Apply RLS to the system, and
solve the parameters : gi,j and hi,j .
step 3, Apply RLS to the solved system
( not the raw data) to estimate the parameters αi and βi.

TABLE I

PARAMETER ESTIMATIONS USING RLS FOR SIMPLIFIED S-SYSTEM

MODEL.

proposed procedures. Suppose the original S-system model is
known

ẋ1 = x1.5
1 x1.2

2 − x0.2
2

ẋ2 = x0.1
1 − x1x

0.5
2

and the raw time-series data are generated with initial con-
ditions x1 = 1; x2 = 0.1. Before we apply the suggested
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Fig. 1. Trajectories of the original S-system and the obtained simplified
S-system.

method, we calculate x̄ to verify the conditions of the simpli-
fied S-system model are met. In fact, x̄1 is around (0.1, 0.2)
and x̄2 is around (2.27, 3.16).

The obtained simplified S-system model is given by

ẋ1 = −0.6035x−0.274
1 x0.0284

2

ẋ2 = 0.347x0.45
1 x−0.282

2

The corresponding trajectories of the original S-system and
the obtained simplified S-system are shown in Fig. 1. It is
observed that the trajectories from the two models are almost
identical. In addition, it is clear that gene 2 inhibits gene 1,
as expected.

III. INFERENCE OF THE EXACT S-SYSTEM: A TWO-STEP

METHOD

In this section, a two-step method is proposed to infer the
exact S-system model for a relatively small group of genes
that may be of special interests.

A. Optimization Range Search

In most of the previous works [5], [6], [7], [8], the range of
the parameters are assumed to be known a priori and are set
manually. However, the range of the parameters are usually
not known in realistic environment. Hence, the first step in
inference of the exact S-system model would be to determine
the range of the parameters.

Genetic programming (GP) [13] and RLS estimation algo-
rithm are applied to solve the optimization range. The general
parameters in GP are defined as follows.

• φ : the initial population randomly generated by computer
program

• f : the fitness function for each individual
• γ: the fitness threshold to terminate the loops
• δ: the size of φ
• µ: the crossover factor of φ in each generation
• ν: the mutation rate
• λ: alternate termination threshold

The GP algorithm can be described by a function
GP (f, γ, δ, µ, ν, λ). The goal of the whole process is to find

Fig. 2. The data structure of the S-System model

the generation that minimize the fitness function and get the
minimize value of GP (f, γ, δ, µ, ν, λ).

1) Data Structure: In order to identify a S-System, the
right-hand side of the differential equations of each individual
can be described by the following data structure shown in
Fig. 2.

2) Fitness Function Definition: The fitness function of each
individual is defined as follows.

fitness(Pj) =

T−1∑

i=1

[(x
′

j(t0 + i∆t)−

(αj

N∏

k=1

xj(t0 + i∆t)gj,k − βj

N∏

k=1

xj(t0 + i∆t)hj,k))2 + Cj ] (9)

where
• Pj = (αj , gj,1, ..., gj,N , βj , hj,1, ..., hj,N )
• t0 : the starting time
• ∆t : the step size
• T : the number of the data points
• N : the number of the genes
• i: the current gene
• x

′

j(t0 + i∆t) : the given data series
In this fitness function, all parameters in equation (4) are

trained using all the time-series data. The individual with
the least value of the fitness function is selected as the best
individual to fit for the given data.

3) The framework: In this study, GP and RLS are used to
search for the optimization range. GP has the ability to get the
global optimization range and RLS will make sure the search
converges locally. Fig. 3 shows the general process for global
range search.

B. Exact Parameters Calculation

After the range of the parameters are determined, the exact
values of the parameters need to be calculated using a multi-
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Fig. 3. The global optimization range search by genetic programming and
RLS estimation

dimensional optimization algorithm. Both downhill simplex
algorithm [11] and modified Powell algorithm [10] are tested
for multi-dimensional optimization.

1) Downhill Simplex Method: Downhill simplex method
is a direct calculation method based on heuristic ideas. The
multidimensional downhill methods try to find the minimum
of a function of more than one variable, which is not analogous
to the one-dimensional problem. It is easy to implement
and it does not need the derivatives which are not easily
written as analytic expressions or solved in simple terms. The
disadvantages of this method are that it requires large number
of iterations and it may not converge to the global minimum.
Powerful computers and some optimal programming may be
used to solve the first problem. And GA is applied to avoid
the local minimum.

Initialization of the N + 1 starting points is very important
because the downhill simplex process may fail if they are
not selected appropriately. In our case, the optimization range
search during the previous step already guarantees that the
initial starting points of the downhill simplex are near the
global minimum. And applying GA can further guarantee that
the local minimum will be avoided. Therefore, the initial points

for the downhill simplex process can be any value in the range
that we obtained in the optimization range search.

A simplex is a geometric figure of n dimensions, with n+1
vertices, interconnecting lines and polygonal faces. The key
equation in downhill simplex method is the following equation.

Pi = P0 + λiei, i = 1, ..., n (10)

where P0 is the initial guess. ei is the unit vector. λi is
the characteristic length scale which can be a constant or a
variable. The downhill simplex method takes a series of steps
to find the minimum of the function. It involves moving the
vertex of the simplex where the function evaluation is the
largest through the opposite face of the simplex to a lower
point. This process is called reflection. Amoeba search [12] is
also used here to search the valley of the simplex. The entire
process is listed in the following pseudo-code.

Produce the initial points P0

COMPUTE the fitness for xi

WHILE λ and ν are not satisfied
FOR i=1 to number of the simplex points

DO:
Compute Pi : Pi = P0 + λiei, i = 1, ..., n

Determine the highest (xh), next-highest(xnl) and
lowest points (xl) by f

END
Compute the range xh − xl

IF Range < Tolerance ε
RETURN xl in simplex

END
Extrapolate xh in the simplex through the opposite face

IF Reflected point < Current xl

Try an extrapolation by a factor of 2
ELSE IF Reflected Point > Current xl

Do a one-dimensional contraction from xh

IF Contracted Point > xh

contract around the xl

END IF
END IF

Apply reproduction operation
Apply crossover operation
Apply mutation operation
Keep the best individual

APPLY RLS to compute coefficients αi and βi

END WHILE

TABLE II

PSEUDO-CODE OF THE DOWNHILL SIMPLEX METHOD.

2) Modified Powell Algorithm: Powell method is also a
direct search algorithm. If the tolerance is large, downhill
simplex method is a better choice than the Powell algorithm.
However, Powell’s method is faster in most applications.

Powell’s algorithm is based on line minimizations. If we
start with a point P in n-dimensional space with a new
direction u, any function f of n variables can be optimized
along u using one-dimensional method. The key process of
the Powell’s algorithm is called the Linmin process (given in
Table III). The major step during the Linmin process is to find
u. Powell’s algorithm is one of the suggested methods. The
pseudo-code for the combined Powell’s algorithm, GA and
RLS estimation is as follows.
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linmin: Given as input the vectors P , n and
function f , find the scalar λ that minimizes f(P + λn).

Replace P by P + λn and n by λn.

TABLE III

THE LINMIN PROCESS.

Given the starting position P0

Produce the first generation with φ individuals
Compute fitness value f for each individual

WHILE fitness f < ε
Rank the individuals according to the fitness evaluation

Apply reproduction operation
Apply crossover operation
Apply mutation operation

FOR i=1 TO φ
DO:

for i=1 to number of dimensions
DO:

Move Pi to the minimum along direction
ui and call this point Pi.

Set ui ← ui+1

END FOR
Set uN ← PN − P0

Move PN to the minimum along direction
uN and call this point P0

END WHILE

TABLE IV

PSEUDO-CODE OF THE COMBINED POWELL’S ALGORITHM, GA AND RLS

ESTIMATION.

IV. SIMULATION RESULTS

The two-step method for the inference of the exact S-system
model is tested using both synthetic data and microarray
measurements.

A. Optimization Range Search

In order to examine the effectiveness of the proposed proce-
dures for parameter range search, a synthetic S-System model
is used. The original S-system model is given as follows.

ẋ1 = x0.268
1 x−2.26

2 − x0.469
1 x0.359

2

ẋ2 = x2.739
1 x0.155

2 − x0.197
1 x0.281

2 (11)

The parameters’ range of the target model is given in
the following table. The original raw data are with initial
condition [1, 1.5]. The range of the parameters obtained from

Items αi gi1 gi2 βi hi1 hi2

x1 1.0 0.268 -2.26 1.0 0.469 0.359
x2 1.0 2.739 0.155 1.0 0.197 0.281

TABLE V

PARAMETERS OF THE ORIGINAL S-SYSTEM.

the proposed range search process are given in the following
table. From those two tables, it is observed that the proposed
optimization range search process captures the correct range
for the parameters. However, GP plus RLS can not converge
to the exact solution. It is necessary to use either downhill

Items α gi1 gi2

β hi1 hi2

x1 (-0.152,3.90) (-1.08,1.72) (-10.23,6.45)
(1.023,3.9) (-5.07,4.21) (-2.14,3.90)

x2 (0.188,3.38) (-5.06,2.78) (-0.98,1.72)
(0.62,3.36) (-2.32,3.34) (0.06,4.36)

TABLE VI

OBTAINED RANGE OF THE PARAMETERS USING THE PROPOSED

OPTIMIZATION RANGE SEARCH.
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Fig. 4. Convergence course of genetic programming during parameter range
search.

simplex method or the modified Powell algorithm to calculate
the exact values of the parameters.

The convergence of the genetic programming is also shown
in Fig.4.

B. Downhill Simplex Method

In this part of the simulation, the same synthetic S-system
model (equation (11)) is used. The obtained S-system model
is given by

ẋ1 = x−2.49
2 − x0.12

1

ẋ2 = x2.51
1 − x0.12

2

The value of the fitness function is 0.1038. The trajectories
of the original S-system model and the obtained model are
compared in Fig. 5. It can be observed that the trajectories
are very close to each other. The branch pathway of the GRN
model is also given in Fig. 6.

C. Modified Powell Method

The same synthetic S-system model (equation (11)) is used.
The obtained S-system model using modified Powell method
is given by

ẋ1 = x−2.426
2 − x0.06

1 x0.008896
2

ẋ2 = x2.535
1 − x0.02

1 x0.084774
2

The fitness evaluation is 0.014. The modified Powell method
achieves better accuracy compared to the downhill simplex
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Fig. 5. The dynamics of the S-system model by downhill simplex method.

Fig. 6. The branch pathway of the 2 dimensional S-system network.

method. The trajectories compared to the original S-system
is also given in Fig. 7. It is demonstrated similar satisfactory
results as in the case of downhill simplex method.

D. Microarray measurements of yeast

During this part of the simulation, we consider time-series
gene-expression data corresponding to yeast protein synthesis.
Five genes (HAP1(x1), CYB2(x2), CYC7(x3), CYT1(x4),
COX5A(x5)) are selected because the relations among them
have been revealed by biological experiments.

Z-score [14] is applied to the results from each generation
to calculate the robustness of the term and parameters. Z -
score is defined by Z(i)k

j = (X(i)k
j − µ(i)j)/σ(i)j , where k

is the rank index of Z-score. µ is the mean of the population.
σ is the standard deviation of the population. We use Z-score
to evaluate the parameters and the one with the lowest value
is chosen as the candidate. Z-score expresses the divergence
of the experimental result xj

i from the most probable result µ
as a number of standard deviations σ. The larger the value of
Zj

i , the less probability of the experimental result is due to
chance.

Table VII contains the results from the proposed optimiza-
tion range search. Using this table, downhill simplex method
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Fig. 7. The dynamics of the S-System model by Powell method
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Fig. 8. The dynamics of expression level of the 5 genes in yeast.

is employed to further pinpoint the values of the parameters
(given in Table VIII). The relationships among the 5 genes are
shown by both their trajectories given in Fig. 8 and the branch
pathway model given in Fig. 9.

We observe that HAP1 represses CYC7, and CYB2 activates
CYC7. It is also observed that HAP1 activates COX5A and
CYT1. These observations are in agreement with the biological
experiment findings in [15], [16].

V. CONCLUSIONS AND FUTURE WORK

In this paper, a unified approach to infer gene regulatory
networks using the S-system model is proposed. In order to
discover the structure of large-scale gene regulatory networks,
a simplified S-system model is proposed that enables fast
parameter estimation to determine the major gene interactions.
If a detailed S-system model is desirable for a small group
of genes, a two-step method is proposed where the range of
the parameters will be determined first and the exact values
of the parameters will be searched using a multi-dimensional
optimization algorithm. Both downhill simplex algorithm and
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Items αi gi1 gi2 gi3 gi4 gi5

x1 (-2.81,2.23) (-2.86,2.17) (-2.05,2.55) (-2.29,2.65) (-2.85,2.54) (-0.152,1.31)
x2 (-3.04,3.38) (-2.88,2.83) (-2.86,0.0338) (-2.83,0.996) (-2.98,2.53) (-0.26,2.01)
x3 (-2.46,2.19) (-2.89,1.84) (-3.17,2.47) (-2.99,2.9) (-2.87,2.14) (-0.68,1.4)
x4 (-1.95,21.78) (-2.97,1.75) (-3.09,1.87) (-3.14,2.56) (-2.95,1.87) (-0.02,1.6)
x5 (0,6.08) (0,0.62) (-0.2,0.78) (0,0.81) (-2.78,1.53) (-1.27,2.09)

Items βi hi1 hi2 hi3 hi4 hi5

x1 (-0.107,2.13) (-0.03,2.2) (-0.23,0.2) (0.12,0.5) (0,5.11) (0,2.08)
x2 (-2.79,0.605) (-1.39,1.447) (-0.20,0.63) (0.1,0.7) (0,40) (0,1364)
x3 (-0.09,0.05) (-2.84,0.96) (0,3.24) (-0.30,0.7) (0,1472) (0,845)
x4 (-0.03,1.08) (-2.00,0.28) (0,0.308) (0,0.48) (0,0.204) (0,2.004)
x5 (0,1.24) (0,0.25) (-0.12,1.24) (0.62,1.98) (-0.28,0.52) (0,3.28)

TABLE VII

OPTIMIZATION RANGE SEARCH RESULTS OF THE 5-GENE NETWORK IN YEAST

Items αi gi1 gi2 gi3 gi4 gi5

x1 0.113 -0.053 0.099 1.30 0.098 -0.044
x2 0.00229 0.5053 -0.6515 0.533 -0.232 1.166
x3 0.0163 0.688 0.7505 -0.486 0.074 0.5569
x4 1883.07 0.00408 -0.7939 -0.099 -0.104 0.338
x5 5.49 0.00024 0.118 0.6213 0.0047 0.0865

Items βi hi1 hi2 hi3 hi4 hi5

x1 0.00026 0.4099 0.113 0.2793 0.251 1
x2 1.58×10−6 1.243 0.5372 0.5471 0.6375 0.0617
x3 0.000264 0.878 1,512 -0.2535 0.154 0.2446
x4 3.699×10−5 0.1713 0.9767 0.3245 0.1426 1
x5 0.00839 0.02866 0.4458 1 0.2955 0.1891

TABLE VIII

THE PARAMETERS OF THE EXACT S-SYSTEM MODEL OF THE 5-GENE NETWORK IN YEAST
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Fig. 9. The branch pathway model of the 5 genes in yeast.

modified Powell algorithm are tested for multi-dimensional
optimization. Simulation results using both synthetic data and
real microarray measurements demonstrate the effectiveness
of the proposed methods.

Note that noise in the data complicates the parameter
estimation and often leads to local minima in the search space,
as well as to unwanted redundancies in inference [17]. Kalman
filtering [18] may be applied to mitigate the effects of noise.
And this will be one of our future efforts.
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