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Abstract - Artificial neural networks (ANN) and support vector 
machine (SVM) modeling offer promise in the analysis of 
genotype-phenotype correlation in genetic association studies. In 
particular, we are interested in studying single nucleotide 
polymorphisms (SNPs) as genetic markers as predictors of a 
dichotomous disease outcome. The problem we are investigating 
is that of gene-gene and gene-environment interactions as 
determinants of the expression of complex diseases. This study 
builds on our previous work for a single gene testing procedure 
developed and presented earlier [1].

 As for single SNPs pre-selection [1], we rely on ANN 
sensitivity analysis algorithms to detect potential pairs of 
interacting SNPs associated with the disease outcome. The 
statistical test for SNP interaction is computed using a bootstrap 
technique and is based on the measure of the predictive 
significance of two SNPs from the change in the ANN error 
function (SVM regression error) when these two SNPs are 
removed from the ANN or SVM genotype-phenotype models. To 
investigate the power to detect and test gene-gene interactions we 
simulated genotypes including two interacting loci with low 
marginal effects, incomplete penetrance and phenocopies 
according to three different models of interaction.  

I. INTRODUCTION

The main focus of genetic-epidemiological studies has 
shifted towards the analsysis of complex diseases such as 
cancers, various nutritional and metabolic disorders (obesity, 
diabetes), cardiovascular diseases (coronary diseases, 
hypertension), cerebrovascular diseases (atherosclerosis, 
stroke) and psychiatric illnesses (schizophrenia). Unlike rare 
genetic disorders which are characterized by a single gene, 
common diseases have a multifactorial nature [2-3]. They 
arise from the combined action of many genes, environmental 
factors, and risk-conferring behaviors, all of which may be 
associated with disease risk primarily through nonlinear 
interactions [4-6]. 

As these multifactorial diseases are influenced by multiple 
incompletely penetrant variants, each contributing gene by 
itself is expected to have a small effect size. The absolute 
increase in prevalence associated with each gene’s risk factor 
is expected to be correspondingly small [7]. Moreover, the 
effect of any one factor (genetic or environmental) may be 
obscured or confounded by the effects of others [2, 8 - 10]. 

Gene-gene interaction models can exhibit minimal 
independent main effects, but produce an association with 
disease primarily through interactions [8, 11-13]. In this case 
the risk associated with a genotype at one susceptibility locus 
is dependent on a genotype at another susceptibility locus and 
thus an interaction between genetics factors is characterized 

by a dependant effect. There are several possible epistatic 
models which can occur in complex diseases. A synergistic 
epistatic effect occurs when the combined risk is greater than 
would be expected if susceptibility loci were independent. A 
permissive epistatic interaction occurs when only the allele 
carriers at susceptibility loci show an increased risk for 
disease. In an antagonistic epistatic effect, the combined risk is 
lower than expected. A balanced epistatic effect is a special 
case of antagonistic effects where the risk for risk-allele 
carriers at both loci is actually lower than for risk allele
carriers at only one locus [14].  

Association studies using case-control methodology and 
high-density maps of SNPs are now recognized as being 
essential for the identification of genetic variants that 
influence susceptibility to common disease [3,15-17], as they 
are intrinsically more powerful than linkage analysis in 
detecting weak genetic effects. Biallelic SNPs have many 
advantages over other types of polymorphism in the genetic 
dissection of complex traits and diseases and for population-
based gene identification studies due to their abundance in the 
genome, positions throughout the genome in coding/non-
coding DNA areas, relative stability (low mutation rate) and 
easy and efficient genotyping [2]. 

The primary focus of current statistical approaches in the 
dissection of complex diseases is to detect individual factors 
with non-negligible main effects in traditional single SNP 
analysis. However, the ability to detect any single locus is a 
function of the relative risk of that locus alone [14], even if the 
overall disease risk can be modeled as the product of risks at 
several independent risk loci. If single-locus effects are small 
relative to the interaction effects, then the joint analysis of 
multiple loci explicitly allowing for interaction between loci 
effects is a clear improvement over traditional approaches. 

The determination of a single best strategy for the detection 
of susceptibility loci in a multilocus model is complicated due 
to the unknown number of interacting loci, the form of 
interaction causing the disease [18] and the high marker 
density or the number of potential interactions. For example, 
an increase in the number of genetic markers (such as 
hundreds of thousands of SNPs in a genome-wide scan) 
exponentially increases the number of possible interaction 
terms for SNP pairs [11, 13] and an exhaustive search is a 
computational burden.

There are several approaches to reducing the number of 
interactions to analyze. One of them is to select candidate 
SNPs to study and to limit the analysis to biologically 
plausible interactions between genes in related pathways 
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(involved in a biological interaction, found in the same 
pathway or involved in the same regulatory network) [14], or 
to the markers in regions containing modest linkage signals. 
Another approach is to restrict interaction analysis to SNPs 
with detectable main effects from single locus studies.  

The complicated nature of gene-gene interaction requires 
the development of higher-level, flexible, model-free, noise-
robust tools to account for the possibly non-linear interactions 
between complex disease factors and outcomes, as well as for 
the genetic heterogeneity, high phenocopy rate and incomplete 
penetrance of the genetic factors. In a previous article [1] we 
used artificial neural network and support vector machine 
techniques to test the association between single nucleotide 
polymorphisms (SNPs) and a dichotomous disease outcome in 
a population-based case-control association study. We have 
selected these “black-box” models for their high flexibility in 
modeling non-linear functions between input and output 
variables, their outstanding pattern recognition capability, the 
significant discrimination power, signal filtering and high 
classification performance. In this study we present an 
extension to both the ANN and SVM regression models with 
applications to the pre-selection of SNP-SNP combinations 
and to test the significance of potential interactions. Our 
artificial neural network (ANN) model of genotype-phenotype 
correlation is represented by a fully connected 3-layered 
feedforward neural network with input nodes corresponding to 
the number of genotyped SNPs, a hidden layer of nodes and a 
single output unit, corresponding to the affection status. In the 
SVM model SNPs are represented by the SVM input patterns 
and the affection status with SVM targets or labels. The 
selection of ANN characteristics (number of hidden layer, 
hidden layer nodes, learning parameters) is detailed in [1].  

For the ANN technique, we used an evaluation procedure 
that measures the predictive significance of two interacting 
SNPs, based on the change in the error function when the two 
inputs corresponding to these tested SNPs are removed from 
the network. Two ANNs, one with all inputs and the other 
with 2 tested inputs removed are run in parallel, and the 
change in error is calculated as a function of the relative out-
of-sample performance of these two networks. Inference is 
performed via bootstrapping (resampling with replacement). 
The measure of statistical significance for the 2-SNPs 
interaction test in the SVM technique is based on the change 
in the SVM regression error when these 2 SNPs (SVM 
variables) are removed from the model. A single SNP test is 
performed in parallel to the interaction test to control for the 
main effects of individual SNPs. 

The proposed testing procedure is free of genetic modeling 
as it relies on the predictive importance of SNPs on the disease 
outcome and doesn’t incorporate any specific type of gene-
gene interaction. It is expected to perform equally well for a 
permissive and antagonistic epistatic interaction, as long as the 
interaction signal is sufficiently strong to be detected. The 
same holds true for the algorithms used in SNPs pre-selection, 
as they are based on the same ANN technique.  

II. DATA

We used three different SNP-SNP interaction models with 
small marginal effects at each locus, as presented by Marchini 
et al. [18]: 1) an additive model, with effects within and 
between loci; 2) a complementary gene model, of explicit 
interaction with the odds of disease at baseline value for both 
loci, and multiplicative effect between and within loci when 
both loci have at least one disease-associated allele; 3) a 
complementary model of explicit interaction, similar to model 
2, with the odds of disease at baseline value for both loci and a 
threshold of disease effect when both loci have at least one 
disease-associated allele. The models are depicted in Fig.1 in 
terms of the odds of disease for each combination of 
genotypes at two loci, parameterized baseline effect , and 
genotypic effect . In model 1, the effects of loci A and B are 
reflected in 1 and 2 correspondingly, while in models 2 and 3 
both loci have the same effect size (i.e., 1   =  2  = ). 

We set a disease prevalence to p = 0.01 and a marginal 
parameter  to the range 0.2 -1.0, corresponding to a single 
locus marginal effect – relative risk of 1.2 – 2.0 (suggested by 
empirical studies in humans) [15, 18]. The genotypic effect 
for each model was calculated based on the analytical 
formulas developed in [18] and expressing a marginal 
parameter of a locus as a function of the genotypic effects ,
the baseline value  and the allele frequency of the other 
locus. Fixing the last two parameters and varying the 
genotypic effect parameter allowed calculating the marginal 
parameters for the corresponding genotypic effects. Working 
backwards, the same formulas allowed determination of the 
magnitude of the interaction effects, corresponding to a 
desirable single locus marginal parameter. 

We used the SNaP software [19] to simulate datasets of 100 
marker genotypes with the corresponding affection status in 
equal number n of cases and controls with a single pair of 
unobserved causative loci, each of which is in linkage 
disequilibrium (LD) with one of the genotyped markers. n
ranges from 1000 to 4000, disease allele frequency (DAF) and  
disease associated marker allele frequency (MAF) match and 
vary from 0.05 (rare) to 0.25 (common), the linkage 
disequilibrium measure r2 was varied as 0.4, 0.6, 0.8, 1.0, and 
the marginal parameter   as 0.2, 0.5 and 1.0 (~ odds ratio  = 
1.2, 1.5, 2.0). The SNaP output datasets were transformed to 
input formats of our ANN software [1] and the SVMlight 

software [20]. Coded genotypes were linearly scaled to the 
range [0, 1]. Phenotypes were labeled as “-1” for controls and 
“1” for cases for SNP-SNP interaction tests based on the SVM 
technique, and rescaled to the [0, 1] range for the SNP-SNP 
interaction tests using the ANN approach. Samples were 
shuffled and datasets were split into training (50%), testing 
(25%) and validation (25%) sets for ANN and into training 
(50%) and testing (50%) sets for the SVM approach. Sample 
shuffling was used to randomize the distribution of association 
patterns to all sets, which can be biased by uneven proportion 
of cases/controls. Same post-shuffled data set was used with 
both techniques; training was performed on the same subset of 
data and finally ANN error-function and SVM regression error 
were calculated on the entire data set.  
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Fig.1. Two locus disease models as described in [18]. The odds of disease for each genotype pair at two loci are presented on the top and the illustrations of the 
genotypic risks for the corresponding models are presented below. Both loci have equal effects, disease allele frequency DAF = 0.25 for both loci, marginal 

parameter  = 0.2, the derived genotypic effects , corresponding to a marginal parameter  = 0.2, for each model are set to 0.2, 0.4 and 0.53 respectively and the 
odds baseline value  = 1.0.

III. THE SEARCH FOR SIGNIFICANT GENE-GENE
INTERACTIONS 

The pre-selection of SNP-SNP (or SNP-environment) 
interacting pairs associated with a high risk of disease was 
conducted according to two strategies: i) an interaction-based 
strategy, or search over all possible pairs of factors and ii) a 2-
stage approach comprising the identification of the set of most 
significant single-factor effects at the first stage, and 
evaluating all possible two-way interactions among the 
selected factors at the second stage.  

The interaction-based strategy involves an exhaustive 
search which is time consuming but was computationally 
feasible for 100 SNPs. It is based on the ANN input sensitivity 
analysis using the input clamping technique [21, 22]. The 
clamping technique applied to 2 inputs consists of comparing 
the error made by the network with the original pattern to the 
error made when selected inputs are clamped to fixed values 
(in general the average value specific to each of tested inputs) 
for all patterns. The greater increase in the error corresponds 
to the greater importance of a tested input pair.  

The first step of the 2-stage approach is a single factor 
search including the analytical input sensitivity analysis [1, 
22-24] based on the calculation of partial derivatives of the 
network output with respect to the network inputs. The 
computational procedure is very fast and allows selecting a 
subset of the most significant single factors. The second stage 
is the same as the interaction-based strategy applied only to 
the factors selected during the first stage. This combined 
strategy decreases the computational burden via “dimension 
reduction” of interaction-based search, as fewer loci are 
included into datasets.  

The power of a search strategy depends, besides other 
common factors, on the ratio of individual factor effects and 
the 2-factor interaction effects. If one of the interacting factors 
doesn’t reach a significant threshold (i.e. the marginal effect is 
low) but the combination of both loci is statistically 
significant, then the interaction-based approach outperforms 
the combined strategy. As all three interaction models assume 
some level of marginal effect, we started with the 2-stage 
strategy for efficiency. In cases where the 2-stage strategy 
failed to detect at least one locus, we applied the interaction-
based approach and compared the performance of both 
strategies. 

IV.  TESTING PROCEDURE TO DETECT INTERACTING LOCI

To test for the significance of SNP-SNP interaction as 
determinants of disease outcome, we followed the testing 
procedure applied to a single SNP factor as previously detailed 
in [1], by extending it to the case of two loci. For the SVM 
testing procedure, we built two SVM models. Input vectors 

1X of the first SVM have a dimension equal to the number of 
SNPs in the sample, while input vectors 2X  of the second 
SVM have the pair of tested SNPs excluded from all samples. 
The null hypothesis is formulated in the following way: if a 
pair of tested SNPs is not important in the context of the 
disease model, then removing it from the model will not 
increase the error of the SVM regression. Therefore, the 
regression error function of the second SVM with the 
irrelevant SNPs excluded will be the same or smaller than the 
error function of the first SVM model with all inputs included: 

),()(: 210
21 XX ϕϕ ≥H    (1) 

Multiplicative within and between loci Two-locus interaction, multiplicative effect  Two-locus interaction, threshold effect  

             

BB Bb bb BB Bb bb BB Bb Bb 

AA (1+ 1)2(1+ 2)2 (1+ 1)2(1+ 2) (1+ 1)2 AA (1+ )4 (1+ )2 AA (1+ ) (1+ )

Aa (1+ 1)(1+ 2)2 (1+ 1)(1+ 2) (1+ 1) Aa (1+ )2 (1+ ) Aa (1+ ) (1+ )

aa (1+ 2)2 (1+ 2) aa aa
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where )(1
1Xϕ  and )(2

2Xϕ are the regression error functions of 
the first and the second SVM models correspondingly. The 
quantity  

)()( 210
21 XX ϕϕ −=m    (2) 

is used as a statistic for the purpose of testing the relevance of 
a particular pair of inputs. With the help of the bootstrap 
technique, we tested the validity of the null hypothesis.  

To avoid false positive results of gene-gene interaction 
detection we used 2 additional SVM models of the same 
configuration as the models described above, each one with 
only one input excluded: the first SVM model doesn’t include 
the first input from the tested pair and the second one excludes 
the second input belonging to the same tested pair. 
Correspondingly we have 2 other null hypotheses for testing 
each input separately [1]:  

)()(: 3
1

101
3XX ϕϕ ≥H    (3) 

),()(: 4102
41 XX ϕϕ ≥H    (4) 

where )(3
3Xϕ  is the regression error function of the SVM 

model with all inputs except the first input from the tested pair 
of inputs, and  )(4

4Xϕ  is the regression error function of the 
SVM model with all inputs except the second input belonging 
to the pair of inputs in question. 

The corresponding statistics for testing the relevance of 
these single inputs are:  

)()( 311
31 XX ϕϕ −=m    (5) 

)()( 412
41 XX ϕϕ −=m    (6) 

Using the bootstrap technique, we tested the validity of the 
null hypothesis (1) along with supporting null hypotheses (3) 
and (4).  

The procedure is realized in the following steps: 
1) Using the original sample, train all four SVM models on the 
training dataset (50% of the samples size). 
2) Calculate the original statistics (2), (5) and (6) on the entire 
dataset, including the training and testing datasets. 
3) Draw a sample *

TZ from },...,{ **
1 nZZ  with replacement from 

the original dataset and repeat steps 1 and 2 for *
TZ .

4) Compute the bootstrap statistics (7-9) as in step 2: 
)()( 21

*
0

*2*1 XX ϕϕ −=m    (7) 
)()( 31

*
1

*3*1 XX ϕϕ −=m    (8) 
)()( 41

*
2

*4*1 XX ϕϕ −=m    (9) 
5) Replicate steps 3 and 4 N times (usually 100 or 1000). 
6) Calculate the proportion of the positive bootstrap statistics 

,*
0m *

1m  and *
2m created in step 4.  

7) Reject the null hypothesis (1) if the original test statistics 
0m is < 0 and the proportion of positive bootstrap statistics *

0m
is < 0.05, and this proportion is smaller than the proportion of 
each positive bootstrap statistics *

1m  and  *
2m ; otherwise, fail 

to reject. 
We used the equivalent approach for the ANN-based tests 

with four optimized ANN networks corresponding to the four 
SVM models, three similar statistics expressing the difference 
in the error function of these networks and the bootstrap 
technique to validate the null hypotheses. 

Gene-environment interaction testing is handled in a similar 
way by treating an environment variable as a locus. Overview 
of the SVM algorithm and the selection of the SVM model 
parameters used are described in Appendixes A and B 
correspondingly.

V. RESULTS 

We investigated the power to detect interacting SNPs as 
predictors of disease outcome by using ANN and SVM 
modeling according to the following parameters:  the type of 
SNP-SNP interaction model, the marginal effect size, the 
samples size, the frequency of the disease allele/environmental 
factor, and the extent of linkage disequilibrium (LD) between 
the unobserved causative locus and one of the genotyped 
markers.  

First, we defined the sample sizes providing minimal power 
requirements for gene-gene interaction detection for a fixed 
genotype effect size and fixed marginal effects of two disease 
loci or marginal heterozygote odds ratios at both loci. We 
calculated that 4000 cases and 4000 controls are required for 
low marginal effect sizes of 1.2; 2500 cases and 2500 controls 
provide enough power to detect an interaction of genes with 
marginal effects of 1.5; and the number of samples can be 
reduced to 1000 cases and 1000 controls if the marginal effect 
increases to 2.0. The same sample sizes have been used for the 
pre-selection of SNP pairs. In general, the minimal dataset size 
is defined by the single genotype size and can be reduced by 
this single genotype size decrease [1].  

Pre-selection 
According to our results, both pre-selection strategies 

performed equally well across a variety of parameters and 
models, except for some datasets with i) low marginal effects 
of 1.2, or ii) the combination of low disease allele frequencies 
at the surrogate marker and low LD, with disease allele of 
marginal effect sizes of 1.5 and 2.0, corresponding to a 
reduced marker marginal effect below 1.5 and 2.0 (Table 1). 
Most simulated gene-gene interactions that were undetected 
with the combined 2-stage pre-selection strategy are not 
statistically significant and some of them did not pass pre-
selection with both strategies. Some statistically significant 
SNP-SNP interactions with marginal effects of 1.2, that are 
not detected with the combined 2-stage pre-selection strategy 
were detected when using the 2-gene interaction-based 
strategy.  

Gene-gene interaction testing
The results of the gene-gene interaction tests for the 

simulated datasets are presented in Fig. 2 for all three models: 
the additive model, and the two complementary models of 
explicit gene-gene interactions: a multiplicative model and a 
multiplicative with threshold model. The statistical power to 
detect gene-gene interaction using the ANN technique is 
plotted on the left, and the corresponding results for the SVM 
technique are presented on the right. DAF and MAF are set to 
be equal in our simulated data and we used them as 
interchangeable parameters.

The power to detect SNP-SNP interactions is strongly 
correlated with the marginal effect size of disease loci, the 
sample size, allele frequency of the disease loci and linkage 
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TABLE I
LIST OF DATASETS FOR WHICH THE TWO-STAGE PRE-SELECTION STRATEGY FAILED TO DETECT AT LEAST ONE SIMULATED CAUSATIVE LOCUS.  

BOTH DISEASE SNPs (OR SURROGATE MARKERS) WERE SIMULATED TO HAVE EQUAL MARGINAL EFFECTS, DISEASE ALLELE  
FREQUENCIES AND LD WITH THE DISEASE-ASSOCIATED SNP.

Disease 
model n (cases) 

Disease allele 
marginal 

effect (OR) 

Disease 
allele 

frequency 

r2 (linkage 
disequilibrium) 

Interaction 
based strategy 

2-stage 
strategy 

Statistical 
significance 

2 4000 1.2 0.05 0.8 Y N No 
  4000 1.2 0.05 1 Y N No 
 4000 1.2 0.1 0.8 Y N Yes 
  4000 1.2 0.15 0.8 Y N Yes 
3 4000 1.2 0.05 0.8 N N No 
  4000 1.2 0.05 1 N N No 
  4000 1.2 0.1 0.8 Y N Yes 
  4000 1.2 0.15 0.8 Y N Yes 
1 2500 1.5 0.05 0.4 Y N No 
  2500 1.5 0.05 0.6 Y N No 
  2500 1.5 0.2 0.4 Y N No 
2 2500 1.5 0.2 0.4 Y N No 
2 1000 2 0.05 0.4 Y N No 
3 1000 2 0.05 0.4 N N No 
3 1000 2 0.05 0.6 Y N No 

Fig. 2a. Power to detect gene-gene interaction using the ANN and SVM modeling for marginal effects of disease loci equally set to 1.2 and for a dataset of 4000 
cases and 4000 controls, at a significance threshold of 0.05. Model1 is the additive model; model2 and model3 correspond to complementary gene models of 
explicit interaction, with multiplicative effects between and within loci when both loci have at least one disease-associated allele (model2), and a threshold of 

disease effect when both loci have at least one disease-associated allele (model3). 

Fig. 2b. Power to detect gene-gene interactions by using the ANN and SVM techniques. The marginal effect is set to OR=1.5. The dataset has 2500 cases and 
2500 controls. The significance threshold is set to 0.05. 
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Fig. 2c. Power of gene-gene interaction detection using the ANN and SVM  techniques for marginal effects of disease loci equally set to OR=2.0, for 1000 cases 
and 1000 controls, and with a significance threshold set to 0.05. 

disequilibrium between disease and marker loci. This 
statement holds generally across all gene-gene interaction 
models and for both testing techniques. Thus a gene-gene 
interaction involving SNPs with low marginal effect sizes at 
each disease locus requires a much larger sample size for 
detection than an interaction of two genes with moderate 
marginal gene effect sizes.  

The power to detect interaction increases with increasing 
disease allele frequency (or MAF), regardless of the 
interaction model or the machine learning technique used. The 
effect of the disease allele frequency on the power is more 
pronounced in the combination with low LD and/or low 
marginal gene effects. This impact of the low disease allele 
frequency can be compensated by an increase in sample size 
(1000 cases) for a moderate marginal gene effect but can be 
insufficient for a low marginal effect of OR=1.2. Another 
possible solution is to minimize the genotype size by selecting 
a smaller number of candidate SNPs for the interaction study. 

The effect of LD on the power to detect interaction was 
investigated by comparing the power of the causal SNP to that 
of the surrogate marker in LD with the causal SNP when the 
causal SNP is removed from the study. As expected from our 
previous study [1], the detection of interaction decreased in 
the presence of incomplete LD between the disease SNP 
(absent from the testing set) and the SNP in LD (tested), as 
well as when marker alleles decrease the marginal 
heterozygote ratio at a disease locus. The marginal effect size 
of a surrogate marker allele that is in LD with the causative 
allele and has the same allele frequency is equal to the 
marginal effect size of the causative allele when the LD 
measure r2 = 1.0 and is smaller than the marginal effect size of 
the causative allele when r2 < 1.0. It was shown in [1] that the 
DAF/MAF mismatch lowers the marginal effect of a surrogate 
marker allele. We found the effect of LD on the power of 
interaction detection to be model-independent and similar for 
both the ANN and SVM techniques.  

In our previous study [1], we compared the performance of 
the ANN and SVM techniques with a real dataset comprising 
approximately 40 genetic and non-genetic factors for 700 
cases and 300 controls. We demonstrated that the SVM 
technique is superior to the ANN technique in detection of 
single significant SNPs as well as for two interacting factors 
due to the SVM learning algorithm advantage in finding 
global minima over local minima as in ANN. However, the 
SVM technique requires the removal of all but one marker 
from those markers that are in high LD with each other.  

VI. CONCLUSION

We presented the ANN and SVM techniques applied to the 
detection and significance testing of gene-gene interactions 
with a complex disease outcome in a population based case-
control study with different disease models involving two 
interacting causative loci. Both techniques offer the necessary 
power to detect rare to common single disease alleles of low to 
high effect sizes in samples of realistic size. The power of 
detection correlates with allele frequency of the disease-
associated loci, with LD between causative and marker alleles, 
with DAF/MAF mismatch and the sample size. The minimal 
requirements for a successful study design are defined on the 
basis of results obtained with simulated datasets. The proposed 
algorithms are model-free.  

Unfortunately, we anticipate that the application of both 
techniques to large genome-scan association studies would 
become time-intensive. This is mostly due to the pre-selection 
step for two interacting factors associated with a high risk of 
disease when applying the interaction based strategy (see III). 
This strategy involves an exhaustive iterative search over 
numerous subsets of SNPs (SNPs genotype “windows”). The 
2-stage strategy of two interacting factors pre-selection is 
definitely much less time consuming than the interaction 
based strategy. It includes splitting a genome-wide set of 
SNPs into manageable sliding windows of genotypes (plus 
non-genetic factors) and conducting relatively fast single 
factors pre-selection at first, and then interaction-based two-
factor pre-selection on the limited amount of SNPs. The latter 
approach has the risk of missing significant interactions with a 
weak single SNP effect (marginal effect size < OR=1.2). The 
testing part of a single SNP-SNP (SNP-environmental factor) 
pair takes about 1 hour using 100 SNPs for a dataset of 4000 
samples and with 100 bootstraps on a single 3GHz cpu. 
However, the pre-selection and testing algorithms are 
amenable to parallelization and can run on a cluster of parallel 
computers.  

We did not attempt to apply any other type of ANN 
architecture beyond a traditional 3-layered feedforward 
network for improving the classification performance of ANN 
technique. Our choice of learning algorithms and learning 
parameters was made to maximize the difference in 
performance between two networks while avoiding over 
fitting. Applying such advanced addition to the ANN 
optimization like evolutionary computing [29] can potentially 
improve the performance of the proposed ANN-based 
approach for the detection gene-gene interactions.   
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Of future interest, we plan to migrate to parallel computing 
and we wish to expand the two-locus interaction tests to an 
analogous class of three-locus models.  
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APPENDIX A. OVERVIEW OF THE SVM ALGORITHM

SVM is a supervised learning algorithm developed over the 
past decade by Vapnik and others [25] which employs a 
structural risk minimization (SRM) principle which minimizes 
an upper bound on the expected risk. Suppose we have a set of 
l examples presented by vectors:  

}1,1{,),,(),...,,( 1 +−∈ℜ∈ yyy n
ll xx1x

with only 2 classes. The task of classification is to find a rule 
which assigns an instance to one of these classes. One possible 
formalization of this class is to estimate a function 

}1,1{: +−→ℜnf . In linearly separable cases, the hyperplane 
which separates two different groups of input vectors with a 
maximum margin, is constructed by finding another vector w
(weight vector) and a parameter b (bias) that minimizes ||w||2

and satisfies the following conditions 1+≥+⋅ bi
T xw for the 

group 1 with positively labeled targets 1+=iy  and 
1−≤+⋅ bi

T xw for the group 2 with negatively labeled targets 
1−=iy , or 

1] +≥+⋅ byi i
T xw[ ,i=1,...,l.   (1) 

Vectors x for which 1] =+⋅ byi i
T xw[ are the support 

vectors which lie closest to the separating hyperplane. Here yi
is the group index; w is a vector normal to the constructed 
hyperplane, |b|/||w|| is the perpendicular distance from the 
hyperplane to the origin and ||w|| is the Euclidean norm of w.
After the determination of w and b, a given vector x can be 
classified by:

[ ]bsignf +⋅= )()( xwx T     (2)
 The optimization is a convex quadratic programming (QP) 
problem, which has a global optimum. Thus the problem of 
many local optima in the case of training like in the case in 
neural network is avoided. Parameters in QP solvers will 
affect only the training time but not the quality of the solution. 
The optimal solution is given by (4) has optimal weight vector 
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i
* xw ⋅⋅=

=

i

i
ii y

1

*λ and bias iiyb xw*T ⋅⋅=* for any support 

vector xi. The decision function is transformed into:  

+⋅⋅⋅=
=

]
1

* bysignf Ti

i
ii ixxx λ)( . (3)

In non-linearly separable cases, SVM maps the input 
variable into a high dimensional feature space z by the 
functionφ . By choosing a non-linear mapping a priori SVM 
finds an optimal linear separating hyperplane with the 
maximal margin in this higher dimensional space. The 
decision function (2) becomes (4):  

+⋅⋅⋅=+⋅=
=

*

1

** )((])([)( bysignbsignxf Ti

i
ii

T
i

* xx)wx φφλφ .

The inner product )()(),( j
T

iji xxxxK φφ ⋅≡  is called the 
kernel function. It allows constructing an optimal separating 
hyperplane in the feature space without explicitly performing 
calculations in this space. The decision function from (4)  

+⋅⋅=
=

*

1

* ),()( bKysignxf
i

i
ii ji xxλ

has optimal bias 
=

−=⋅⋅=
l

j
ijijiii Kyyyb

1

** ),()( xxxw T* λφ for 

any support vector xi. **
1 ,...., lλλ are the Lagrange multipliers. 

SVM uses the following four basic kernels: i) linear, 

j
T

iji xxxxK ⋅≡),( , ii) polynomial, 

0,)(),( >+⋅≡ γγ d
j

T
iji rxxxxK , iii) radial basis function 

(RBF), 0,)||||exp(),( 2 >⋅−≡ γγ jiji xxxxK , and iv) sigmoid, 

)tanh(),( rxxxxK j
T

iji +⋅≡ γ , where r,γ , and d  are kernel 
parameters. 

In case of non-separable data (noisy data), training with 
zero-error leads to poor generalization as the learned 
classifiers are fitting idiosyncrasies of the noise in the training 
data. SVM allows misclassification of some data points. The 
separating hyperplane is subject to the following conditions: 

minimizing 
=

+
l

i

k
iC

1

2

2
1 ξw and satisfying 

liby ii ,...,1,0,1])( =≥−+≥+⋅ ξξφ i
T xw[ , where lξξ ,...1  is a 

vector of slack variables that measure the amount of violation 
of the constrain (1); C is a regularization parameter that 
controls the trade-off between maximizing the margin and 
minimizing the training error term. 

In a regression SVM, the regression task is to estimate the 
functional dependence of y on a set of independent variables x.
As in other regression problems, the relationship between the 
independent and dependent variables is given by a 
deterministic function f plus the addition of some additive 
noise: noisefy += )(x . The task is then to find a functional 
form for f that can correctly predict new cases that the SVM 
has not been presented with before. This can be achieved by 
training the SVM model on a sample set, i.e., training set, a 
process that involves, like classification, the sequential 
optimization of an error function. The main difference is the 
type of a loss function employed: 

pp
e

e fyfyfyL ))(,0max()(),,( ε−−=−= xxx with }.2,1{∈p

The loss function only counts error predictions which are 
more than  away from the training data. This loss function 
allows the concepts of margin to be carried over to the 
regression case keeping all of the nice statistical properties. 
Support vector regression also results in a QP. 

APPENDIX B. SVM MODEL PARAMETERS 

The process of determining the decision boundary is greatly 
influenced by the selection of the kernel and classifier 
parameters implicitly defining the structure of the high 
dimensional feature space where the maximal marginal 
hyperplane is found. The choice of kernel and kernel-related 
parameters is generally domain-specific [26] and involves 
choosing the similarity measure for the data, a representation 
of the data, and/or a hypothesis space for learning that reflects 
the prior knowledge about the problem in hand. Our genetic 
data are characterized by a week signal but strong noise, and 
our task is to detect significant SNPs by measuring the 
difference in performance between two SVMs. Therefore, to 
select the optimal kernel and SVM parameters, we recorded 
the MSE and the accuracy rate for two SVM models and used 
the difference in MSE and in accuracy rates between the two 
SVM models. 

We applied the following kernels implemented in the 
SVMlight software: local radial basis function (RBF), global 
linear and polynomial functions. All of them span a 
sufficiently rich hypothesis space [27, 28] and are positive and 
symmetrical. Local kernels attempt to measure the proximity 
of data samples and are based on a distance function, while 
global kernels are dot-product based. To find optimal 
parameters we first established the parameter ranges and did 
an exhaustive grid search over these ranges. Various 
combinations of parameters were tried on a coarse grid and on 
a gradually refined grid (refined resolution and boundary). The 
MSE error was large in the linear SVM, while the accuracy 
rate and MSE differences were small. This was expected due 
to the non-linear inputs-target relationship. The RBF SVM 
performed better in terms of accuracy rate and MSE error 
across the wide range of parameters spaces. However the MSE 
and accuracy rate differences were small and thus not suitable 
to extract the required effect. And finally the polynomial SVM 
of the second degree with the default regularization parameter 

)(
1
xx ⋅

=
avg

C , 0.1=γ  and 0.1=r  produced optimal 

regression accuracy. The accuracy rate and MSE differences 
were larger than in the cases of linear and RBF kernels. γ  and
r variations exhibited no significant influence on performance 
when C was kept at the default value. The significant increase 
in the C parameter above the default value with γ  and r kept 
constant at default values substantially increased the 
optimization time. Raising the polynomial kernel to the high 
power (d=3) significantly increased the optimization time and 
made no significant improvement in the performance. 
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