
Abstract—Time-series microarray techniques are newly used to 
monitor large-scale gene expression profiles for studying biological 
systems. Previous studies have discovered novel regulatory relations 
among genes by analyzing time-series microarray data. In this study, 
we investigate the problem of mining similar subsequences in 
time-series microarray data so as to discover novel gene relations. A 
functional relationship among genes often presents itself by locally 
similar and potentially time-shifted patterns in their expression 
profiles. Although a number of studies have been done on time-series 
data analysis, they are insufficient in handling four important issues 
for time-series microarray data analysis, namely scaling, offset, shift, 
and noise. We proposed a novel method to address the four issues 
simultaneously, which consists of three phase, namely angular 
transformation, symbolic transformation and suffix-tree-based 
similar subsequences searching. Through experimental evaluation, 
it is shown that our method can effectively discover biological 
relations among genes by identifying the similar subsequences. 
Moreover, the execution efficiency of our method is much better than 
other approaches.

I. INTRODUCTION
Recently, microarray technologies (particularly 

oligonucleotide and cDNA arrays) make it possible to monitor 
the mRNA levels of thousands of gene expressions in a single 
experiment. The discovery of significant gene pairs with 
highly-correlated relations may provide valuable insights for 
biologists in predicting novel biological relations [3]. Moreover, 
two genes with similar subsequences in time-series microarray 
data are very likely to be involved in the same regulatory 
process, as reported in the literature [4, 17, 20, 25]. 

In time-series microarray analysis, there are four important 
issues, namely scaling (or amplitude scaling), offset, shift, and 
noise, as illustrated in Fig. 1. Fig. 1(a), 1(b) and 1(c) show the 
phenomenon of amplitude scaling, offset in expression values 
and shift between two similar subsequences, respectively. Fig. 
1(d) illustrates the issue that there could have noisy data points 
in two similar subsequences. 

In recent years, time-series data analysis has been widely 
applied in various domains like biomedical applications and 
scientific data analysis. Some interesting research topics, like 
clustering, classification, similarity search, prediction, and etc. 
[8, 11, 12, 23], have also been applied to different mining 
demands on time-series data. Among these research issues, the  

(a) scaling                                            (b) offset

(c) shift                                                (d) noise
Fig. 1. Examples of the four problems in time-series analysis. 

problem of searching similar subsequences among time 
sequences is an important one due to wide applications [2, 6, 15, 
16, 18, 24]. 

A number of methods for time-series data analysis have been 
proposed. In the aspect of sequence transformation, Symbolic 
Aggregate approXimation (SAX) method [13] provides the 
point of view for transforming numerical data into symbolic 
representation such that efficient string algorithm can be 
applied to enhance the performance and scalability. For time 
sequence matching, some efficient methods were proposed for 
subsequence matching like I-Adaptive [6], Dual Match [16], 
General Match [15], the Agrawal’s method [1], and 
Time-lagged method [10]. Nevertheless, these methods can not 
provide a complete solution to address the above-mentioned 
four problems simultaneously. 

In this paper, we propose an efficient and flexible method 
that can find similar subsequences among time sequences such 
that it can be applied on time series microarray data for 
discovering novel gene relations. Moreover, the problems of 
scaling, offset, shift, and noise are addressed simultaneously by 
our method. The proposed method consists of three phases, 
namely i) angular transformation, ii) symbolic transformation,
and iii) similar subsequence searching. By angular 
transformation, the scaling and offset problems are resolved and 
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also keep the properties of original time series. In the symbolic 
transformation phase, the shift and noise problems are solved 
and can speed up the searching for similar subsequences as 
well.

Finally, we use suffix tree traversal technique to search the 
similar subsequences between two time sequences. Through 
experimental evaluation on real microarray datasets, our 
method is shown to outperform other existing methods like 
Agrawal’s method [1] and Time-lagged method [10] 
substantially in terms of efficiency. Moreover, the validity of 
our method in discovering regulatory relations among genes is 
verified by utilizing the known gene regulatory relations [7]. 

The reset of this paper is organized as follows. In Section 2, 
we formally describe the problem definition and the similarity 
model for time sequences. The proposed method is described in 
details in Section 3. In Section 4, we present the experimental 
results on a real biological dataset. Finally, concluding remarks 
and future work are given in Section 5. 

II. PROBLEM DEFINITION

Given two time sequences S and Q which may have different 
length, the goal is to find all similar subsequence pairs between  
two time sequences with minimum length threshold, while the 
factors of scaling, shift, offset, and noise are also considered 
simultaneously. In the following, we describe some relevant 
definitions for the targeted problem. 
Definition 1 (Time Sequence). A time sequence S,
S ( s1s2s3…sl(S) ), is an ordered set of real values, where si is the 
ith element of S, and l(S) is sequence length of S.
Definition 2 (Time Subsequence). A time subsequence is an 
ordered sequence. Si,j = sisi+1si+2…sj, denotes the time 
subsequence of a time sequence S, which contains the elements 
of S in positions i through j, and the length of Si,j is                      
l(Si,j) = i + j – 1. 
Definition 3 (Similar Time Sequence). Two time sequences S
and Q are called similar if and only if  (S, Q) , where () is 
a function for calculating similarity between S and Q, and  is a 
specified threshold value. 
Definition 4 (Similar Subsequence). Given two time sequences 
S and Q, the sequences S’ and Q’ are called a similar 
subsequence of S and Q if and only if S’ and Q’ are similar and 
they are subsequences of S and Q, respectively. 
Definition 5 (Distance of Similar Subsequence). If S and Q
have similar subsequences Si,j and Qx,y , then the distance 
between Si,j and Qx,y is D(Si,j , Qx,y) = | i – x |.

Notice that any kind of measure could be used for the 
similarity function () in Definition 3. In many applications, 
the most used similarity measures could be Euclidean Distance
and Pearson Correlation Coefficient (PCC). Based on the 
above definitions, the shape or trend of two subsequences 
should be very close if they are similar subsequences.  

Fig. 2. Workflow of the proposed method. 

Fig. 3. An example in SAX 

III. PROPOSED METHOD

The proposed approach for mining similar subsequences 
between two sequences is decomposed into three sequential 
phases: i) Angular Transformation, ii) Symbolic 
Transformation, and iii) Searching Similar Subsequence. Fig. 2 
presents the workflow of the proposed method. 

Given two time sequences as the initial input, we first apply 
the angular transformation to convert the original time 
sequences into angle sequences. Through the angular 
transformation, the scaling and offset are resolved, and also can 
keep the properties of original time series. Second, for the 
symbolic transformation phase, we divide the range of angles 
(i.e. -90 to 90 degrees) into several equivalent partitions. Each 
partition, which represents an angle region, is denoted as an 
independent symbol. In this way, we convert the angle sequence 
into the symbol sequence such that the factors of shift, and noise
can be handled effectively. Moreover, this transformation can 
speed up searching for similar subsequences substantially. 
Finally, we use a suffix-tree-based approach to search the 
similar subsequences between two input time sequences. 

A. Angular Transformation 
Eamonn et al. [13] proposed the SAX method for searching 

similar subsequences efficiently. However, SAX can not 
distinguish the similar patterns in some cases. Fig. 3 shows an 
example that illustrates the weakness of SAX method.  

By using SAX, S1 is considered as more similar with S2 than 
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with S3. Consequently, the offset problem could not be solved 
by SAX. In order to resolve the above problem, we redefine the 
meaning of similar subsequence as follows: 
Definition 6 (Intermediate Sequence). For a time sequence        
S = s1s2s3…sl(S), the intermediate sequence S’ is 

'
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                                        (1)
The intermediate sequence is a slope sequence of a pair of 

two concatenate time points. However, it is possible that all 
slopes may be in some region. For example, if all time series are 
in decreasing trend, then the slopes in all intermediate 
sequences will be of minus values. In order to normalize the 
slope distribution, which is an important factor for next 
symbolic transformation phase, we use the Min-max
Normalization method to transform the intermediate sequence 
into normalized intermediate sequence after transforming the 
raw time-series sequence into the intermediate sequence. 
Definition 7 (Normalized Intermediate Sequence). Given an 

intermediate sequence 
'
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'
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'
2

'
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 that contains l(S)-1
dimensions, and the Normalized Intermediate Sequence is the 
following. 

min_min)_max_(
minmax

min'
'' newnewnew

s
s i

i
     (2) 

, where min and max are the minimum and maximum values of 
all slopes in all of the intermediate sequences, respectively. The 
new_min and new_max represent the minimum and maximum 
values that we want in all of the normalized intermediate 
sequences, respectively. In this work, the default values of 
new_min and new_max are equal to -1 and 1, respectively. 
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Finally, we use the inverse function of sine (i.e. sin-1) to 
transform normalized intermediate sequence into angle 
sequence.

B. Symbolic Transformation 
The purpose of symbolic transformation is to convert angle 

sequence into a string sequence such that efficient string 
alignment algorithms can be applied to search similar 
subsequences. In order to distribute the angle values in an angle 
sequence in normal distribution, we apply z-score
normalization to all angle values. The z-score associated with 
the ith observation of a random variable x is given by 

xxz i
i

                                       (4)
, where x  is the mean and  is the standard deviation of all 
observations x1, ..., xn. Since the angle sequence is in normal 
distribution, we can divide the angle region into SN partitions 
and denote each partition with one different symbol. 

C. Searching Similar Subsequence by using Suffix Tree 
We build the suffix tree [14, 22] to find all (non-overlapped) 

similar pairs in two sequences with transformed symbol 
sequence. We illustrate our method through the following 
example. 
Example 1 Given a transformed symbol sequence, 
S(“BANANAS”), which indicates the resulted sequence after 
angular and symbolic transformations, we want to find similar 
subsequences in another transformed symbol sequence 
T(“BASCANA”).

First, we build a suffix tree sufftree(S) for sequence 
S(“BANANAS”) by inserting all subsequences starting from ith

position through l(S)th position as shown in Fig. 4(a). Then, we 
apply tree traversal process on each subsequence of 
T(“BASCANA”) on sufftree(S). For each suffix sequence of T
(i.e. T’), we start from 1st position and linearly search common 
subsequence Seqcom in sufftree(S). When we find a Seqcomm at 
starting position m and n in T’ and S, respectively, we record a 
starting position pair (SPP) ({m}, {n}) for Seqcomm, which we 
denote it as SPP(Seqcomm) = ({m}, {n}). Next, we start at           
(m+ l(Seqcomm))th position of T’, and search common 
subsequence again. Note that it is possible that a Seqcomm of T’
has more than one subsequences in S, and Seqcomm may appear 
multiple times in T’. Therefore, each entry of SPP is a collection 
set which may have multiple start positions. 

In our example, the first suffix sequence T’ of 
T(“BASCANA”) is the whole sequence “BASCANA”. For 
T’(“BASCANA”) and S, the first Seqcomm is “BA”, when m=1
and n=1. We record first SPP of Seqcomm (“BA”) as ({1}, {1}), 
i.e. SPP(“BA”)= ({1}, {1}). In next iteration, we start at 3rd

position of T’, i.e. ”S”, and record ({3},{7}) for common 
subsequence “B”. The next Seqcomm is “C”. However, “C” does 
not appear in S. Therefore, we record SPP(“C”)= ({4}, {}). The 
empty set {} represents Seqcomm which can not be matched in 
suffix tree sufftree(S). Next, we start from “A” which is at 5th

position of T’(“BASCANA”). The Seqcomm is “ANA” and is 
matched at 2nd and 4th positions of S(“BANANAS”). Then, we 
record SPP(“ANA”)= ({5}, {2, 5}). While T’ is searched to end 
position, we replace T’ by next subsequence “ASCANA” of 
T(“BASCANA”), and search all SPP for new T’ and S in above 
way. By repeating the above process for each suffix sequence of 
T(“BASCANA”), we can find all matched non-overlapped 
subsequences as shown in Fig. 4(b). 

Next, we filter the duplicates of common subsequence 
Seqcomm which is associated with common SPP in Fig. 4(c). We 
also apply coverage filtering that is to keep maximum common 
subsequence Submax in length and filter out the Seqcomm which is 
the subsequence of Submax. For instance, “ANA” is maximum 
common subsequence for “NA”. It is easy to discovery 
SPP(“ANA”)=( {5}, {2, 4} ) since SPP(“NA”)=({6},{3, 5}) are 
concatenations of common subsequence in start position index. 
In other words, “ANA” is the prefix sequence of “NA”. Finally, 
we find the similar subsequence of S and T as follows: 

S=(BA)N(ANA)S
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({6}, {3, 5}) NA 

({5}, {2, 4}) ANA 

{{4}, {}} C

({3}, {7}) S

({2}, {6}) AS 

({1}, {1}) BA 

SPPSeqcomm

({6}, {3, 5}) NA 

({5}, {2, 4}) ANA 

{{4}, {}} C

({3}, {7}) S

({2}, {6}) AS 

({1}, {1}) BA 

SPPSeqcomm

(a)                                                    (c) 

14({6}, {3, 5})NANA

13({5}, {2, 4})ANAANA

12({5}, {2, 4})ANA

11({4}, {})CCANA

10({5}, {2, 4})ANA

9({4}, {})C

8({3}, {7})SSCANA

7({5}, {2, 4})ANA

6({4}, {})C

5({2}, {6})ASASCANA

4({5}, {2, 4})ANA

3{{4}, {}}C

2({3}, {7})S

1({1}, {1})BABASCANA

StepSPPSeqcommT’

14({6}, {3, 5})NANA

13({5}, {2, 4})ANAANA

12({5}, {2, 4})ANA

11({4}, {})CCANA

10({5}, {2, 4})ANA

9({4}, {})C

8({3}, {7})SSCANA

7({5}, {2, 4})ANA

6({4}, {})C

5({2}, {6})ASASCANA

4({5}, {2, 4})ANA

3{{4}, {}}C

2({3}, {7})S

1({1}, {1})BABASCANA

StepSPPSeqcommT’

(b) 
Fig. 4. An example for searching similar sub-sequences. 

T=(BA)SC(ANA)
That is, we get “BA” and “ANA” as similar subsequences. 

D. Algorithm and Complexity Analysis 
Fig. 5 presents the algorithm of our approach. The inputs are 

two time-series sequences and the parameters shown in Table I, 
and the output returns all similar subsequences between these 
two time sequences. The four main problems in time series 
analysis, namely scaling, offset, shift, and noise, are resolved in 
our method. The scaling and offset problems can be handled 
through angular transformation. Since we use the suffix tree 
structure to search the similar subsequences, it is clear to know 
that offset and noise problems are resolved, too.  

Given two time sequences S and T with length n and m,
respectively, the time-complexity of building a suffix-tree for 
sequence S is O(n2), and the time-complexity for searching 
similar subsequences is O(n×m). By utilizing some novel 
methods [14, 22], the time-complexity for building suffix tree  

TABLE I
MAIN PARAMETERS

Parameter Description 

SN The number of symbols 

SR(min, max) The range of length for discovered 
similar subsequences 

Input two transformed symbol sequences S and T,
SN: number of symbol types 
SR(min, max): length range for similar subsequence 

Output All similar subsequences of S and T.
Method: SimilarSubsequence (S, T, SN, SR (min, max))
1. //Building a suffix tree for sequence S
2. suffixTree := Create a root node with label null;
3. FOR each suffi(S):=suffix string of S which begins from ith

position  
4. FOR each suffj(suffi(S)):=suffix string of suffi(S) which 

start from j position  
5.  IF not exists a path from root to leaf in suffixTree

equaled to suffj(suffi(S))
6.  Insert the suffj(suffi(S)) path into suffixTree,   

  and record each symbol position of S in each internal 
node of path 

7. ENDIF
8. ENDFOR
9.   ENDFOR 
10. //Searching similar subsequence of T in the suffixTree
11. FOR EACH i:= 1 to length(T)
12. IF  a path starts from root of suffixTree equaled to 

subseqiw(T) /*subsequence of T from ith to wth */ 
13.     Record the subseqiw(T) as the common subsequence. 
14.  PairSet := start position pair ({x},{i}), where {x} is 

the set of the start positions of subseqiw(T) in S
15.   i := w+1;
16.  ENDIF 
17. ENDFOR 
18. similarSubseqSet := all pairs of similar subsequence, 

PairSet, in S and T by start position 
19. similarSubseq := the non-overlapped similar subsequences 

from similarSubseqSet 
20. return similarSubseq;

Fig. 5. Algorithm for proposed method.

and searching similar subsequences can be further improved as 
O(n) and O(n+m), respectively. Hence, our algorithm is very 
efficient in terms of time-complexity. 

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of the proposed method, we 
implemented a query system for conducting a series of 
experiments. The query system takes a time sequence as an 
input query pattern and returns similar subsequences for all time 
sequences in the underlying database. All experiments are done 

109

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



on the Windows XP machine with P4-3.0GHz CPU and 1GB 
main memory. Table I lists the parameters provided by the 
system for setting up query criteria. 

A. Descriptions of Experimental Datasets 
In the conducted experiments, we use the Spellman’s yeast 

microarray datasets [21] 
(http://genome-www.stanford.edu/cellcycle) as tested dataset. 
The yeast cell cycle datasets contain all genes whose mRNA 
levels are regulated by the cell cycle. In our experiments, we use 
the highest-quality time-series dataset, alpha, which is with 18 
time points. 

B. Results on Yeast Cell Cycle Dataset 
To evaluate the capability of our method in finding similar 

subsequences with biological meanings, we take the Filkov’s 
results [7] as a belief base. Filkov et al. constructed a database 
of known regulatory relations in yeast. In the alpha dataset, 
there are 343 known activations which indicate the 
relationships of two genes. 

We selected the expression profile of gene HTA1 (systematic 
name as YDR225W) as input query sequence. In Filkov’s 
analysis result, there are several activations related to HTA1. 
First, we set the parameters as {SN=5, SR(5, )}. Based on the 
discovered similar subsequences, we found activation relations 
of four genes with HTA1 as reported in Filkov’s study. These 
activation relations are the following: 

HTA1 (YDR225W) HTB1(YDR224C) (Fig. 6(a))  
HTA1 (YDR225W) HTB2(YBL002W) Fig. 6(b)) 
SPT16 (YGL207W)  HTA1 (YDR225W) (Fig. 6(c)) 
SPT21(YMR179W)  HTA1 (YDR225W) (Fig. 6(d)) 

The above relations can be validated in the literature [5, 9, 21] 
and SGD database [19]. 

In Fig. 6(d), the PCC similarity of whole sequence between 
SPT21 and HTA1 is -0.111. However, through our method, two 
similar subsequences between the two genes can be discovered, 
that are the subsequences between time point 14 and 70 minutes 
for SPT21 and that between 35 and 91 minutes for HTA1, 
respectively. Since the PCC similarity of the two similar 
subsequences is 0.871, these two genes will be considered to be 
with potential regulatory relations by our method. 

We also compared the difference between our method and 
those using Euclidean Distance and Pearson Correlation 
Coefficient (PCC) as similarity measures. The experimental 
results show that our method can reveal novel gene relations, 
which can not be discovered by using Euclidean Distance or 
PCC only. The important relations have been found in 
traditional biological experiments. 

As an example, in considering expression profiles of genes 
SPT16 (YGL207W) and HTA1 (YDR225W) (in Fig. 7(a)), the 
similarity value is 4.432 with Euclidean distance and 0.243 with 
PCC. With these similarity measures, the two genes will be 
considered as dissimilar. As shown in Fig. 7(a), the dotted lines 
show the similar subsequences which are in the segments 
between time point 14 through 70 minutes and 35 through 91  

Similar
SubSeq.
Similar
SubSeq.

(a)HTA1(YDR225W) HTB1(YDR224C)

Similar 
SubSeq.

Similar 
SubSeq.

Similar 
SubSeq.

Similar 
SubSeq.

(b) HTA1 (YDR225W) HTB2(YBL002W)

Similar SubSeq.Similar SubSeq.

(c) SPT16 (YGL207W) HTA1(YDR225W) 

Similar SubSeq.Similar SubSeq.

(d) SPT21(YMR179W)  HTA1 (YDR225W)
Fig. 6. Query result with HTA1(YDR225W) as input.

minutes for SPT16 and HTA1, respectively. In fact, the PCC 
similarity of these two similar subsequences is as high as 0.516. 

C. Evaluation of Execution Efficiency 
In this experiment, we compare the execution time for the 

Time-Lagged method [10], Agrawal’s method [1] and our 
method. Fig. 8 shows the performance of the three methods for 
querying some tested sequence under different settings of 
subsequence length. By notating Time-Lagged Method, 
Agrawal’s method, and our method as TL, Agr, and Ours,
respectively, and using cTime(M, L) to denote the execution
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(a) Similarity of PCC between SPT16 and HTA1.

(b) The similar subsequences of SPT16 and HTA1.
Fig. 7. Comparisons with different similarity measures. 

Fig. 8. Comparisons of execution efficiency. 

time of method M in the subsequence length L, the improvement 
rate of Ours over a method M is the following. 

#

1 ),(
),(1

#
1 L

i i

i

LMcTime
LOurscTime

L
                (5) 

, where L# is the number of subsequence length L.
By setting the integral parameter L as 3 through 6, the 

improvement rates are shown to be 57% and 95% for Ours over 
TL and Agr, respectively. The above results show that our 

method outperforms Time-Lagged Method and Agrawal’s 
method substantially in terms of execution efficiency. 

V. CONCLUSIONS

In this paper, we propose an efficient method for mining 
similar subsequences among time-series and apply it to 
time-series microarray data for discovering novel gene relations. 
The proposed method is composed of three main phases, i.e. 
Angular Transformation, Symbolic Transformation and Similar 
Subsequence Searching. The main merit of the proposed 
method is that the four problems of scaling, offset, shift, and 
noise in time-series analysis are handled simultaneously. 
Through experimental evaluation on real yeast microarray 
dataset, our method is shown to be capable of discovering 
similar subsequences among time-series gene expression 
profiles efficiently so as to reveal significant functional 
relations among genes. In the aspect of execution efficiency, 
our method is also shown to outperform other methods. Hence, 
our method serves as a promising candidate for efficiently 
providing useful insights for biologists in discovering novel 
biological relations among genes. In the future, we would apply 
our method on more kinds of time-series microarray data for 
discovering undisclosed relations among genes. Meanwhile, we 
shall enhance our method to make it more automatic in 
parameters setting.  
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