
Abstract—Time-series microarray techniques are newly used to
monitor large-scale gene expression profiles for studying biological
systems. Previous studies have discovered novel regulatory relations
among genes by analyzing time-series microarray data. In this study,
we investigate the problem of mining similar subsequences in
time-series microarray data so as to discover novel gene relations. A
functional relationship among genes often presents itself by locally
similar and potentially time-shifted patterns in their expression
profiles. Although a number of studies have been done on time-series
data analysis, they are insufficient in handling four important issues
for time-series microarray data analysis, namely scaling, offset, shift,
and noise. We proposed a novel method to address the four issues
simultaneously, which consists of three phase, namely angular
transformation, symbolic transformation and suffix-tree-based
similar subsequences searching. Through experimental evaluation,
it is shown that our method can effectively discover biological
relations among genes by identifying the similar subsequences.
Moreover, the execution efficiency of our method is much better than
other approaches.

I. INTRODUCTION
Recently, microarray technologies (particularly

oligonucleotide and cDNA arrays) make it possible to monitor
the mRNA levels of thousands of gene expressions in a single
experiment. The discovery of significant gene pairs with
highly-correlated relations may provide valuable insights for
biologists in predicting novel biological relations [3]. Moreover,
two genes with similar subsequences in time-series microarray
data are very likely to be involved in the same regulatory
process, as reported in the literature [4, 17, 20, 25].

In time-series microarray analysis, there are four important
issues, namely scaling (or amplitude scaling), offset, shift, and
noise, as illustrated in Fig. 1. Fig. 1(a), 1(b) and 1(c) show the
phenomenon of amplitude scaling, offset in expression values
and shift between two similar subsequences, respectively. Fig.
1(d) illustrates the issue that there could have noisy data points
in two similar subsequences.

In recent years, time-series data analysis has been widely
applied in various domains like biomedical applications and
scientific data analysis. Some interesting research topics, like
clustering, classification, similarity search, prediction, and etc.
[8, 11, 12, 23], have also been applied to different mining
demands on time-series data. Among these research issues, the

(a) scaling (b) offset

(c) shift (d) noise
Fig. 1. Examples of the four problems in time-series analysis.

problem of searching similar subsequences among time
sequences is an important one due to wide applications [2, 6, 15,
16, 18, 24].

A number of methods for time-series data analysis have been
proposed. In the aspect of sequence transformation, Symbolic
Aggregate approXimation (SAX) method [13] provides the
point of view for transforming numerical data into symbolic
representation such that efficient string algorithm can be
applied to enhance the performance and scalability. For time
sequence matching, some efficient methods were proposed for
subsequence matching like I-Adaptive [6], Dual Match [16],
General Match [15], the Agrawal’s method [1], and
Time-lagged method [10]. Nevertheless, these methods can not
provide a complete solution to address the above-mentioned
four problems simultaneously.

In this paper, we propose an efficient and flexible method
that can find similar subsequences among time sequences such
that it can be applied on time series microarray data for
discovering novel gene relations. Moreover, the problems of
scaling, offset, shift, and noise are addressed simultaneously by
our method. The proposed method consists of three phases,
namely i) angular transformation, ii) symbolic transformation,
and iii) similar subsequence searching. By angular
transformation, the scaling and offset problems are resolved and

Gene Relation Discovery by Mining Similar
Subsequences in Time-Series Microarray Data

Vincent S. Tseng, Lien-Chin Chen, Jian-Jie Liu
Department of Computer Science and Information Engineering, National Cheng-Kung University, Taiwan, R.O.C.

{ vincent, cljimmy, kyrill }@idb.csie.ncku.edu.tw

106

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

1-4244-0710-9/07/$20.00 ©2007 IEEE

also keep the properties of original time series. In the symbolic
transformation phase, the shift and noise problems are solved
and can speed up the searching for similar subsequences as
well.

Finally, we use suffix tree traversal technique to search the
similar subsequences between two time sequences. Through
experimental evaluation on real microarray datasets, our
method is shown to outperform other existing methods like
Agrawal’s method [1] and Time-lagged method [10]
substantially in terms of efficiency. Moreover, the validity of
our method in discovering regulatory relations among genes is
verified by utilizing the known gene regulatory relations [7].

The reset of this paper is organized as follows. In Section 2,
we formally describe the problem definition and the similarity
model for time sequences. The proposed method is described in
details in Section 3. In Section 4, we present the experimental
results on a real biological dataset. Finally, concluding remarks
and future work are given in Section 5.

II. PROBLEM DEFINITION

Given two time sequences S and Q which may have different
length, the goal is to find all similar subsequence pairs between
two time sequences with minimum length threshold, while the
factors of scaling, shift, offset, and noise are also considered
simultaneously. In the following, we describe some relevant
definitions for the targeted problem.
Definition 1 (Time Sequence). A time sequence S,
S (s1s2s3…sl(S)), is an ordered set of real values, where si is the
ith element of S, and l(S) is sequence length of S.
Definition 2 (Time Subsequence). A time subsequence is an
ordered sequence. Si,j = sisi+1si+2…sj, denotes the time
subsequence of a time sequence S, which contains the elements
of S in positions i through j, and the length of Si,j is
l(Si,j) = i + j – 1.
Definition 3 (Similar Time Sequence). Two time sequences S
and Q are called similar if and only if (S, Q) , where () is
a function for calculating similarity between S and Q, and is a
specified threshold value.
Definition 4 (Similar Subsequence). Given two time sequences
S and Q, the sequences S’ and Q’ are called a similar
subsequence of S and Q if and only if S’ and Q’ are similar and
they are subsequences of S and Q, respectively.
Definition 5 (Distance of Similar Subsequence). If S and Q
have similar subsequences Si,j and Qx,y , then the distance
between Si,j and Qx,y is D(Si,j , Qx,y) = | i – x |.

Notice that any kind of measure could be used for the
similarity function () in Definition 3. In many applications,
the most used similarity measures could be Euclidean Distance
and Pearson Correlation Coefficient (PCC). Based on the
above definitions, the shape or trend of two subsequences
should be very close if they are similar subsequences.

Fig. 2. Workflow of the proposed method.

Fig. 3. An example in SAX

III. PROPOSED METHOD

The proposed approach for mining similar subsequences
between two sequences is decomposed into three sequential
phases: i) Angular Transformation, ii) Symbolic
Transformation, and iii) Searching Similar Subsequence. Fig. 2
presents the workflow of the proposed method.

Given two time sequences as the initial input, we first apply
the angular transformation to convert the original time
sequences into angle sequences. Through the angular
transformation, the scaling and offset are resolved, and also can
keep the properties of original time series. Second, for the
symbolic transformation phase, we divide the range of angles
(i.e. -90 to 90 degrees) into several equivalent partitions. Each
partition, which represents an angle region, is denoted as an
independent symbol. In this way, we convert the angle sequence
into the symbol sequence such that the factors of shift, and noise
can be handled effectively. Moreover, this transformation can
speed up searching for similar subsequences substantially.
Finally, we use a suffix-tree-based approach to search the
similar subsequences between two input time sequences.

A. Angular Transformation
Eamonn et al. [13] proposed the SAX method for searching

similar subsequences efficiently. However, SAX can not
distinguish the similar patterns in some cases. Fig. 3 shows an
example that illustrates the weakness of SAX method.

By using SAX, S1 is considered as more similar with S2 than

107

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

with S3. Consequently, the offset problem could not be solved
by SAX. In order to resolve the above problem, we redefine the
meaning of similar subsequence as follows:
Definition 6 (Intermediate Sequence). For a time sequence
S = s1s2s3…sl(S), the intermediate sequence S’ is

'
1)(

'
3

'
2

'
1 ...' SlssssS

, where
1)(1,

1

1' Sli
tt
sss
ii

ii
i

 (1)
The intermediate sequence is a slope sequence of a pair of

two concatenate time points. However, it is possible that all
slopes may be in some region. For example, if all time series are
in decreasing trend, then the slopes in all intermediate
sequences will be of minus values. In order to normalize the
slope distribution, which is an important factor for next
symbolic transformation phase, we use the Min-max
Normalization method to transform the intermediate sequence
into normalized intermediate sequence after transforming the
raw time-series sequence into the intermediate sequence.
Definition 7 (Normalized Intermediate Sequence). Given an

intermediate sequence
'

1)(
'
3

'
2

'
1 ...' SlssssS

 that contains l(S)-1
dimensions, and the Normalized Intermediate Sequence is the
following.

min_min)_max_(
minmax

min'
'' newnewnew

s
s i

i
 (2)

, where min and max are the minimum and maximum values of
all slopes in all of the intermediate sequences, respectively. The
new_min and new_max represent the minimum and maximum
values that we want in all of the normalized intermediate
sequences, respectively. In this work, the default values of
new_min and new_max are equal to -1 and 1, respectively.

1
minmax

min2
'

'' i
i

ss
 (3)

Finally, we use the inverse function of sine (i.e. sin-1) to
transform normalized intermediate sequence into angle
sequence.

B. Symbolic Transformation
The purpose of symbolic transformation is to convert angle

sequence into a string sequence such that efficient string
alignment algorithms can be applied to search similar
subsequences. In order to distribute the angle values in an angle
sequence in normal distribution, we apply z-score
normalization to all angle values. The z-score associated with
the ith observation of a random variable x is given by

xxz i
i

 (4)
, where x is the mean and is the standard deviation of all
observations x1, ..., xn. Since the angle sequence is in normal
distribution, we can divide the angle region into SN partitions
and denote each partition with one different symbol.

C. Searching Similar Subsequence by using Suffix Tree
We build the suffix tree [14, 22] to find all (non-overlapped)

similar pairs in two sequences with transformed symbol
sequence. We illustrate our method through the following
example.
Example 1 Given a transformed symbol sequence,
S(“BANANAS”), which indicates the resulted sequence after
angular and symbolic transformations, we want to find similar
subsequences in another transformed symbol sequence
T(“BASCANA”).

First, we build a suffix tree sufftree(S) for sequence
S(“BANANAS”) by inserting all subsequences starting from ith

position through l(S)th position as shown in Fig. 4(a). Then, we
apply tree traversal process on each subsequence of
T(“BASCANA”) on sufftree(S). For each suffix sequence of T
(i.e. T’), we start from 1st position and linearly search common
subsequence Seqcom in sufftree(S). When we find a Seqcomm at
starting position m and n in T’ and S, respectively, we record a
starting position pair (SPP) ({m}, {n}) for Seqcomm, which we
denote it as SPP(Seqcomm) = ({m}, {n}). Next, we start at
(m+ l(Seqcomm))th position of T’, and search common
subsequence again. Note that it is possible that a Seqcomm of T’
has more than one subsequences in S, and Seqcomm may appear
multiple times in T’. Therefore, each entry of SPP is a collection
set which may have multiple start positions.

In our example, the first suffix sequence T’ of
T(“BASCANA”) is the whole sequence “BASCANA”. For
T’(“BASCANA”) and S, the first Seqcomm is “BA”, when m=1
and n=1. We record first SPP of Seqcomm (“BA”) as ({1}, {1}),
i.e. SPP(“BA”)= ({1}, {1}). In next iteration, we start at 3rd

position of T’, i.e. ”S”, and record ({3},{7}) for common
subsequence “B”. The next Seqcomm is “C”. However, “C” does
not appear in S. Therefore, we record SPP(“C”)= ({4}, {}). The
empty set {} represents Seqcomm which can not be matched in
suffix tree sufftree(S). Next, we start from “A” which is at 5th

position of T’(“BASCANA”). The Seqcomm is “ANA” and is
matched at 2nd and 4th positions of S(“BANANAS”). Then, we
record SPP(“ANA”)= ({5}, {2, 5}). While T’ is searched to end
position, we replace T’ by next subsequence “ASCANA” of
T(“BASCANA”), and search all SPP for new T’ and S in above
way. By repeating the above process for each suffix sequence of
T(“BASCANA”), we can find all matched non-overlapped
subsequences as shown in Fig. 4(b).

Next, we filter the duplicates of common subsequence
Seqcomm which is associated with common SPP in Fig. 4(c). We
also apply coverage filtering that is to keep maximum common
subsequence Submax in length and filter out the Seqcomm which is
the subsequence of Submax. For instance, “ANA” is maximum
common subsequence for “NA”. It is easy to discovery
SPP(“ANA”)=({5}, {2, 4}) since SPP(“NA”)=({6},{3, 5}) are
concatenations of common subsequence in start position index.
In other words, “ANA” is the prefix sequence of “NA”. Finally,
we find the similar subsequence of S and T as follows:

S=(BA)N(ANA)S

108

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

({6}, {3, 5}) NA

({5}, {2, 4}) ANA

{{4}, {}} C

({3}, {7}) S

({2}, {6}) AS

({1}, {1}) BA

SPPSeqcomm

({6}, {3, 5}) NA

({5}, {2, 4}) ANA

{{4}, {}} C

({3}, {7}) S

({2}, {6}) AS

({1}, {1}) BA

SPPSeqcomm

(a) (c)

14({6}, {3, 5})NANA

13({5}, {2, 4})ANAANA

12({5}, {2, 4})ANA

11({4}, {})CCANA

10({5}, {2, 4})ANA

9({4}, {})C

8({3}, {7})SSCANA

7({5}, {2, 4})ANA

6({4}, {})C

5({2}, {6})ASASCANA

4({5}, {2, 4})ANA

3{{4}, {}}C

2({3}, {7})S

1({1}, {1})BABASCANA

StepSPPSeqcommT’

14({6}, {3, 5})NANA

13({5}, {2, 4})ANAANA

12({5}, {2, 4})ANA

11({4}, {})CCANA

10({5}, {2, 4})ANA

9({4}, {})C

8({3}, {7})SSCANA

7({5}, {2, 4})ANA

6({4}, {})C

5({2}, {6})ASASCANA

4({5}, {2, 4})ANA

3{{4}, {}}C

2({3}, {7})S

1({1}, {1})BABASCANA

StepSPPSeqcommT’

(b)
Fig. 4. An example for searching similar sub-sequences.

T=(BA)SC(ANA)
That is, we get “BA” and “ANA” as similar subsequences.

D. Algorithm and Complexity Analysis
Fig. 5 presents the algorithm of our approach. The inputs are

two time-series sequences and the parameters shown in Table I,
and the output returns all similar subsequences between these
two time sequences. The four main problems in time series
analysis, namely scaling, offset, shift, and noise, are resolved in
our method. The scaling and offset problems can be handled
through angular transformation. Since we use the suffix tree
structure to search the similar subsequences, it is clear to know
that offset and noise problems are resolved, too.

Given two time sequences S and T with length n and m,
respectively, the time-complexity of building a suffix-tree for
sequence S is O(n2), and the time-complexity for searching
similar subsequences is O(n×m). By utilizing some novel
methods [14, 22], the time-complexity for building suffix tree

TABLE I
MAIN PARAMETERS

Parameter Description

SN The number of symbols

SR(min, max) The range of length for discovered
similar subsequences

Input two transformed symbol sequences S and T,
SN: number of symbol types
SR(min, max): length range for similar subsequence

Output All similar subsequences of S and T.
Method: SimilarSubsequence (S, T, SN, SR (min, max))
1. //Building a suffix tree for sequence S
2. suffixTree := Create a root node with label null;
3. FOR each suffi(S):=suffix string of S which begins from ith

position
4. FOR each suffj(suffi(S)):=suffix string of suffi(S) which

start from j position
5. IF not exists a path from root to leaf in suffixTree

equaled to suffj(suffi(S))
6. Insert the suffj(suffi(S)) path into suffixTree,

 and record each symbol position of S in each internal
node of path

7. ENDIF
8. ENDFOR
9. ENDFOR
10. //Searching similar subsequence of T in the suffixTree
11. FOR EACH i:= 1 to length(T)
12. IF a path starts from root of suffixTree equaled to

subseqiw(T) /*subsequence of T from ith to wth */
13. Record the subseqiw(T) as the common subsequence.
14. PairSet := start position pair ({x},{i}), where {x} is

the set of the start positions of subseqiw(T) in S
15. i := w+1;
16. ENDIF
17. ENDFOR
18. similarSubseqSet := all pairs of similar subsequence,

PairSet, in S and T by start position
19. similarSubseq := the non-overlapped similar subsequences

from similarSubseqSet
20. return similarSubseq;

Fig. 5. Algorithm for proposed method.

and searching similar subsequences can be further improved as
O(n) and O(n+m), respectively. Hence, our algorithm is very
efficient in terms of time-complexity.

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of the proposed method, we
implemented a query system for conducting a series of
experiments. The query system takes a time sequence as an
input query pattern and returns similar subsequences for all time
sequences in the underlying database. All experiments are done

109

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

on the Windows XP machine with P4-3.0GHz CPU and 1GB
main memory. Table I lists the parameters provided by the
system for setting up query criteria.

A. Descriptions of Experimental Datasets
In the conducted experiments, we use the Spellman’s yeast

microarray datasets [21]
(http://genome-www.stanford.edu/cellcycle) as tested dataset.
The yeast cell cycle datasets contain all genes whose mRNA
levels are regulated by the cell cycle. In our experiments, we use
the highest-quality time-series dataset, alpha, which is with 18
time points.

B. Results on Yeast Cell Cycle Dataset
To evaluate the capability of our method in finding similar

subsequences with biological meanings, we take the Filkov’s
results [7] as a belief base. Filkov et al. constructed a database
of known regulatory relations in yeast. In the alpha dataset,
there are 343 known activations which indicate the
relationships of two genes.

We selected the expression profile of gene HTA1 (systematic
name as YDR225W) as input query sequence. In Filkov’s
analysis result, there are several activations related to HTA1.
First, we set the parameters as {SN=5, SR(5,)}. Based on the
discovered similar subsequences, we found activation relations
of four genes with HTA1 as reported in Filkov’s study. These
activation relations are the following:

HTA1 (YDR225W) HTB1(YDR224C) (Fig. 6(a))
HTA1 (YDR225W) HTB2(YBL002W) Fig. 6(b))
SPT16 (YGL207W) HTA1 (YDR225W) (Fig. 6(c))
SPT21(YMR179W) HTA1 (YDR225W) (Fig. 6(d))

The above relations can be validated in the literature [5, 9, 21]
and SGD database [19].

In Fig. 6(d), the PCC similarity of whole sequence between
SPT21 and HTA1 is -0.111. However, through our method, two
similar subsequences between the two genes can be discovered,
that are the subsequences between time point 14 and 70 minutes
for SPT21 and that between 35 and 91 minutes for HTA1,
respectively. Since the PCC similarity of the two similar
subsequences is 0.871, these two genes will be considered to be
with potential regulatory relations by our method.

We also compared the difference between our method and
those using Euclidean Distance and Pearson Correlation
Coefficient (PCC) as similarity measures. The experimental
results show that our method can reveal novel gene relations,
which can not be discovered by using Euclidean Distance or
PCC only. The important relations have been found in
traditional biological experiments.

As an example, in considering expression profiles of genes
SPT16 (YGL207W) and HTA1 (YDR225W) (in Fig. 7(a)), the
similarity value is 4.432 with Euclidean distance and 0.243 with
PCC. With these similarity measures, the two genes will be
considered as dissimilar. As shown in Fig. 7(a), the dotted lines
show the similar subsequences which are in the segments
between time point 14 through 70 minutes and 35 through 91

Similar
SubSeq.
Similar
SubSeq.

(a)HTA1(YDR225W) HTB1(YDR224C)

Similar
SubSeq.

Similar
SubSeq.

Similar
SubSeq.

Similar
SubSeq.

(b) HTA1 (YDR225W) HTB2(YBL002W)

Similar SubSeq.Similar SubSeq.

(c) SPT16 (YGL207W) HTA1(YDR225W)

Similar SubSeq.Similar SubSeq.

(d) SPT21(YMR179W) HTA1 (YDR225W)
Fig. 6. Query result with HTA1(YDR225W) as input.

minutes for SPT16 and HTA1, respectively. In fact, the PCC
similarity of these two similar subsequences is as high as 0.516.

C. Evaluation of Execution Efficiency
In this experiment, we compare the execution time for the

Time-Lagged method [10], Agrawal’s method [1] and our
method. Fig. 8 shows the performance of the three methods for
querying some tested sequence under different settings of
subsequence length. By notating Time-Lagged Method,
Agrawal’s method, and our method as TL, Agr, and Ours,
respectively, and using cTime(M, L) to denote the execution

110

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

(a) Similarity of PCC between SPT16 and HTA1.

(b) The similar subsequences of SPT16 and HTA1.
Fig. 7. Comparisons with different similarity measures.

Fig. 8. Comparisons of execution efficiency.

time of method M in the subsequence length L, the improvement
rate of Ours over a method M is the following.

#

1),(
),(1

#
1 L

i i

i

LMcTime
LOurscTime

L
 (5)

, where L# is the number of subsequence length L.
By setting the integral parameter L as 3 through 6, the

improvement rates are shown to be 57% and 95% for Ours over
TL and Agr, respectively. The above results show that our

method outperforms Time-Lagged Method and Agrawal’s
method substantially in terms of execution efficiency.

V. CONCLUSIONS

In this paper, we propose an efficient method for mining
similar subsequences among time-series and apply it to
time-series microarray data for discovering novel gene relations.
The proposed method is composed of three main phases, i.e.
Angular Transformation, Symbolic Transformation and Similar
Subsequence Searching. The main merit of the proposed
method is that the four problems of scaling, offset, shift, and
noise in time-series analysis are handled simultaneously.
Through experimental evaluation on real yeast microarray
dataset, our method is shown to be capable of discovering
similar subsequences among time-series gene expression
profiles efficiently so as to reveal significant functional
relations among genes. In the aspect of execution efficiency,
our method is also shown to outperform other methods. Hence,
our method serves as a promising candidate for efficiently
providing useful insights for biologists in discovering novel
biological relations among genes. In the future, we would apply
our method on more kinds of time-series microarray data for
discovering undisclosed relations among genes. Meanwhile, we
shall enhance our method to make it more automatic in
parameters setting.

ACKNOWLEDGMENT

This research was supported by National Science Council,
Taiwan, R.O.C., under grant number NSC 95-2221-E-006-372.

REFERENCES

[1] Agrawal, R., Lin, K. I., Sawhney, H. S., and Shim, K. “Fast Similarity
Search in the Presence of Noise, Scaling, and Translation in Time-Series
Databases,” Proceedings of the 21st International Conference on Very
Large Data Bases, Zurich, Switzerland, 1995, pp. 490-501.

[2] Antunes, C. M. and Oliveira, A. L. “Temporal Data Mining: an overview,”
in Proc. of the Workshop on Temporal Data Mining, at the 7th
International Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, August 2001, pp. 1–15.

[3] Bar-Joseph, Z. “Analyzing time series gene expression data,”
Bioinformatics (20:16), 2004, pp. 2493-2503.

[4] Bickel, D. R. “Probabilities of spurious connections in gene networks:
application to expression time series,” Bioinformatics (21), April 2005, pp.
1121 – 1128.

[5] Compagnone-Post, P. A. and Osley, M. A. “Mutations in the SPT4, SPT5,
and SPT6 genes alter transcription of a subset of histone genes in
Saccharomyces cerevisiae,” Genetics (143), 1996, pp. 1543–1554.

[6] Faloutsos, C., Ranganathan, A.M., and Manolopoulos, Y. “Fast
Subsequence Matching in Time-Series Databases,” Proceedings of the
ACM Special Interest Group On Management of Data, May 1994, pp.
419-429.

[7] Filkov, V., Skiena, S., and Zhi, J. “Analysis techniques for microarray.
time-series data,” Proceedings of the Fifth Annual International
Conference on Computational Biology, Montreal, Canada, 2001, pp.
124-131.

[8] Huang, Y. and Yu, P. S. “Adaptive Query Processing for Time-Series
Data,” Proceedings of the 5th International Conference on Knowledge
Discovery and Data Mining, San Diego, CA, Aug. 1999, pp. 15-18.

111

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

[9] Iyer, V.R., Eisen, M. B., and Ross, D. T. et al. “The Transcriptional
Program in the Response of Human Fibroblasts to Serum,” Science (283),
1999, pp. 83-87.

[10] Ji, L. and Tan, K. L. “Identifying Time-Lagged Gene Clusters on Gene
Expression Data,” Bioinformatics (21:4), Feb. 2005, pp. 509-516.

[11] Kalpakis, K., Gada, D. and Puttagunta, V. “Distance Measures for
Effective Clustering of ARIMA Time-Series,” Proceedings of the IEEE
International Conference on Data Mining, San Jose, CA, Nov. 2001, pp.
273-280.

[12] Keogh, E., Lonardi, S. and Chiu, W. “Finding Surprising Patterns in a
Time Series Database in Linear Time and Space,” Proceedings of the 8th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Edmonton, Alberta, Canada, July 23-26 2002, pp. 550-556.

[13] Lin, J. and Keogh, E. “A Symbolic Representation of Time Series, with
Implications for Streaming Algorithms,” ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery, San Diego,
CA, June 13, 2003.

[14] McCreight, E. M. “A space-economical suffix tree construction
algorithm,” Journal of the ACM (23), 1976, pp. 262-272.

[15] Moon, Y. S., Whang, K. Y. and Han, W. S. “General Match: A
Subsequence Matching Method in Time-Series Databases Based on
Generalized Windows,” Proceedings of the ACM Special Interest Group
On Management of Data Conf., 2002, pp. 382-393.

[16] Moon, Y. S., Whang, K. Y., and Loh, W. K. “Duality-Based Subsequence
Matching in Time-Series Databases,” Proceedings of the 17th
International Conference on Data Engineering, April 02-06, 2001, pp.
263-272.

[17] Ong, I. M., Glasner, J. D. and Page, D. “Modelling regulatory pathways in
E. coli from time series expression profiles” Bioinformatics (18), Jul 2002,
pp. 241 - 248.

[18] Park, S., Kim, S., and Chu, W. W. “Segment-based approach for
subsequence searches in sequence databases,” Proceedings of the 16th
ACM Symposium on Applied Computing. Las Vegas, NV, Mar. 11-14,
2001, pp. 248-252.

[19] Saccharomyces Genome Database (SGD): http://www.yeastgenome.org/
[20] Sontag, E., Kiyatkin, A., and Kholodenko, B. N. “Inferring dynamic

architecture of cellular networks using time series of gene expression,
protein and metabolite data,” Bioinformatics (20), Aug. 2004, pp. 1877–
1886.

[21] Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V.R., Anders, K., Eisen,
M.B., Brown, P.O., Botstein, D., and Futcher, B. “Comprehensive
identification of cell cycle-regulated genes of the yeast saccharomyces
cerevisiae by microarray hybridization,” Molecular Biology of the Cell (9),
1998, pp. 3273-3297.

[22] Ukkonen, E. “On-line construction of suffix trees,” Algorithmica (14:3),
1995, pp. 249-260.

[23] Vlachos, M., Kollios, G. and Gunopulos, G. “Discovering Similar
Multidimensional Trajectories,” Proceedings of the 18th International
Conference on Data Engineering, San Jose, CA, Feb 26-Mar 1, 2002.

[24] Wang, C. and Wang, X. S. “Supporting subseries nearest neighbor search
via approximation,” Proceedings of the 9th ACM CIKM Int'l Conference
on Information and Knowledge Management, McLean, VA, Nov 6-11,
2000, pp 314-321.

[25] Wichert, S., Fokianos, K., and Strimmer, K. “Identifying Periodically
Expressed Transcripts in Microarray Time Series Data,” Bioinformatics
(20), 2004, pp. 5-20. 2005

112

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

