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Abstract- Clustering methods have been extensively used for gene 
expression data analysis to detect groups of related genes. The 
clusters provide useful information to analyze gene function, gene 
regulation and cellular patterns. Most existing clustering algorithms,  
though, discover only coherent gene expression patterns, and do not 
handle connected patterns. Coherent and connected patterns 
correspond to globular and arbitrary shaped clusters, respectively, 
in low dimensional spaces. For high dimensional gene expression 
data, two connected patterns can be two similar patterns with time 
lags in a time series data, or in general, two different patterns that 
are connected by an intermediate pattern that is related to both of 
them. Discovering such connected patterns has important biological 
implications not revealed by groups of coherent patterns. In this 
paper, a novel algorithm that finds connected patterns, in gene 
expression data, is proposed. Using a novel merge criterion, it can 
distinguish clusters based on distances between patterns, thus 
avoiding the effect of noise and outliers. Moreover, the algorithm 
uses a metric based on Pearson correlation to find neighbours, 
which renders it a lower complexity than related algorithms. Both 
time series and non temporal gene expression data sets are used to 
illustrate the efficiency of the proposed algorithm. Results on the 
serum and the leukaemia data sets reveal interesting biologically 
significant information.  
 

I.INTRODUCTION 
 

  Gene expression cluster analysis includes a wide range of 
algorithms, either specially designed for this application, or other 
algorithms already used in pattern recognition and data mining. 
The most common clustering techniques used for gene 
expression analysis are: k-Means (see [16], [2]), Kohonen SOM 
(Self Organizing Maps) used in [4], hierarchical clustering used 
in [12], Consensus Clustering [3], and recent developed 
algorithms as CAST [1], HCS [19], and CLICK [2]. Each of 
these clustering algorithms has its objective, thus each leads to a 
somehow different clustering result. Other techniques are also 
used for exploring gene expression sets as SPIN [7] and the 
interactive tool in [17].  
 Clustering algorithms such as k-Means, SOM, average linkage 
hierarchical clustering, CLICK and CAST are different 
approaches for discovering coherent groups of patterns. The 
authors of CLICK [2], for instance, use a homogeneity-separation 
validity measure to measure the quality of the clustering solution 
which is only suitable for coherent groups of patterns. On the 
other hand discovering a group of connected patterns in gene 
expression data has not been given much attention.  

Coherent patterns have their own biological implications. 
Genes that are up/down regulated (co-expressed) together might 
be functionally related. However, as discussed above, many 
algorithms, even those not related to gene expression analysis can 
obtain this type of co-regulation between gene expressions. 
Obtaining coherent expression patterns in high dimensional gene 
expression corresponds to obtaining clusters of globular or 
hyperspherical shapes. 

 This research tackles the problem of obtaining connected gene 
expression patterns, rather than coherent patterns. Pattern 
connectivity corresponds to the known arbitrary-shaped 
clustering in low dimensions, and has different biological 
implications. Most important is discovering the impact of one 
gene’s expression on another gene’s expression in time series 
data. There can be time lags between one gene’s expression and a 
related gene’s reaction to it, which cannot be discovered by 
clusters of coherent patterns. In non temporal patterns, connected 
patterns can reveal genes that are related to a number of coherent 
groups at the same time, revealing new biological aspects.  

SPIN (Sorting Points Into Neighbourhoods) [7], as well as 
dimensionality reduction techniques including SVD (Singular 
Value Decomposition) used in [8], were used to detect connected 
patterns in gene expression data sets. SPIN is an expensive 
technique of a cubic term in the data size. Moreover, it is not a 
clustering method, and does not put any measures for clustering. 
Hence, it cannot avoid the effect of outliers in data, and cannot 
differentiate low and high dense regions in the data.  
 Hotler et. al [8], and Alter et. al [20] used SVD to discover 

continuity in patterns of gene expression. Yet, those techniques 
are computationally expensive with complexity of at least a 
quadratic term in the data size. They are only used for exploring 
the structure of the data, rather than producing clusters.  
  Other related algorithms that find arbitrary shaped clusters in 
low dimensions are single linkage, DBScan [13], DenClue [24], 
WaveCluster [22] and Chameleon [14]. Yet, only Chameleon can 
find arbitrary shaped clusters of different densities in the same 
data set. However, it has been applied for low dimensions, and 
suffers some drawbacks as its slow speed and difficulty in 
determining the parameters. 

The algorithm proposed here “Mitosis” has been studied and 
compared (refer to [18] for results on 2-D datasets) to other 
clustering algorithms that were applicable in low dimensions 
such as DBScan [13] and Chameleon [14]. The algorithm is 
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Figure 1: Coherent patterns, and the corresponding color gradient. 
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(b) 

Figure 2: Illustration of connected patterns (a) Similar expression patterns 
with time lags shown in a connected half circle of the SVD two modes, and 

the diagonal transition in the color gradient, (b) Illustration of 
nontemporal connectedness. 

much faster than Chameleon, and more efficient than DBScan in 
discovering clusters of different densities (see DBScan results for 
DS5 dataset in [18], where it fails to discover all clusters) The 
algorithm uses a dynamic model of clustering that is able to 
detect the structure of the data. Mitosis is able to discover 
clusters of arbitrary shape and arbitrary density, which 
corresponds to finding clusters of connected expression patterns 
with variable cluster densities. Its ability to measure internal 
distance structure enables it to separate lower dense areas from 
higher dense ones, avoiding the effect of noise and outliers. 
Moreover, it is able to maintain a relatively low time complexity.  

 
II.COHERENT PATTERNS VS. CONNECTED PATTERNS 

 

The difference between coherent patterns obtained by the 
majority of clustering algorithms, and connected patterns 
discussed here, is illustrated in figures 1 and 2.  The first example 
in fig. 1, plots a group of coherent expression patterns (upper 
graph), and the corresponding colour-gradient representation 

(rows of the data matrix where brightest black/white colour 
corresponds to highest/lowest expression values). Fig. 2-a plots a 
group of connected expression patterns, followed by the 
corresponding normalized coefficients of the two highest ranked 
SVD modes, and the colour-gradient representation. Their 
colour-gradient scheme shows a transitional behaviour in gene 
expression patterns. This is reflected by the continuity in relation 
(half circle) between the SVD modes’ coefficients. This is a case 
of a group of similar expression patterns with time lags, 
assuming gene expression time series. Whereas, a group of 
connected patterns in non-temporal gene expression arrays can be 
as the example shown in fig. 2-b, where two groups of coherent 
patterns, shown in the left graph, are related by other 
intermediate patterns, shown in the right graph of the same figure. 
The SVD representation, in the lower plots of fig. 2-b, shows that 
the two groups of coherent patterns (left plot) have a gap between 
them. While, when introducing the intermediate patterns, the gap 
starts to diminish, and a connection between the two discrete 
groups starts to develop (right plot). 
The authors of SPIN [7], and Hotler et. al [8] point out the 
importance of discovering continuous gene expression patterns. 
In SPIN, this is achieved by permuting the similarity matrix until 
obtaining a matrix arrangement that uncovers the structure of the 
data. The matrix arrangement of a connected shape (e.g. circle or 
elongated shape) in a 2 dimensional space is compared to the 
permuted similarity matrix of gene expression patterns in high 
dimensions. The comparison showed that the high dimensional 
gene expression patterns were connected in a manner similar to 
the 2-D shapes. The technique was applied to Spellman’s yeast 
cell cycle data set, revealing a circular shape of connected 
patterns for 500 genes. Also, genes from Leukaemia’s ALL B 
lineage and ALL T lineage revealed connectivity in a shape 
similar to an elongated bar.  
In [8], SVD is used to analyse gene expression time series. 

Connected patterns were revealed when plotting the coefficients 
of the two highest ranked modes against each other. The authors 
used yeast cell cycle and serum data sets, and pointed out the 
continuity of pattern expression from the SVD modes. This 
continuity in expression patterns is important for revealing 
genetic pathways, that can be used to build gene networks from 
expression data [5].  
Alter et. al [20] used SVD to reveal the continuity of expression 

patterns for cell cycle data. The colour-gradient representation 
shown in that work, clarifies the presence of connectivity by 
showing a transition in gene expression patterns along the time 
points.  

III.PROPOSED ALGORITHM 
 

  “Mitosis” is proposed here for finding arbitrary shaped clusters 
of arbitrary densities in gene expression patterns. The proposed 
distance measures together with the proposed distance-based 
clustering criteria are able to efficiently discover connected 
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patterns. This section presents the clustering measures and 
criteria used to find the clusters.  
 
A. Nearest Neighbours 
  Similar to DBScan and Chameleon, neighbourhood information 
is used to reveal connectivity between patterns. To fetch nearest 
neighbours in high dimensions, a suitable distance metric is used 
together with a metric tree as that proposed in [25].  
 Pearson Correlation based Metric: This is a proposed metric 

for finding nearest neighbours using a metric tree. The 
computation of a complete similarity matrix is thus not needed, 
limiting the time needed for distance computations to an average 
complexity of O(Nlog2(N)) (N is the number of patterns), instead 
of O(N2).  
 This distance is a metric when the expression values are 
normalized per gene, as mentioned in [16]. Given two expression 
patterns x and y, it is defined as follows: 

),(1),( yxCORRyxd −=  
Where ),( yxCORR is the Pearson correlation coefficient defined 
next. 
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Where xµ , yµ  are the average of expression values of x, and y 
respectively, and D is the number of dimensions. 
  A dynamic-range nearest neighbour is defined to capture a 
compact neighbourhood for a pattern. It is a variation of the static 
range nearest neighbour used by DBScan, where the dynamic-
range depends on the pattern’s distance from its nearest 
neighbour. Given a data set P, and a scaling input parameter f 
(f>1), the dynamic range of pattern p is defined as:  
                        )},({min)( qpdfpr

Pq∈
=  (1) 

The dynamic range neighbourhood for a pattern p is then defined 
as follows: 
                    )}(),(|{)( prqpdqpNN ≤=  (2) 
This neighbourhood information reflects the structure of data in 
the vicinity of a pattern, and is used –as shown later- to merge 
patterns to each other or to other clusters.  
 
B. Clustering Measures 
   In order to distinguish between different clusters, the clusters’ 
densities are considered, where the distance behaviour is used to 
reflect those densities. In general, a cluster of relatively high 
density has smaller distances between its patterns (considering 
only neighbourhoods of patterns), and a cluster of relatively low 
density has larger distances between the patterns.  The proposed 
distance-based measures, used to reveal the structure of data, are 
presented next, and explained later on. 

Local Average Distances: which is the average of pattern p’s 
distances from its dynamic-range neighbours. It is defined as 
follows: 
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   Cluster Average Distances: which is the average of distances 
accepted in a cluster. It is calculated as follows: 
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Ac is the list of associations accepted in a cluster during the 
clustering process, where an association between two patterns is 
used to describe a link between them. It is described by the 
distance and the two patterns’ ids as 
follows: ),),,(( qpqpdapq =  
    Cluster Harmonic Distance Average: which is the harmonic 
average of distances accepted in a cluster. It is calculated as 
follows: 

 ∑
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=
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c
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),(/1/µ           (5) 

The above measures reflect the distance characteristics of either a 
pattern’s neighbourhood or distances between patterns in a 
cluster. The local average defined for a pattern reflect the density 
structure in the vicinity of a pattern, while a cluster’s average 
distances reflect the density of the cluster. The harmonic average, 
on the other hand, is used for a shrinking process used to get rid 
of outlier distances (distances extremely larger than normal) in a 
cluster.  
 
C. Algorithm 
The algorithm takes as input the dataset P and 2 main parameters 
f and k. f determines the scale by which the neighbourhood of a 
pattern is decided, and k determines the relative degree of 
distance consistency at which two clusters can merge. 
 The algorithm has three main steps, as follows: 

1-Get Associations  
a-Retrieve dynamic range nearest neighbours for all 
patterns, and calculate local average distances. 
b-Create associations from patterns’ neighbourhoods and 
order them (ascendingly on distances) in a list L1. 

2-Merge Patterns into Clusters 
a-For each association in L1, if the merge criterion is 
satisfied, merge associated patterns/clusters, update the 
new  cluster’s average distances, and move association 
from L1 to list L2 (accepted associations’ list- initially 
empty). 

        b-For each association in L1, if the enriching criterion is  
        satisfied, merge associated clusters together and move  
        association from L1 to L2.   
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3-Refine Clusters 

a-For each association in L1 that joins two patterns in the 
same cluster and is consistent to that cluster’s average 
distances, move it to L2, and update the average distances 
of that cluster. 
b-For each cluster, create its list of associations from L2, 
calculate the harmonic average of its associations’ 
distances, and remove associations not consistent to this 
measure from the cluster list. 

Given the value of parameter f, the nearest neighbours are 
retrieved for all patterns and arranged in associations, that are 
sorted into list L1. Following this step, the merging process starts, 
where initially each pattern is a singleton cluster i.e. a pattern pi 
is assigned to a cluster ci containing only this pattern. Hence, 
merging two singleton patterns is equivalent to merging two 
clusters in the proposed merge criterion. 

 At each step of the merging process, a new association between 
patterns p1 and p2 in clusters c1 and c2 respectively, is retrieved 
from L1. Given the value of parameter k, the possibility of 
merging c1 and c2 is examined using the following merge 
criterion: 

  ),min(.),max(),min(.),( 21212121 cccccc kkppd µµµµµµ <∧<   
Where ),( 21 ppd is the association’s distance between p1 and p2, 
and 21, cc µµ  are the average distances of c1 and c2 respectively 
(given in (4)), but local average distances for singleton clusters 
(as given in (3)). If two clusters are merged, the following 
changes are done: 
-The new cluster’s average is updated by the distance value used 
to merge the clusters (distance belongs to list of accepted 
associations Ac mentioned earlier in (4)). 
-The two merged clusters are given the same label.  
-An association satisfying the above criterion is removed from 
list L1 and stored in list L2. 
The above merge criterion demands the existence of a relative 

consistency between two clusters’ average distances, as well as 
the existence of a relative consistency between the linking-
association’s distance and each cluster’s average distances. This 
is implemented by bounding one cluster’s average distances to 
that of the other cluster i.e. ).().( c1c2c2c1 µµµµ kk <∧< , which 
corresponds to bounding the maximum value to the minimum 
one i.e. ),min(.),max( c1c2c2c1 µµµµ k< . Also the linking 
distance should be bounded to both averages, which in result is 
bounded to the minimum average. 
A cluster “enriching” step follows, which uses the rest of 

associations in L1. An association from L1 is retrieved, 
connecting two different clusters s and l, one smaller (s) in size 
than the other (l). The two clusters are merged if the following 
criterion is satisfied: 

).),(()().( llsls kppdls µµµδ <∧<∧<  

This criterion demands the attraction of large clusters to nearby 
tiny clusters of size less than δ of the larger cluster’s size with 
two restrictions (to avoid outliers’ effect): 
-The tiny cluster should be denser (smaller average distances) 
than the larger one in order to avoid attracting outliers.  
-The associating distance should be consistent to the major 
cluster’s average distances. 
δ is substituted in all the experiments by 5%, which is chosen 
small enough to avoid violating the main merging criterion.  
During this process, the clusters maintain their original distance 
averages obtained during merging, and only the tiny cluster is 
given the same label as the larger one. The accepted merging 
association is added to list L2 and removed from L1.   
 A refining process follows the merging process, where weak 

associations are removed from each cluster, which may result in 
breaking a cluster into two or more new clusters. Prior to cluster 
refining, any association from L1 that connects two patterns of 
the same cluster c is added to the list of accepted associations L2 
if its distance satisfies the condition ckppd µ.),( 21 < . The affected 
clusters’ average is updated accordingly. This is done to ensure 
the inclusion of all internal associations consistent to the cluster’s 
average distances, in the cluster’s list of accepted associations. 
Associations that belong to each cluster are then arranged into 

lists using L2. The harmonic average of associations’ distances is 
calculated for each cluster as given in (5), and associations of 
distances not conforming to this average-as given next- are 
removed from the cluster: 

cHkppd µ.),( 21 <  
Where 

cHµ is defined in (5). This method is used as a way of 
shrinking the cluster average distances towards the denser core of 
the cluster, enabling the identification and removal of outlier 
distances from the cluster.When weak associations are removed, 
patterns in each cluster are re-labeled, and the final clusters result.    
 Any singleton patterns or patterns in clusters of size less than 

1% of the total data size are considered outliers, and are allocated 
to clusters of majority in their neighborhoods.  
 
D. Performance Issues 
The time complexity of Mitosis is ))(log( 2 NDNO , where D is 

the number of dimensions, and N is the number of patterns. This 
is the same complexity of DBScan. Mitosis, however performs a 
number of scans on the neighbourhood associations, which are 
not done by DBScan due to its simpler solution. Yet, Mitosis is 
able to discover clusters of arbitrary shapes and of different 
densities, not discovered by DBScan due to its prespecified static 
density.  
Compared to other related algorithms, Mitosis is faster as it uses 

nearest neighbour information rather than a similarity matrix. 
CLICK and HCS, on the other hand need a similarity matrix as 
an input to the algorithm. This elevates the time complexity to a 
quadratic one in terms of the number of patterns, i.e. O(DN2). 
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Figure 3: Serum color gradient representation (left) and 

similarity matrix (right). The brightest black/white color stands 
for the highest/lowest expression values in the color gradient and 

the largest/smallest distances in the similarity matrix.   
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(d) 

Figure 4: Clusters obtained for Serum data set by (a)Mitosis, 
(b)CLICK , (c)K Means and (d)DBScan, SVD modes’ coefficients 

are plotted for visualization. 

SPIN is of O(DN2+N3) complexity due to similarity matrix 
calculation and permutations. 

 
IV. EXPERIMENTS 

 
Both time series and nontemporal gene expression data sets have 
been used to examine the efficiency of the proposed algorithm. 
The results were compared to results obtained by CLICK 
(obtained from [26]), DBScan[13], and K Means. DBScan is not 
known for application in high dimensional gene expression 
analysis. Only in [17], do the authors refer to using Optics[23] , 
which depends on DBScan. Yet the authors didn’t consider its 
importance in finding connected patterns. Results are also 
assisted by results from SPIN [7], and results from Hotler et. al [8] 
who used SVD to explore the data sets. The data sets used are: 
Serum gene expression time series [9], and Leukaemia data set 
[11]. The first data set illustrates the ability of Mitosis to identify 
connected patterns, and the second illustrates its ability to 
identify clusters of different densities, revealing important 
information in data. 
Colour gradient representation, similarity matrix, and SVD are 

used to visualize the results. SVD have been used for visualizing 
gene expression data in [8], and [20]. The two highest ranked 
modes are selected and their coefficients are plotted against each 
other in a 2-D plot. It is used to reveal some aspects of the data 
sets, yet this projection hides other information. It is used here 
only for illustration, and it is not part of the clustering algorithm. 
The colour gradient representation is used to view the gene 
expression patterns, where darker colours are used to reflect 
higher expressions (up regulations) and brighter ones reflect the 
lower expressions (down regulations). 
    Aside from the general preprocessing for handling missing 
values, row normalization is done for each gene in order to be 
able to use the Pearson-based metric discussed above. The row 
normalization considered here is the mean-standard deviation 
normalization. 
  Parameters are selected by detecting the stability in the k/cluster 
curve at each f value. For a given f value, the k/cluster curve 
plots the number of clusters, obtained from the clustering 
solutions at all k values, against k. Parameter f is normally 
selected starting at values slightly greater than 1, and is increased 
in small steps. The values of k start at values above 1, and have a 
maximum value bounded by finding the minimum number of 
clusters attainable by a certain f value. The stability in the 
k/cluster curve is detected for all consecutive values of f. When a 
consistency between a number of consecutive f values, with 
respect to their stability is achieved, the value of k corresponding 
to the stability at a particular f value is selected (see figure 6 for 
selecting parameters for the serum dataset).  
A. Time Series Gene Expression :Serum Dataset 
Serum data set is obtained from [9] and contains 12 time point 
expressions for about 500 genes. The color-gradient 

representation, similarity matrix (using visualization from [26]) 
and SVD modes of serum’s dataset reveal the continuity in gene 
expression along the whole data set. The color-gradient in fig. 3   
(left figure) shows a gradual transition of expression, while the 
similarity matrix (right figure) shows a matrix arrangement 
similar to that given by SPIN for a 2-D circular connected shape. 
 DBScan was examined for a large range of Eps and Minpts 
settings.  Settings of Eps and Minpts at (0.4,20), (0.5,50) and 
(0.6,90) gave one connected cluster (fig. 4-d from left to right). 
Given the Eps settings of 0.4, 0.5 and 0.6, the larger group of 
settings for Minpts gave the same connected cluster, while only 
few settings gave two clusters, including an unstable cluster.    
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(b) 

Figure 5:  Illustration of gradual change in patterns of serum data set, (a) SVD modes of 3 discrete groups (1,2,3), corresponding mean expression 
patterns of two distant clusters (1,3), and the color gradient of the main cluster discovered by Mitosis (b) Gradual change in patterns between the 

means of (1,3) (clockwise order starting from 1 till reaching 3)  

  Running CLICK using its default homogeneity discovered 4 
clusters (fig. 4-b) of coherent patterns, and left out a number of 
patterns unclassified (singletons).When decreasing the 
homogeneity setting to 0.1, two clusters resulted ,similar to those 
obtained by K Means when setting the number of clusters to 2 
(fig. 4-c). Note that CLICK uses a validity based on 
homogeneity-separation, which prefers coherent patterns.        

Mitosis, after tuning its parameters, results in one cluster 
containing most of the genes, and a very small cluster (fig.4-a) at 
a parameter setting of f=1.3 and k=1.5. The choice of parameters 
is illustrated in figure 6, where the k/cluster curves at f values of 
1.1, 1.2 and 1.3 are shown (clusters of size less than 1% of the 
data size were ignored). The common stability of the 3 curves is 
at a number of clusters=2. The highest f value of 1.3 was selected, 
and the corresponding k value of 1.5 that gave 2 clusters is 
selected. This result reveals the connectivity of expression 
patterns observed in the similarity matrix, SVD, and the color 
gradient representation. To further illustrate the gradual change 
of expression patterns in the cluster discovered by Mitosis, fig. 
5.a shows the SVD representation for three discrete clusters 
(1,2,3) that together cover the main cluster discovered. The 
gradual change of patterns between two clusters (1,3 in fig. 5.a), 
that seem opposite in regulatory pattern is shown in fig. 5.b. It 
can be observed that the up-regulation in the first five time points 
(1-5) for cluster 1 is shifted to the next five time points (5-10) for 
cluster 3. Similarly, the down-regulation in the first five time 
points for cluster 3 is shifted to the next five time points for 
cluster 1. The color-gradient confirms the same gradual change 
between the two distant clusters. Joining the three discrete 
clusters in one cluster as done by Mitosis, reveals the 
connectivity between them through this gradual change, and the 

possibility of finding regulatory relations between genes. Results 
obtained by the use of SVD in Hotler et. al [8], were interpreted 
as continuity in gene expression patterns. The authors comment 
that “..the progressive changes in gene expression are uniform 
and continuous. Thus, genes are generally not activated in 
discrete groups or blocks….”. 
Unfortunately there is no common ground truth for classifying 
this data, and comparisons rely on observations found in the 
literature as that of Hotler et. al [8].  
For this data set, Mitosis and DBScan gave almost the same 
results, revealing one connected cluster in the data set. This data 
set illustrates the ability of Mitosis to obtain connected patterns 
of gene expressions. Further investigation of genes in the main 
connected cluster, could be assisted by other gene expression 
arrays to help build gene regulatory networks. 
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Figure 6: Parameter selection for serum data set, and detecting stability at 

number of clusters=2 
B. Leukaemia dataset 

Leukemia dataset [11] is an example of a non temporal gene 
expression set. It is used to illustrate the ability of Mitosis to 
discover connected patterns of arbitrary densities. The data set 
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(a)                                                              (b) 

           (c) 
Figure 8: Mitosis results for leukemia data set, (a) Two dense clusters of 
ALL and AML, (b) A lower density cluster combining genes from ALL 
and AML, (c) Color-gradient representation of ALL cluster (left), AML 

cluster(middle) and ALL+AML cluster (right) . 
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Figure 9: DBScan clusters for Leukemia data set, at Eps=0.6, Minpts=60 

(left figure), and Eps=0.5, Minpts=24 (right figure) 
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Figure 10: CLICK results for Leukemia data set, at the default 
homogeneity (left figure) and at homogeneity =0.2 (right figure) 

contains the expression of 999 genes along 38 samples obtained 
from ALL (27 samples) and AML (11 samples). Furthermore, the 
ALL samples are arranged in 18 B lineage and 9 T lineage 
samples. The order of samples along the data set columns is: 
ALL B lineage, ALL T lineage and AML.  
 In previous studies of this data set [3], clustering resulted in 3 
groups of expressions linked to ALL B lineage, ALL T lineage 
and AML. While SPIN [7] discovered that ALL B lineage and 
ALL T lineage gene expressions are connected in one elongated 
cluster.  The SVD representation is given in fig. 7. 
Mitosis at the parameter setting of f=1.4 and k=1.08 finds 2 
dense clusters (fig. 8-a), which correspond to ALL and AML 
groups, and also discovers a third cluster connecting patterns 
from ALL and AML (fig. 8-b). This cluster of expressions 
connecting both classes is of lower density than those of ALL 
and AML clusters. This third group of genes was not identified 
by any of DBScan, CLICK, or K-means. The SVD presentation 
(fig. 7) shows the continuity of gene expression among the two 
main clusters of ALL and AML. The first color-gradient 
representation in fig. 8-c shows the ALL cluster of gene 
expressions, with a high expression in the 18 left most columns 
corresponding to ALL B lineage samples, and a high expression 
in the following 9 columns, corresponding to those expressed in 
ALL T lineage samples. It is obvious that some genes are 
expressed in both T lineage and B lineage samples, as apparent in 
the faint black streaks appearing in the first 18 columns (ALL B) 
accompanying the high expression in the next 9 columns (ALL 
T).  

The AML cluster is represented by the middle color-gradient of 
fig. 8-c, where expression in the last 11 columns corresponding 
to AML samples is obvious. The right most color-gradient of fig. 
8-c represents the third low dense cluster. Genes expressed for 
both ALL B and ALL T lineages, and others expressed for both 
ALL T lineage and AML are apparent. Genes that are also 
expressed in both of ALL B lineage and AML are also present in 
this cluster, as will be discussed later. 
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Figure 7: Coefficients of SVD modes for the leukemia data set (left figure), 

and normalized coefficients (right figure). 

DBScan finds two clusters, as shown in the left figure of fig. 9, 
for a large number of Eps, and Minpts settings: 0.5,2 to 0.5,22 
and 0.6,50 to 0.6,80. These clusters correspond to ALL and AML 
classes, while at the setting of 0.5,24 it finds three weak clusters 
(fig. 9, right figure). However DBScan fails to find the low dense 
cluster found by Mitosis. CLICK, at the default homogeneity, 
finds three main clusters (fig. 10, left figure), and a fourth tiny 
cluster of 23 genes. The main classes correspond to ALL B, ALL 

T, and AML. The fourth one is in between ALL T and AML. 
When lowering the homogeneity to 0.45, it gives 6 clusters: 3 
large ones, and 3 tiny ones. When lowering the value to 0.2 (fig. 
10, right figure), two clusters result corresponding to ALL and 
AML, and in that case, resembling K means results found at k=2 
(fig. 11, right figure). In both cases of low and high homogeneity 
CLICK failed to find the low dense cluster found by Mitosis.  

Biological Implications: 
 Genes in the mixture of ALL and AML cluster found by Mitosis, 
include HOXA9, SM22 Alpha identified by [21] as belonging to 
MLL (Mixed Lineage Leukemia) group. In [15], the authors state 
that HOXA9 gene may hold an important key to MLL Leukemia 
as it is one homeobox gene most frequently overexpressed in 
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MLL Leukemia. Also HoxB2 and HoxB3 genes were included in 
that third cluster. The expression patterns for HOXA9, SM22 
Alpha, HOXB2, and HOXB3 are shown in fig. 12, illustrating 
that HOXA9 is expressed for ALL B lineage and AML samples, 
SM22 Alpha is expressed for ALL T lineage and AML samples, 
HOXB2 is expressed for ALL B and T lineages and AML 
samples comparably, and HOXB3 is expressed for ALL B 
lineage and AML samples. It is concluded that genes belonging 
to this third cluster, and that are expressed both in AML and ALL 
should further be studied for investigating their relation to MLL, 
or other types.   
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Figure 11: K means results for Leukemia data set, at k=3 (left figure) and 

k=2 (right figure). 
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Figure 12: Gene expressions of selected genes from the third cluster 

discovered by Mitosis for leukemia data set. 

V. CONCLUSION 
 
An algorithm for finding connected expression patterns in gene 
expression data sets is proposed. The algorithm depends on using 
nearest neighbours and thus is able to find connected instead of 
coherent patterns. It has a benefit over known density based 
clustering, in its ability to discover clusters of different densities 
by using novel measures. Its efficiency in discovering 
connectivity is illustrated using both time series data set and non 
temporal data set. The continuity of expression in time series data 
is important in discovering genetic pathways, while connected 
patterns in non temporal data discovers new clusters that gather 
properties from different sample types.   
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